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Abstract

Identifying new gene functions and pathways underlying diseases and biological processes are major challenges in

genomics research. Particularly, most methods for interpreting the pathways characteristic of an experimental gene list

defined by genomic data are limited by their dependence on assessing the overlapping genes or their interactome topology,

which cannot account for the variety of functional relations. This is particularly problematic for pathway discovery from

single-cell genomics with low gene coverage or interpreting complex pathway changes such as during change of cell states.

Here, we exploited the comprehensive sets of molecular concepts that combine ontologies, pathways, interactions and

domains to help inform the functional relations. We first developed a universal concept signature (uniConSig) analysis for

genome-wide quantification of new gene functions underlying biological or pathological processes based on the signature

molecular concepts computed from known functional gene lists. We then further developed a novel concept signature

enrichment analysis (CSEA) for deep functional assessment of the pathways enriched in an experimental gene list. This

method is grounded on the framework of shared concept signatures between gene sets at multiple functional levels, thus

overcoming the limitations of the current methods. Through meta-analysis of transcriptomic data sets of cancer cell line

models and single hematopoietic stem cells, we demonstrate the broad applications of CSEA on pathway discovery from

https://academic.oup.com/
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gene expression and single-cell transcriptomic data sets for genetic perturbations and change of cell states, which

complements the current modalities. The R modules for uniConSig analysis and CSEA are available through https://github.

com/wangxlab/uniConSig.

Key words: quantification of genome function; disease gene discovery; causal pathway discovery

Background

The identification of causal genes and pathways underlying dis-

eases (such as cancer) based on proteomic, genomic, transcrip-

tomic, or single-cell profiling/sequencing data sets is a daunting

task, yet critical to translational research. The first challenge

is that genomics data can provide molecular evidence for the

pathological factors contributing to certain diseases; however, it

is often challenging for biologists to interpret the possible func-

tions of an overwhelming number of aberrant genes cataloged by

genomics, and prioritize those genes based on existing human

knowledge of their biological functions. This often happens in

cancer genomics studies where hundreds of candidate patho-

logical genetic alterations are identified, making it exceedingly

difficult to pinpoint the key causal genes and prioritize them

for experimental validation. This calls for innovative algorithms

to compute novel gene–disease or gene–function associations

based on genome knowledge databases. Here, we define ‘gene

set’ as a group of genes that are functionally related, such as a

set of genes that function in certain diseases (disease gene set)

or pathways (pathway gene set). Thus, this type of associations

can be generalized as ‘gene to gene set associations’.

Another major challenge is to interpret the pathways

characteristic of a list of aberrant genes, such as differentially

expressed or mutated genes. Here, we define a nominal gene list

of interest cataloged by genomics data as an experimental gene

list. Pathway gene set analysis, originally derived from analyzing

gene expression data, has progressively been applied to genetic

data. The current gene set analysis methods have been outlined

in a recent review [1]. While pathway tools are vastly available

for gene expression data of continuous variables, only handful of

tools are available for genetic data of nominal variables (Table 1).

A majority of these tools rely on overrepresentation analysis

(ORA) that performs statistical test to assess the statistical

overrepresentation of experimental gene list compared to the

pathway gene sets and are thus severely limited by their

dependence on the genes included in the experimental gene

list and the pathways. To illustrate, suppose two gene sets A

and B do not share any common genes. Even if gene sets A and

B each consist entirely of genes involved in DNA repair, they

will not be found to have functional relationship by current

approaches. While recent studies has attempted to resolve this

issue by quantifying the interactome network topology between

gene sets [2–4], thesemethods cannot take advantage of the vast

molecular concept data to analyze the variety of ways that genes

can be functionally related. Thus, an algorithm that can better

compute the functional relations between gene sets based on

the framework of the vast knowledge databaseswill be of utmost

importance.

Molecular concepts, also known as gene sets, are sets of

biologically related genes, such as gene ontologies, pathways,

molecular interactions, and protein domains [5]. The sum of

these concepts represents the current human knowledge about

the biological functions of genes. Here, we will take the quantifi-

cation of new gene functions underlying cancer as an example.

We previously developed a concept signature (ConSig) algo-

rithm to compute the functional relevance of genes underlying

cancer by assessing their associations with the cancer gene

signature concepts (i.e. oncogenic pathways, interactions with

key oncogenic proteins, characteristic protein domains, specific

gene ontologies). This algorithm provides a unique quantitative

estimation of new gene functions underlying cancer,which have

been successfully applied by our group to identify new cancer

genes from genomics data sets [6–10]. Other algorithms may

utilize network analysis, text mining, or similarity profiling to

rank candidate genes [11–24], which generally fail to account for

the variety of ways in which genes can be related to each other.

It bears notable that all gene set-based algorithms including

ConSig require merging of a wide array of molecular concept

databases thanks to their outgrowth in recent years [25–33].

Such data fusion, however, carries the inherent challenge of data

redundancy because different data sources follow different rules

for the nomenclature of concepts and different categories of con-

cepts possess levels of inherent redundancy. Hence, the ability

of the gene set-based algorithms to identify the redundancy and

sieve only the effective or unique signature concepts for further

calculation is critical. Here, we developed a powerful algorithm

called universal ConSig (uniConSig) analysis, which has sub-

stantially improved performance for genome-wide quantifica-

tion of gene functions based on redundant molecular concept

databases (Figure 1A). Based on this algorithm,we further devel-

oped a ConSig enrichment analysis (CSEA) for the quantification

of precise functional associations between molecular concepts

(Figure 1B) by deep interpreting their shared signature concepts

rather than assessing shared gene numbers, which cannot be

carried out by any of the previous methods. The uniConSig and

CSEA algorithms directly measure the functional interconnect-

edness of genes and gene sets,whichwill havewide applications

in genomics studies, such as discovering new gene functions

underlying certain disease or identifying the pathways under-

lying experimentally defined gene lists.

Materials and methods

Compiling the molecular concept database and training
gene lists

To generate a comprehensive and reliable knowledge base for

the calculation of ConSig and uniConSig scores, we compiled

40,676 molecular concepts (Supplementary Table S1) from

the Molecular Signatures Database (MSigdB) [34] (C2 and

C5 gene sets from http://software.broadinstitute.org/gsea/

msigdb), the Pathway commons database [35] (http://www.

pathwaycommons.org), the NCBI EntrezGene interactome

database and conserved domain database [27] (https://www.

ncbi.nlm.nih.gov/gene) and the VisAnt interactome database

[36] (http://visant.bu.edu/). Here,we only included these human-

curated gene sets in the compiled molecular concept knowledge

base to increase the reliability of the calculations.

To calculate ConSig and uniConSig scores for cancer, type

2 diabetes and nucleotide excision repair pathway, we have

compiled three training gene lists. The known cancer causal

gene set was downloaded from the Cancer Gene Census (CGC)

https://github.com/wangxlab/uniConSig
https://github.com/wangxlab/uniConSig
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
www.pathwaycommons.org
www.pathwaycommons.org
https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene
http://visant.bu.edu/
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Table 1. Pathway enrichment methods for interpreting pathways characteristic of an experimental gene list

Tools Statistical approach Pathway database PMID

GO-Elite Hypergeometric distribution and Fisher’s exact test Gene Ontology, WikiPathways, KEGG, microRNA,

user defined

22743224

GeneTrail Hypergeometric distribution and Fisher’s exact test KEGG, TRANSPATH, Gene Ontology, DIP 17526521

ConceptGen Modified Fisher’s exact test Gene Ontology, MiMI, KEGG, Panther, BioCarta 21715386

KOBAS 2.0 Binomial test, chi-square test, Fisher’s exact test and

hypergeometric test

KEGG, PID curated, PID BioCarta, PID Reactome,

BioCyc, Panther

21715386

DAVID Kappa statistics Gene Ontology, PANTHER, BIND, MINT, DIP 17576678

Enrichr Fisher’s exact test and z score of the deviation from the

expected rank by the Fisher’s exact test

NCI-Nature, PANTHER, metabolic pathway, Gene

Ontology, BioCarta, user defined

23586463

27141961

NEA Use z score to compute the enrichment statistics based

on the interactome network topology

KEGG, Gene Ontology, user defined 28361684

TopoGSA Target genes are mapped to an interaction network to

compute topological properties and are compared with

pathway genes

PPI network, KEGG, BioCarta, Gene Ontology 20335277

TPEA TPEA measures topological properties of pathways of the

genes and calculates the area under the enrichment curve

KEGG 28968630

EnrichNet Target genes are mapped to a network, and random walk

procedure scores the functional associations (distance)

between target and pathway genes

KEGG, BioCarta, Reactome, WikiPathways, Gene

Ontolgy, NCI Pathway

22962466

[37] (http://cancer.sanger.ac.uk/census/). The cancer genes were

then classified to different cancer entities via mapping the can-

cer type annotations of CGC cancer genes to TCGA cancer types.

The ‘DIABETES MELLITUS, TYPE II’ gene set was obtained from

OMIM [38] (https://www.omim.org/, OMIM number: 125853) and

the ‘KEGG Nucleotide Excision Repair’ gene set was obtained

from MSigdb C2CP database [34].

The uniConSig algorithm

For a given Genex, we define the basic uniConSig score to be

the average of the concept weights of each Concepti associated

with Genex, which indicates the average similarities between

the Genex-associated concepts and the training gene list. The

concept weight (ωi) for each Concepti is defined as the Jaccard

index between the Concepti and the training gene list, which

measures the similarities between each concept and the training

gene list (Figure 1A). One key problem in the concept analysis is

that many concepts are similar to each other, which will cause

the over estimation of uniConSig scores for most studied genes

(Supplementary Figure S1). To remove the effect of redundancy

in the knowledge base, we introduced a penalization factor, ε,

which is given by

εi =
n

∑

j=1

Jij, (1)

where Jij is the Jaccard index between each pair of the molec-

ular concepts associated with Genex and n is the total number

of concepts associated with Genex. Thus, εi is an estimator

of redundancy among the molecular concepts associated with

Genex, which ranges from 1 (all the concepts are completely

different from each other) to n (all the concepts are exactly the

same) (Figure 1A; Supplementary Figure S2). During the develop-

ment of uniConSig, we found that the algorithm calculating the

penalization parameter ε tends to aggravate the impact of small

overlaps between the molecular concepts (Figure 2A). To remove

the negative effect introduced by the small overlaps between

the concepts associated with Genex, we introduced a cutoff to

remove the small Jaccard scores caused by random overlaps.We

tested different cutoffs from 0.01 to 0.1 (Supplementary Figure

S3). The enrichment scores (ESs) and the SDs of the ES indicate

a cutoff of 0.05 for Jij can achieve a good ES with less variations.

Therefore, the new penalization factor ε′ for a given concept Ci

of Genex is calculated as

ε′
i =

n
∑

j=1

[0.05,∞) I
(

Jij
)

. (2)

The Jaccard score Jij will be adjusted to 0 if Jij <0.05. Based on

εi
′, we then penalized the concept weight ωi by εi

′, resulting in the

effective concept weight (ECW):

ECWi = ωi

ε′
i

. (3)

The harmonious sum of εi
′ was then used to calculate the

effective concept number (ECN):

ECN =
n

∑

i=1

1

ε′
i

. (4)

We also tested different transformation of ECN to improve

the ESs using cancer gene list as training gene list (Supplemen-

tary Figure S4). We chose square root as the final form for ECN

to be consistent with former ConSig algorithm. Taken together,

the uniConSig score of a given Genex is then calculated as

UniConSiggenex
=

∑n
i=1 ECWi√
ECN

=

∑n
i=1

ωi

/

ε′
i

√

∑n
i=1

1
/

ε′
i

. (5)

For a given training gene list, this calculation is applied to

each of the genes in genome; thus, all the genes are assigned

with a uniConSig score. If a gene is included in the training gene

list, then the number of overlapping genes between a concept

and the training gene list will be subtracted by 1 to avoid the

inflation of the concept weight (ωi). The final uniConSig score is

scaled to [0, 1]. To avoid bias,we excluded themolecular concepts

with fewer than five genes during calculation of uniConSig

scores.

http://cancer.sanger.ac.uk/census/
https://www.omim.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
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Figure 1. The schematic of the uniConSig and CSEA algorithms. (A) The uniConSig algorithm computes new gene functions underlying a certain disease or a biological

process based on a training gene list and a gene knowledge database, which we termed molecular concept database. The training gene list is a collection of genes that

carry out a specific biological function or drive certain diseases such as cancer. Themolecular concept database integrates diverse sources of gene annotation data sets,

including gene ontologies, pathways, interactions, domains, etc. Here, we define the concept weight (ωi) as the Jaccard index between a molecular concept of Genex

and the training gene list; a given gene’s uniConSig score is calculated as the average concept weight of all concepts of Genex . The uniConSig algorithm eliminates

the redundancies between the concepts of Genex through an innovative mathematical scheme penalizing their overlaps (Jij). A realistic example of molecular concept

redundancy is shown in the middle–lower panel, in which the overlap (Jij) between concepts varies from 0 to 1. (B) The CSEA facilitates pathway discovery from an

experimental gene list defined from genomics data. Using an experimentally defined gene set (i.e. differentially expressed genes, mutated genes, amplified or deleted

genes, etc.) as training gene list, a uniConSig score can be calculated for each gene in the genome (red line), which is used to sort all genes in the genome. For gene

expression data, differentially expressed genes can be identified, and the top up- or downregulated genes can then be used as a training gene list to calculate uniConSig

scores for all human genes. To identify the pathways characteristic of the experimental gene set, the enrichment of all pathways (i.e. in the MSigdb c2cp or hallmark

pathways) in this sorted gene list can be assessed by K-S tests. The resulting ES can be used as a quantitative measure of the functional association between these

pathways with the experimentally defined gene set.

Calculating duniConSig scores

Here, we take comparing the oncogene and tumor suppres-

sor gene sets as example to illustrate the duniConSig algo-

rithm. Based on the oncogene and tumor suppressor gene sets

compiled from the CGC [37], we first calculated the oncogene

and tumor suppressor uniConSig scores for each Genei in the

genome (Figure 3B). Here, we define uniConSigi|Onco to be the

oncogene uniConSig score of Genei and uniConSigi|TSG to be

the tumor suppressor uniConSig score of Genei. Then we sorted

the genes on either oncogene set or tumor suppressor gene

set by (uniConSigi|Onco)/(uniConSigi|TSG) in descending order.

Scanning from the top to the bottom of this sorted gene list, the

percentage of correctly classified genes in the oncogene gene set

is calculated by

Percentagei | Onco

=

∑i
j=1

Nj

(

Nj=1 if genej ∈Oncogene gene set;Nj=0 if genej /∈Oncogene gene set
)

Number of genes in oncogene gene set
.

(6)
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Figure 2. Benchmarking the performance of the uniConSig algorithm over simulated concept redundancy. (A) The effect of minor overlaps betweenmolecular concepts

on calculating the penalizing factor εi for concept redundancy. The Jaccard indexes between the 463 molecular concepts associated with the STAT3 gene are plotted in

the upper heatmap. The concepts are sorted by the adjusted penalizing factor εi ’ calculated with a Jaccard index cutoff of 0.05 (orange line, middle plot). In contrast,

without adjustment, the minor overlaps (which are presumably biologically irrelevant) significantly inflate εi, which leads to the underestimation of ECW and ECN

(blue line, lower plot). (B) The uniConSig algorithm outperforms the ConSig algorithm over simulated concept redundancy. Here, we randomly selected two-thirds of

the CGC cancer genes as training gene list and the remaining one-third as testing gene set and repeated this process for 20 times to generate 20 pairs of training/testing

gene sets. We then randomly duplicated 50% of the molecular concept database and repeated this for 20 times and calculated the ConSig and uniConSig scores based

on each of the training gene list, as well as ES based on the paired testing gene set. The average ESs generated using ConSig and uniConSig are shown on the left

panel, and the average SDs from 20 database duplications using each of the 20 training gene lists are shown on the right panel. (C) The uniConSig algorithm showed

substantially improved performance over random duplications of selected concepts with different levels of overlaps with the cancer gene list. Here, we used the known

cancer gene set generated by CGC as the training gene list and calculated its Jaccard index with each of the molecular concepts in the database as concept weights.

Then the 20,535 all molecular concepts are divided into five groups (A–E) based on their different levels of overlaps with the CGC cancer gene list. We then randomly

duplicated 50% of the concepts in each of these five groups for 20 times and calculated the ConSig or uniConSig scores. The performance of the resulting scores on

prioritizing the known cancer genes are benchmarked with K-S tests. ‘Ctrl’ is the result of the original molecular concept database without concept duplications.

(D) The uniConSig algorithm better separates known cancer genes from other human genes. ConSig scores and uniConSig scores were calculated based on the known

cancer genes collected from CGC. Density plots of the known cancer genes (red) and other human genes (blue) are shown for ConSig scores (left) and uniConSig scores

(right).
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Figure 3. The applications of the uniConSig algorithm in the discovery of new gene functions. (A) Quantifying the role of human genes underlying different cancer

entities based on the lists of known cancer genes for different cancers. Gene sets for different cancer typeswere collected fromCGC.The resulting cancer gene ESs based

on K-S tests for different cancer entities are shown at the top (gray columns). We calculated the cancer type-specific uniConSig scores for the human genome using

these 12 cancer gene sets as training gene lists and then sorted all human genes by the median of their uniConSig scores (dashed blue line). The top five uniConSig

scores for each gene are shown in the chart, which represent five different cancer types (different colored dots). Circles outlined in black indicate that the gene is

included in the CGC database for that specific cancer type. Known cancer gene names are highlighted in red. The running sum of the random walk K-S test of CGC

cancer gene set is shown to the left. Red lines are the genes that are on the CGC known cancer gene list. (B) uniConSig scores for Oncogenes and tumor suppressors. In

this dot plot, the uniConSig scores calculated based on the oncogene gene set and tumor suppressor gene set from CGC are shown in y- and x-axis, respectively. The

dashed line indicates the distinction line (D-line), which was calculated based on the ROC-like curve shown in Supplementary Figure S7, where we selected the D-line’s

slope based on the maximum of the Youden index. Here, we define the distance of a gene to the D-line as ‘dConSig’ score. (C) Quantifying the functional relevance of

human genes underlying diabetes or mismatch repair pathway based on the OMIM diabetes gene set or the KEGG mismatch repair gene set. uniConSig scores of each

human gene were calculated based on OMIM diabetes gene set (left) or KEGG’s mismatch repair pathway gene set (right). Top 50 genes are shown in the plots. Red bars

are the genes that are on the OMIM diabetes gene set (left) or KEGG mismatch repair pathway gene set (right).

Similarly, the percentage of correctly classified genes in the
tumor suppressor gene set is calculated by

Percentagei | TSG =
∑i

j=1 Nj

(

Nj = 1 if genej ∈ TSG;Nj = 0 if genej /∈ TSG
)

Number of genes in tumor suppressor gene set
.

(7)

Next, we plotted the above percentages in a receiver oper-

ating characteristic (ROC)-like curve (Supplementary Figure S7).

The optimal separation line (D-line) for oncogenes and tumor

suppressors can be determined using the ROC Youden index:

Youden index = max
(

percentagei
∣

∣Onco + percentagei
∣

∣TSG
)

.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data


Universal concept signature analysis 1723

With this computation, if a gene has high probability to be

oncogenes or tumor suppressors, the uniConSigi|Onco or uni-

ConSigi|TSG will be high, respectively. Thus, the distance of each

gene to the D-line in the two-dimensional plot for oncogene and

tumor suppressor uniConSig scores will correlate with the role

of tested genes in cancer, which we termed duniConSig score.

ConSig enrichment analysis

To assess the association between two gene sets A and B, we

used one gene set A (i.e. experimentally defined gene set) to

calculate the uniConSig score for each gene in the genome and

sorted all human genes by this score (Figure 1B). Then, the ES

for the other gene set B (i.e. pathway gene set) in this sorted

list is calculated by the weighted step-up method. This method

assesses the enrichment of the genes in gene set B with high

uniConSig scores calculated based on gene set A. The steps of

calculations are similar to the equal step-up method, except the

step-up for a given Genei is calculated by

StepUpi = UniConSigi | A
∑m

j=1

(

UniConSigj|A
) , (8)

wherem is the number of genes in gene set B. The step-down for

a given Genei is calculated by

StepDowni = 1

ntotal − m′ , (9)

where ntotal is the total number of genes in genome. To assess

the functional relations of multiple gene sets with a given gene

set (i.e. multiple pathways with an experimental defined gene

set), the ES needs to be normalized, since the number of genes

in gene sets are different. The normalization can be carried out

by randomly picking the same number of genes as the pathway

gene set from the total genome and then calculating the ES using

the abovemethod.Repeat this step until we get 1000 positive ESs,

and then, the normalized ES (NES) can be calculated by

NES = ESB
∑1000

l=1 ESPl
1000

, (10)

where ESB is the ES of gene set B and ESPl is the ES of a per-

mutation l. This is the same as calculating the NES score in

the Kolmogorov–Smirnov (K-S) test used in Gene Set Enrichment

Analysis (GSEA) methods, and we used 1000 permutations as

recommended by GSEA.

Benchmarking the ConSig and uniConSig algorithms

To assess the performance of the different algorithms in priori-

tizing known cancer genes, we randomly selected two-thirds of

the genes from 567 known cancer genes from the CGC as the

training gene list for the calculation of uniConSig scores and the

remaining one-third of genes as a testing gene set to benchmark

the performance of the uniConSig scores. Such random selection

was repeated 20 times (Supplementary Figure S5). To benchmark

the performance of the algorithms, we used a random walk K-

S test to assess the enrichment of testing gene set in the top-

ranked genes by the ConSig/uniConSig scores calculated using

the training gene list. This is similar to the equal step-up K-S test

option used in the GSEA analysis [34]. To scale the ES, we used

the ratio of the ES divided by the maximum possible ES, given by

ESscaled = ES

G
√

N−G
G

, (11)

where G is the total number of genes in CGC cancer gene list

and N is the total number of all human genes included in this

calculation. G
√

N−G
G

gives the maximum possible ES (if all of the

CGC cancer genes were enriched at the top). Here, we have used

equal step-up in this analysis to take more account of the effect

of known cancer genes with low ConSig scores that would be

overlooked by the weighted step-up K-S test.

CSEAs of gene expression and scRNA-seq data sets

The gene expression data sets were downloaded from Gene

Expression Omnibus: GSE31812 by Freed-Pastor et al. [39] and

GSE84970 by Zhao et al. [40]. Because the two data sets used

different microarray platforms, including Affymetrix Human

Gene 1.0 ST Array and Affymetrix Human Genome U133 Plus 2.0

Array, respectively, the corresponding R packages Oligo and Affy

were used for normalization. The data sets were normalized

by Robust Multiarray Averaging (RMA) and GeneChip RMA

(GC-RMA), respectively, and the gene expression differences are

compared by the R package Limma [41]. Specifically, for the

data from Freed-Pastor et al. [39], the downregulated genes were

identified by comparing the expression data of MDA-468.shp53

cells with or without mutant TP53 inhibition (DOX+ versus

DOX−). For the data from Zhao et al. [40], the downregulated

genes were identified by comparing the expression data of

LnCap cells following CHD1 knockout with the control. To

capture the most significantly up- or downregulated pathways,

the top 50 downregulated genes were used as input for the

following CSEAs. After calculating uniConSig scores, all the

human genes were sorted by their uniConSig scores, and the

ESs of each of the MSigdb C2CP pathways (for data from Freed-

Pastor et al. [39]) or hallmark pathways (for data from Zhao et al.

[40]) were calculated by the weighted step-up of the random

walk K-S test, as described above.

GSEA analysis of gene expression data sets

In GSEA analysis, the parameters for processing the two data sets

are identical to the CSEA. Gene expression data were loaded into

R by Affy for Zhao et al [40] and by Oligo for Freed-Pastor et al.

[39] and normalized by RMA and GCRMA, respectively; analyzed

by Limma; and then exported to GSEA 3.0. Since GSEA takes

all the sorted genes into account, there is no cutoff required

following Limma analysis. The MSigdb C2CP pathways (for data

from Freed-Pastor et al. [39]) or hallmark pathways (for data from

Zhao et al. [40]) were used in the GSEA analyses. The minimum

number of genes in a concept was set to 5 as in CSEA (default

15). Other parameters were default.

Analysis of single-cell transcriptomic data

For pathway discovery from single-cell transcriptomic data of

hematopoietic stem cells (HSCs), the up- or downregulated gene

lists in quiescent HSCs compared to active HSCs were obtained

from Table S6 of the scRNA-seq study by Yang et al. [42]. The

genes marked as ‘Active’ in the table were the downregulated

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
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genes in quiescent HSCs, while the genes marked as ‘Quiescent’

were the upregulated genes in quiescent HSCs. Mouse gene IDs

were converted to human gene IDs by R package ‘biomaRt’.

CSEA was performed using these gene lists as input and the

default parameters against the merged MSigdb C2CP and Hall-

mark pathways, which were also used for the following com-

parative pathway enrichment analyses. The ORA and network

enrichment analysis (NEA) used the same up- or downregulated

gene lists in quiescent HSCs as CSEA. The ORA enrichment

analysis was carried out by an R function ‘enricher’ from pack-

age ‘clusterProfiler’ [43], which used hypergeometric test. The

NEA analysis was performed using NEA render (https://cran.

r-project.org/web/packages/NEArender/index.html) [3] and the

recommended merged network provided by Merid et al. [44]. For

GSEA, we first reconstruct the t-Distributed Stochastic Neighbor

Embedding (t-SNE) plot using the same parameters as described

in the article by Yang et al. [42], to obtain themapping list of cells

to quiescent/active groups. The log2(FPKM + 1) of the expression

data were then fed into GSEA desktop software using default

parameters.

Results

The impact of concept redundancy on the ConSig
algorithm

In ConSig analysis, the quantification of the function of human

genes underlying a certain disease requires a list of known

disease genes as a training gene list and a molecular con-

cept database compiled from multiple sources (Figure 1A). For

example, to quantify the function of human genes underlying

cancer, we leveraged the cancer causal genes collected by the

CGC [37] as a training gene list (n=567) and compiled an inte-

grated molecular concept database from different resources [27,

34–36, 45], which represents the sum of current human knowl-

edge about the functions of the human genome (Supplemen-

tary Table S1). The compilation of molecular concept databases

greatly enriches the scope of the knowledge base; however,

unavoidable data redundancy was introduced into this database

by the databasemerging process (Supplementary Figure S1). This

is attributable to the different nomenclature of molecular con-

cepts from different data sources or even from the same source

(i.e. ‘PI-3K cascade’ and ‘PI3K signaling’) and the different levels

of overlaps between functionally similar molecular concepts (i.e.

EGFR pathway and ERBB pathway; Supplementary Table S2).

To demonstrate the impact of data redundancy on the ConSig

algorithm, we performed random duplications of selective

subsets of molecular concepts in the database. The resulting

duplicated concept databases were used to calculate ConSig

scores based on CGC cancer genes. To examine the performance

of the ConSig scores in prioritizing the CGC cancer genes,

we applied the random walk K-S test, which estimates the

enrichment of the genes in the testing gene set among all of

the genes ranked by a set of ConSig scores. We found that the

performance of the ConSig algorithm was most greatly affected

by duplication of concepts with a higher degree of overlap to the

training gene list (CGC cancer genes; Figure 2C, upper panel).

Interestingly, we found that the database duplication can lead to

both increase and decrease of its performance, and the deviation

of the K-S scores can be considered as an indicator of the

algorithm’s performance under random database duplication.

The general solutions to remove the concept redundancy

include removing one of the overlapping gene sets or taking

the union of overlapping gene sets. These approaches, however,

will lead to substantial loss of information, because many

gene sets have partial overlaps with multiple other gene sets

(Supplementary Figure S1). For example, we cannot take the

union of the overlapping gene sets in Supplementary Figure 1

indicated by yellow color, which are mostly ‘interrelated’. Here,

we developed an innovative penalty algorithm to minimize the

effect of data redundancy.

The uniConSig algorithm

To develop a uniConSig algorithm that was unaffected by

concept redundancy, we first analyzed a simple scenario to

calculate the functional association of a given Genex with

a disease gene list based on redundant molecular concepts

(Supplementary Figure S2). Assume there are five molecular

concepts (Ci) associated with Genex, the association of Genex
with the training gene list (T) can be simply calculated as the

average of the Jaccard similarity coefficients between eachGenex
concept (Ci) and the training gene list, which is calculated as the

intersection over the union of the two comparing gene lists.

Here, we term this Jaccard index as the weight ωί for Concepti. If

among the five molecular concepts, concepts 1 (C1) and 2 (C2) are

identical, then the association score should be calculated as if

there were only four unique molecular concepts, which we term

as effective concepts (by taking the average of the ECWs, ω2−5).

Molecular concepts have varying degrees of overlap with

each other (i.e. the EGFR pathway has 64.3% overlap with the

ERBB2 pathway). In this case, although the two concepts are

highly redundant, they still introduce different information to

the calculation. Thus, using a simple cutoff to remove the redun-

dant information in the knowledge database is not optimal. To

overcome this problem,we introduced a penalization parameter

ε, which is the sum of the Jaccard index of a given Concepti
compared to each of the other concepts associated with Genex.

The εi indicates the degree of overlap between Concepti with

other Genex-associated concepts. The effective concepts can

then be calculated as the division of the concept weight ωί by the

penalization parameter εi. In Supplementary Figure S2, concept

C1 and C2 are identical, and the sum of the ECWs is equivalent

to the sum of the concept weights without the concept C1. Theo-

retically, this algorithm will effectively remove the impact of the

overlapping concepts on concept weights. However, we discov-

ered that the algorithm calculating the penalization parameter

ε tends to aggravate the impact of small overlaps between the

molecular concepts associated with Genex (Figure 2A). Such low-

level overlaps, albeit individually insignificant, can result in a

large sum (εi) of Jaccard indexes when a large number of con-

cepts are associated with Genex. This problem was resolved by

setting a cutoff (α) for the Jaccard index (Jij) when calculating

the εi, and a cutoff of 0.05 achieved the relative highest ESs and

lowest SDs of the ESs in the presence of random duplications of

50% ofmolecular concepts (Supplementary Figure S3). Therefore,

in the following calculation of uniConSig scores, we set the

minimal Jaccard index between overlapping concepts to 0.05

when calculating εi.

Next, we take the sum of the reciprocals of εi to calculate the

ECN based on different degrees of concept overlaps. If there is

no overlap between the concepts associated with Genex, then

1/εi will be 1. If there are two out of a total of five concepts

of Genex that 100% overlap with each other, the ECN will be

calculated as 1/2+ 1/2+1+1+1=4. Thus, using the ECN has the

same effect as removing duplicated concepts. Incorporating ε in

the calculation of concept weight and ECN not only generates

a similar result as simply removing the duplicated concept C1

https://cran.r-project.org/web/packages/NEArender/index.html
https://cran.r-project.org/web/packages/NEArender/index.html
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
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but also avoids setting an arbitrary cutoff to remove duplicated

concepts (Figure 1A). We then tested the performance of differ-

ent transformations of the ECN, including square, square root,

log10 and linear algorithms. We speculate that the attenuating

transformations such as square root can accentuate the weights

more on the final scores, similar to a sample test statistic where

the sample size is now the number of concepts. Indeed, the

square root and log10 algorithms achieved the best performance

as shown by K-S tests (Supplementary Figure S4). To be consis-

tent with other statistics, we applied square root to transform

the ECN in the final uniConSig algorithm.Finally using the ECWs,

ECN and square root normalization, we define a uniConSig

algorithm that can more effectively assess the gene to concept

associations using redundant molecular concept databases:

uniConSig | Genex =

n
∑

i=1

ωi
εi

√

n
∑

i=1

1
εi

. (12)

Benchmarking the performance of the uniConSig
algorithm

To determine the performance of the new uniConSig algorithm,

we randomly selected two-thirds of the known cancer genes

as training gene lists and the other one-third as testing gene

sets, for 20 times (Supplementary Figure S5). To determine the

variation of uniConSig scores caused by data redundancy, we

randomly duplicated 50% of the molecular concept database

for each of the permutated testing gene sets. Such random

duplication was repeated 20 times for each permutation of the

training/testing gene sets. This generated a total of 400 sets of

uniConSig scores.Using K-S tests,we examined the performance

of uniConSig versus the original ConSig in prioritizing the known

cancer genes in the testing gene set among all of the human

genes ranked by a set of uniConSig scores. The uniConSig algo-

rithm showed a better performance, as indicated by a higher

average ES (Figure 2B, left), and smaller deviations resulting from

artificial database duplications, as indicated by a lower SD of the

ESs (Figure 2B, right).

Next, we further tested the performance of the ConSig and

uniConSig algorithms under selected duplications of molecular

concepts with different levels of overlap with the training gene

list. All molecular concepts are divided into five groups based

on their different levels of overlaps with the cancer causal gene

list. We then randomly duplicated 50% of the concepts in each

group and calculated the cancer gene uniConSig scores. The

performance of the resulting scores on prioritizing these known

cancer genes are benchmarked with K-S tests. The results show

that uniConSig algorithm shows the much lower deviations

compared to the original ConSig algorithmacross different levels

of database duplications (Figure 2C), supporting its outstanding

performance against concept redundancy.

We next assessed the performance of the uniConSig

algorithms in computing functional relevance of human

genes underlying cancer. The density plots of the ConSig and

uniConSig scores calculated based on CGC cancer genes show

significant improvement of the latter in separating known

cancer genes from other human genes (Figure 2D). In contrast,

the uniConSig algorithm did not produce enrichment of the

random training gene lists generated by randomly selecting the

same number of genes as CGC cancer gene list (Supplementary

Figure S6), indicating that such separation is generated by the

shared functional traits of cancer genes.

The application of the uniConSig algorithm on gene
function discovery

Next,we sought to demonstrate the application of the uniConSig

algorithm on gene function discovery using cancer gene discov-

ery as example. We first explored the possibility of calculating

cancer type-specific uniConSig scores by compiling gene sets

for different cancer entities using the CGC database. The uni-

ConSig scores calculated using these gene sets showed the best

prioritization results for glioblastoma and worst for lymphoma

and leukemia, even though these liquid tumors havemanymore

known cancer genes than the solid tumors (Figure 3A). This may

be attributed to the many distinct subtypes of lymphoma and

leukemia.Notably, the uniConSig scores for different cancers not

only prioritized known cancer genes in these cancers but also

nominated the cancer genes that are not on the CGC database,

including those well-known cancer genes that are missed by the

CGC, such as CDKN1A, SRC,HDAC1 and PAK1. Next, we examined

the capability of uniConSig to distinguish oncogenes from tumor

suppressors. We calculated uniConSig scores based on the CGC

oncogene and tumor suppressor gene sets, which were plotted

against each other for all human genes (Figure 3B). The optimal

separation line for oncogenes and tumor suppressors was deter-

mined using an ROC curve (Supplementary Figure S7). At this

cutoff, 63.7% of oncogenes can be separated from 77.8% of tumor

suppressors. The area under the ROC curve, which we termed

aucConSig, is indicative of the functional difference between

oncogenes and tumor suppressors (aucConSig=0.77).

To demonstrate thewide applications of uniConSig algorithm

in discovering novel disease causal genes or pathway genes, we

tested its utility in prioritizing genes involved in diabetes or

nucleotide excision repair.We used the ‘OMIMDiabetesMellitus,

Type II’ gene set or the ‘KEGG Nucleotide Excision Repair’ gene

set as training gene lists (seeMethods) to calculate the uniConSig

scores (Figure 3C). As expected, the genes included by these two

gene sets are highly enriched in the genes with top uniConSig

scores. In addition, a number of genes not included in the two

gene sets were assigned high uniConSig scores, respectively.

Interestingly, the gene with the highest uniConSig score in the

results for type 2 diabetes was INS, which encodes the pre-

cursor of insulin. It is common knowledge that insulin plays

a major role in diabetes, even when it is not the causal gene.

The gene with the second highest uniConSig score was MAFA,

which is known to bind RIPE3b and regulate the expression

of INS [46]. Other top-ranked genes have also been shown to

be functionally associated with glucose metabolism, including

NKX6-1 [47], PKLR [48], FOXA3 [49] and AKT1 [50]. Similarly, the

highest ranked genes not included in nucleotide excision repair

were RAD9B and CHTF18. RAD9B is associatedwith the activation

of DNA damage checkpoint and DNA repair pathways [51], while

CHTF18 is known to be a component of the replication factor C

complex, which is a positive regulator of the replication stress

response [52]. These results demonstrate that uniConSig can

identify novel candidate genes associated with a wide range of

diseases or pathways based on existing gene sets for the disease

or pathway.

ConSig enrichment analysis

One of the common goals of genomics studies is to identify the

pathways that are enriched in the experimental gene lists (i.e.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz093#supplementary-data
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differentially expressed, mutated, amplified or deleted genes)

defined from genomics data sets. This is commonly done by

Fisher’s exact test or similar approaches, which, however, are

all on assessing overlapping genes. We hypothesized that this

problem could be overcome by leveraging the functional quan-

tification of genes by the uniConSig algorithm to assess the func-

tional similarity between gene sets. We thus developed a CSEA,

which uses the experimentally defined gene list to calculate the

uniConSig scores and then tests the enrichment of the pathway

genes in the top genes ranked by uniConSig scores using K-S

tests, which will bypass the limitations of calculating pathway

uniConSig scores (Figure 1B). If the two gene sets are functionally

similar, the uniConSig scores calculated based on one gene set

(i.e. experimental gene list) will be high for the genes of the other

gene set (i.e. pathway); therefore, the ES based on the K-S test can

be used as an indicator of the functional similarity between the

two gene sets.

To test the performance of CSEA, we identified nine growth

factor signaling pathways and nine DNA damage-related path-

ways. The similarities between each pair of these pathwayswere

calculated using the Fisher’s exact test or CSEA algorithm, and

the pathways were then clustered based on the resulting scores

(Figure 4). Fisher’s exact test was able to identify similarities

between growth factor signaling pathways due to the high num-

ber of overlapping genes, but itwas unable to identify similarities

between DNA repair pathways, which are functionally similar

Figure 4. Quantification of the functional associations between different gene sets based on uniConSig scores. (A) Quantification of the functional associations between

the selected growth factor pathways (orange) and DNA damage repair pathways (blue) by Fisher’s exact tests. P-values were −log 10 transformed and normalized to

1. (B) Quantification of functional associations by CSEA for the selected growth factor pathways (orange) and DNA damage repair pathways (blue). Pathways on the

horizontal axis were used to calculate uniConSig scores; pathways on the vertical axis were used to calculate ESs. The clustering tree shows the CSEA was able to

clearly distinguish the two groups of pathways. The matrix resulting from CSEA analysis is asymmetric as we used one pathway to calculate uniConSig scores and

then performed enrichment analysis for the other pathway, so the results for each pair of pathways are slightly different when the order of the analysis is reversed.
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but distinct in terms of the specific genes they contain. The CSEA

result shows a much better separation and clustering of growth

factor signaling pathways from DNA repair pathways compared

to the Fisher’s exact test.

CSEA facilitates pathway discovery from experiment
gene sets defined by genomic data sets

Next, we sought to assess the application of the CSEA algorithm

on pathway discovery from experiment gene sets defined by

genomic data sets. We first determined the minimal number

of genes required to calculate effective uniConSig scores from

experimental gene sets by randomly selecting varying numbers

of cancer genes to calculate uniConSig scores (Supplementary

Figure S8). While a minimal of 10 genes in the training gene

list can produce significant enrichment, the performance of the

uniConSig algorithm dropped significantly when the training

gene lists had less than 30 genes. As the size of 50 genes in

the training gene lists started to show optimal and stable per-

formance, in the following analyses, we performed the pathway

enrichment analyses based on the 50most up- or downregulated

genes defined by the gene expression data sets. This will also

help prevent the small denominators in the Jaccard calculations

Figure 5. CSEA identifies the pathways characteristic of genetic perturbations from the experimental gene sets defined from genomics data. (A) The NESs of C2CP

pathways downregulated following mutant-p53 knockdown, which are calculated by CSEA and GSEA using data from Freed-Pastor et al. [39]. (B) The running sum of

the ‘steroid biosynthesis’ pathway in human genes sorted by their uniConSig scores of top 50 downregulated genes following mutant p53 knockdown. (C) The dot plot

showing the Limma P-values comparing the control with mutant p53 knockdown and uniConSig scores calculated using the top 50 down genes (highlighted in the

light blue area) for all the genes included in the microarray data of Freed-Pastor et al. [39]. (D) The NES scores calculated by CSEA and GSEA for the hallmark pathways

downregulated following CHD1 knockout based on the data of Zhao et al. [40]. (E) The running sum of the ‘TNF signaling via NFKB pathway’ in human genes sorted by

their uniConSig scores of the top 50 downregulated genes following CHD1 knockout. (F) The dot plot showing the Limma P-values comparing the control with CHD1

knockout and uniConSig scores calculated using the top 50 downregulated genes (light blue area) for all the genes included in the microarray data of Zhao et al. [40].



1728 Chi et al.

that may introduce noise when assessing the concept weights

based on the experimental gene sets.

To demonstrate the application of the CSEA algorithm in de

novo pathway discovery, we compiled the expression data sets

of two genetic perturbation studies. One data set (GSE31812)

compared the breast cancer cell line MDA-468.shP53 inducibly

expressing mutant TP53 shRNA in the presence or absence of

doxycycline induction (DOX+/−), and the mevalonate pathway

(labeled ‘biosynthesis of steroids’ in C2CP data set) was known

to downregulate followingmutant TP53 depletion [39]. The other

data set (GSE84970) compared the CRISPR edited CHD1 knockout

LNCap cells with control LNCap cells, and the NF-κB pathway

is known to downregulate following CHD1 knockout [40]. Gene

expression data were first analyzed for differentially expressed

genes using Limma package [41]. Then uniConSig scores were

calculated based on the top 50 downregulated genes follow-

ing mut-TP53 knockdown or CHD1 knockout, and the pathways

enriched in these top-scored genes were assessed using K-S

tests. To be consistent with the original studies, for the TP53

data set, we analyzed the enrichment of the C2CP pathways

[53], and for the CHD1 knockout data set, we used the hallmark

pathways [54], all of which from the MSigDb. For comparison,we

also performed GSEA analysis using same gene expression data

processed by Limma. As a result, CSEA identified the ‘steroid

biosynthesis’ pathway and the ‘TNFα signaling via NF-κB path-

way’ as one of the most downregulated pathways in MDA-

468.shP53 cells following mutant TP53 depletion and in LNCap

cells following CHD1 knockout, respectively, which were lower

ranked by GSEA analysis (Figure 5A–B, D–E).

Of note, while the top 50 downregulated gene lists contained

no genes in the steroid biosynthesis pathway or only two genes

in TNFα signaling via NF-κB pathway, their uniConSig scores

still ranked these pathway genes to the top (Figure 5C, F). This

suggests that many of the top 50 genes are functionally related

to these pathways but are not included in their original gene sets.

This hypothesis is supported by subsequent literature investiga-

tions. For example, CP is the second most downregulated gene

following TP53 depletion in MDA-468 cells and is involved in the

peroxidation of Fe (II) to Fe (III), a common mechanism engaged

by cytochrome P450 genes during the steroid biosynthesis [55].

Other downregulated genes in this study are also shown to

be functionally related to steroid biosynthesis, such as FADS2

[56], HMGCS1 [57], INSIG1 [58] and TFPI [59]. Similarly, the most

downregulated genes following CHD1 knockout in LNCap cells

Figure 6. Differentially expressed pathways characteristic of quiescent HSCs revealed by CSEA and comparative analyses with ORA, NEA and GSEA methods. (A) Dot

plot showing NESs of the pathways calculated based on the up- or downregulated gene lists in quiescent HSCs compared to active HSCs. Top 30 up- and downregulated

genes-related pathways were painted with colors based on their classifications. (B) Bar chart showing the NES of top 30 downregulated pathways in quiescent HSCs

compared to active HSCs revealed by CSEA. (C) Bar chart showing the −log 10 of q values for top 30 downregulated pathways in quiescent HSCs compared to active

HSCs revealed by ORA. (D) Bar chart showing the z scores of top 30 downregulated pathways in quiescent HSCs compared to active HSCs revealed by NEA. (E) Bar chart

showing the NES of top 30 downregulated pathways in quiescent HSCs compared to active HSCs revealed by GSEA. The pathways illustrated in B–E were painted with

same colors as in A based on their classifications. The pie charts in B–E show the distribution of top 30 enriched pathways in different pathway classifications.
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are alsomore or less related to the NF-κB pathway. Among these,

TNFRSF21 (DR6) has been shown to activate the NF-κb and JNK

pathways [60, 61]; KCNJ3 (Kir3.1) has been implicated in NF-κB

activation in THP-1 cells [62]; PEG10 has been shown to interact

with SIAH2 [63], which decreases TNFα-dependent induction of

JNK activity and transcriptional activation of NF-κB [64]. LDHB

can be upregulated by a natural NF-κB inhibitor, panepoxydone

[65], and DFNA5 was reported to be a target gene of NF- κB [66].

These results demonstrate the power of CSEA in identifying the

pathways enriched in experimentally defined gene lists through

deep assessment of the functional relations.

CSEA outperforms other methods on interpreting
complex pathway changes during change of cell state
from single-cell transcriptomics

Single-cell RNA sequencing (scRNAseq) is a rapidly growing

technology that is becoming more and more popular. However,

single-cell transcriptomics usually have much lower coverage

than bulk sequencing,which limits the detection of differentially

expressed genes and thus challenges the pathway analysis. We

speculate that the capability of CSEA to deep interpret the func-

tions of the differentially expressed genes may greatly enhance

pathway discovery from the limited experimental gene list cat-

aloged by single-cell transcriptomics. To test this, we performed

CSEA on the differentially expressed gene lists detected by scR-

NAseq comparing the active and quiescent populations of HSCs

from a recent study [42]. The single-cell RNA-seq was performed

using the fluidigm C1 system and the Illumina HiSeq2500 with

101 bp paired-end sequencing strategy. A total of 112 HSC and

109 MPP1 single cells are included in the data set.

Change of cellular states usually involve more complicated

changes of transcriptional programs compared to single genetic

perturbations, which makes the pathway analyses more

challenging. In particular, quiescent HSCs have several hallmark

pathway changes, including cellular quiescence, repressed

DNA replication and repair, repressed differentiation, low RNA

content, and quick response to hematopoietic cytokines. Inter-

estingly, CSEA interpreted a comprehensive picture of pathway

alterations characteristic of quiescent HSCs consistent with

current knowledge of their hallmarks, which are not reported

in the original study (Figure 6): (1) downregulation of E2F

targets indicating cellular quiescence [67]; (2) downregulation

of MYC targets indicating reduced differentiation [68]; (3) DNA

replication, cell cycle progression and mitotic pathways are

repressed, which are hallmarks of quiescent HSCs [42]; (4)

RNA transcription pathways are repressed, which is consistent

with the reduced total RNA amount in quiescent HSCs [69]; (5)

upregulation of cytokine signaling (i.e. interferons, interleukins,

GM-CSF and TNFα), which are required for the quiescent HSCs

to respond to hematopoietic cytokines [70]; (6) downregulation

of DNA repair pathways. It is known that quiescent HSCs

accumulate DNA damage, which is repaired upon entry into

active state [71].

Next, we compared CSEA with the twomost common classes

of pathway enrichment analyses for nominal experimental gene

list—ORA [43] and NEA [3]. We also compared CSEA with the

GSEA method for pathway interpretation from gene expres-

sion data of continuous variables. Our result showed that CSEA

achieved more balanced detection of different levels of path-

way alterations discussed above than the other three meth-

ods while avoiding biased pathways such as meiosis-related

pathways. ORA, NEA and GSEA tends to detect the pathways

whose gene expressions are mostly altered, such as cell cycle,

but less sensitive to multiple levels of pathway changes. This

may be attributed to the capability of CSEA in deep functional

assessment of the experimental gene list. Together, this result

supports the utility of CSEA in pathway discovery from single-

cell transcriptomics and its advantage over other popular meth-

ods on interpreting complex pathway changes.

Discussion

As our main motivation, we sought to develop methods for

quantifying new gene and gene set functions that took a broader

approach,not solely relying on intersecting genes or interactome

network topology. To achieve this, we exploited other types of

molecular knowledge to help inform the strength of functional

relationships. This novel approach allows the functional assess-

ments of genes and gene sets at a much deeper level, and

the general framework can be integrated into other integrative

gene prioritization methods that are based on complementary

genomic information, such as mutations and other molecu-

lar data. We begin by demonstrating how knowledge database

redundancy affects the performance of the ConSig algorithm

and then introduce the new uniConSig algorithm, illustrating

its improvement with gene function discovery. This innovation

allows this algorithm to take advantage of themolecular concept

data sets compiled from varying sources without bias from data

redundancy.

We then move beyond gene prioritization to show how our

general approach can be used to assess the functional relations

between gene sets as well and developed the CSEA. Our analysis

of the mutant TP53 inhibition and CHD1 knockout data sets

exemplifies how CSEA uses the genes that were indirectly

related to pathways but nonetheless caused those pathways

to be enriched. Such deep interpretation cannot be achieved

by other algorithms, such as Fisher’s exact test or GSEA, which

purport to do the similar analysis but are limited by their reliance

on known genes in the pathways.We have shown that the CSEA

algorithm is able to reliably assess the functional relationships

between pathways and experimental genes to identify the

critical pathways altered following genetic perturbation. The

preponderance of highly downregulated genes, which are

functionally associated with the top-ranked pathway but not on

the pathway gene list, highlights the need for the algorithms that

can identify the actual functional relationships between gene

sets, rather than relying upon assessing the levels of numerical

overlaps between the gene sets as in the current modalities,

which are severely limited in discovering functionally related

pathways. Furthermore, a major advantage of CSEA over

the approach based on interactome network is that CSEA is

grounded on the framework of the vast knowledge databases

and thus can comprehensively assess all functional aspects

when computing the functional relations. Considering these

advantages, CSEA will have broad applications on the discovery

of pathways that are enriched in experimental defined gene sets.

More important, through its capability of deep functional

assessment of experimental gene lists, CSEA will be particu-

larly useful for pathway discovery from single-cell transcrip-

tomics, for which pathway analysis is severely limited by the

low coverage of the current single-cell sequencing technology.

Through analysis of a single-cell transcriptomic data set com-

paring the active and quiescent populations of HSCs,we demon-

strate the excellent performance of CSEA in identifying the sig-

nature pathways characteristic of quiescent HSCs, providing the

pathway insights not previously reported. Through deep func-

tional assessment of the experimental gene set, CSEA achieved



1730 Chi et al.

more balanced detection of different levels of pathway changes

during HSC quiescence than ORA, NEA and GSEA methods. This

suggests that CSEA could be particularly useful for interpreting

complex pathway changes such as during change of cell state.

Taken together, the uniConSig algorithm can be used to

investigate the causal genes of any disease or the functional

genes in any pathways, provided that an initial list of known

functional genes can be curated. The CSEA algorithm can be

used to investigate the pathways enriched in an experimentally

defined gene list, such as over- or underexpressed genes

as well as mutated, amplified, deleted or polymorphism

genes related to disease predisposition, causation, progression,

therapeutic resistance, etc. This tool kit provides a framework

for investigating the function of genomes and generating the

hypotheses that link individual genes to functions, pathways

and diseases and link pathways to gene expression alterations,

genetic aberrations, diseases, etc. As more knowledge about the

genomes are acquired, the compendium of molecular concepts

will become more thorough and robust, which in turn will allow

these algorithms to provide evermore powerful calculations and

predictions.
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Data availability

The uniConSig and CSEA methods are embodied in R packages

(https://github.com/wangxlab/uniConSig). The input files and

the result files of our analyses are available from https://github.

com/wangxlab/uniConSig/tree/master/AdditionalData.

Key Points

• Robust algorithms that can quantify the novel func-

tional relations between genes, gene sets and pathways

will be of utmost importance for interpreting thewealth

of genomic data sets.
• uniConSig analysis is a novel algorithm for computing

the new functions of genes underlying any biological or

pathological process based on their associationwith the

signature molecular concepts.
• CSEA computes the functional relationship between

genomics-defined gene sets and pathways grounded

on the framework of shared concept signatures, which

enables deep assessments of the functional relations.
• These algorithms will offer powerful new tools for

investigating the genome functions by taking a much

deeper approach for functional assessments than cur-

rently available methods.
• Through its capability of deep functional assessment of

experimental gene lists, CSEAwill be particularly useful

for pathway discovery from single-cell transcriptomics,

for which pathway analysis is severely limited by the

low coverage of the current single-cell sequencing

technology.
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