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Abstract
The human brain is organized into segregated networks with strong within-network connections and relatively weaker
between-network connections. This “small-world” organization may be essential for maintaining an energetically efficient
system, crucial to the brain which consumes 20% of the body’s energy. Brain network segregation and glucose energy
utilization both change throughout the lifespan. However, it remains unclear whether these processes interact to contribute
to differences in cognitive performance with age. To address this, we examined fluorodeoxyglucose-positron emission
tomography and resting-state functional magnetic resonance imaging from 88 participants aged 18–73 years old. Consistent
with prior work, brain network segregation showed a negative association with age across both sensorimotor and
association networks. However, relative glucose metabolism demonstrated an interaction with age, showing a negative
slope in association networks but a positive slope in sensorimotor networks. Overall, brain networks with lower segregation
showed significantly steeper age-related differences in glucose metabolism, compared with highly segregated networks.
Sensorimotor network segregation mediated the association between age and poorer spatial cognition performance, and
sensorimotor network metabolism mediated the association between age and slower response time. These data provide
evidence that sensorimotor segregation and glucose metabolism underlie some age-related changes in cognition.
Interventions that stimulate somatosensory networks could be important for treatment of age-related cognitive decline.
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Introduction
The human brain is metabolically expensive, consuming far
more oxygen and glucose than would be predicted based on its
size (Mink et al. 1981). Much of the energetic demands are to sup-
port the electrochemical gradients of cell membranes needed for
neuronal communication across large distances (Raichle 2015).
To minimize the energetic cost of these processes, the brain is
organized into discrete segregated networks—that is, clusters of

regions with strong within-network connections and relatively
weaker between-network connections (Bullmore and Sporns
2012). It was recently proposed that the healthy adult brain’s
level of network segregation is optimized for energetically effi-
cient communication—that is, abnormally high or low levels
of segregation may be associated with impaired information
flow across the brain or unnecessarily high amounts of energy
consumption (Wig 2017). However, while this is just one of many

https://academic.oup.com/
http://orcid.org/0000-0002-0791-357X


Brain Network Segregation and Energetics Manza et al. 5931

prior suggestions that energy utilization and brain network
organization are intrinsically linked (for more discussion, see
Raichle 2015), there is little direct evidence in humans support-
ing this. This may be in part due to the difficulty of obtaining in
vivo measurements of brain energy consumption. The primary
method, positron emission tomography (PET) imaging of glu-
cose or oxygen utilization, is expensive, and radiation exposure
limits the number of times that an individual can be scanned.
Therefore, it is hard to impose experimental manipulations and
perform repeated measurements of energy utilization and brain
network segregation in the same individuals.

An alternative method to assess the relationship between
energy utilization and network segregation is to evaluate their
association with aging cross-sectionally. Both measures demon-
strate strong changes across the lifespan. Glucose metabolism
and aerobic glycolysis decline with aging, although the cerebral
metabolic rate of oxygen does not (De Santi et al. 1995; Aanerud
et al. 2017; Goyal et al. 2017). Likewise, across the brain, network
segregation generally shows a negative association with age
(Chan et al. 2014; Grady et al. 2016; Wig 2017). It is theorized
that these changes are associated with age-related decline in
executive function, particularly in association cortices, which
are thought to be more metabolically expensive and which show
steeper age-related decreases in segregation than the sensori-
motor cortices (Tomasi et al. 2013; van den Heuvel and Sporns
2013; Chan et al. 2014). Based on this set of observations, one
could reasonably propose that loss of network segregation with
age mediates age-related changes in brain glucose metabolism
(or, conversely, that changes in brain glucose metabolism may
mediate the age-related changes in network segregation). Alter-
natively, the most integrated networks, and therefore the most
metabolically expensive, could “burn out” and be the most vul-
nerable to age-related changes in glucose metabolism. This
would help validate simulations suggesting that highly inte-
grated networks in the brain are the most sensitive to degra-
dation in aging and neuropsychiatric disease (Crossley et al.
2014). Finally, network segregation and glucose metabolism may
each mediate the association between age and differences in
cognitive function across the lifespan.

However, to our knowledge, the relationships between aging,
network segregation, energy utilization, and cognitive/motor
function have not been systematically evaluated in the same
cohort. To address this, we took advantage of a dataset previ-
ously collected in our laboratory to conduct exploratory analyses
of regional glucose metabolism (using FDG-PET), brain network
segregation (using resting fMRI) and executive function in a
cohort of 88 adults aged 18–73 years old. Based on the extant
theory (Bullmore and Sporns 2012; Wig 2017), we tested the
following hypotheses: 1) brain network segregation would medi-
ate the association between aging and glucose metabolism; 2)
networks with lower segregation would be more vulnerable to
age-related differences in glucose metabolism; and 3) segrega-
tion and glucose metabolism would mediate the association
between age and (a) cognitive function (association cortices) and
(b) motor response function (sensorimotor cortices).

Materials and Methods
Participants

Eighty-eight nonsmoking participants (aged 18–73 years old,
44 female, 44 male) were recruited and screened to exclude
ferromagnetic implants, psychoactive medications and major

Table 1 Sample demographics (n = 88)

Age 41.69 ± 14.12
Sex 44 females
Education (years)a 16.10 ± 2.99
IQ 109.99 ± 16.46
Body mass index 27.15 ± 4.80
Race

White—non-Hispanic 30
Black/African-American 46
White—Hispanic 6
Asian 5
Mixed race 1

Note: Values are reported as mean ± standard deviation (SD).
aEducation reported for only 66 participants of the larger sample (n = 88).

medical problems, past or present history of substance abuse,
and neurological or psychiatric disorders (including eating disor-
ders) as assessed by an abbreviated Structured Clinical Interview
for the Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV). The basic demographics of the study cohort are pre-
sented in Table 1. All participants tested negative on a urine drug
screen panel on study days. Women were studied in the mid-
follicular phase and were neither pregnant nor breastfeeding.
The study was approved by the Ethics Committee of the National
Institutes of Health (Combined Neurosciences White Panel) and
was in accordance with the Declaration of Helsinki. All partici-
pants gave informed written consent before participating in the
study.

Behavioral Data: Executive Function

Participants completed a battery of assessments from the Cam-
bridge Neuropsychological Test Automated Battery (CANTAB)
suite (Robbins et al. 1994). Below is a brief summary of
each task, with the main outcome measures highlighted in
Supplementary Table 1.

Pattern Recognition Memory (PRM)
A participant views a series of patterns and is then presented
with a pattern they have seen and a novel pattern. The partici-
pant must recognize and select the familiar pattern.

Reaction Time (RTI)
A participant looks at a white circle, waiting for a yellow spot
to appear. When the yellow spot appears, the participant must
remove their finger from a button to touch the yellow spot. Later,
five circles are on the screen and the yellow spot can appear in
any one of the five circles. The participant must touch the yellow
spot in the circle in which it appears.

Stockings of Cambridge (SOC)
The participant sees an arrangement of balls hanging in stock-
ings on the top of the screen. The participant must move the
balls on the bottom of the screen to match the arrangement on
the top in the least amount of moves possible.

Spatial Working Memory (SWM)
The participant sees an arrangement of colored squares on the
screen. The computer a hides a yellow token in one of the
squares, and the participant must find it. Once the participant
finds the token, the computer will hide it in another square,
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and it will never use the same square twice. There is a black
bar on the side of the screen, where the participant puts each
token once he/she has found it. The task is complete when the
participant has found enough tokens to fill the black bar.

Intra–Extra Dimensional Set Shift (IED)
This task is modeled after the Wisconsin Card Sorting Task.
The participant sees two patterns on the screen, and one is
correct. The participant must use the feedback provided by the
computer to determine which pattern is correct; after six correct
responses, the computer changes the rule. The first stage of
the task (pre-ED) involves choosing between two simple pat-
terns. The second stage of the task (EDS) involves 2D patterns
(a pattern overlaid with another pattern), but only one of the
dimensions determines the rule.

Spatial Span (SSP) Reverse Mode
Several white boxes are shown on a screen. One by one, a certain
number of boxes will change color for a brief period. At the end
of the sequence, a tone plays, and the participant must select the
boxes that changed color in the reverse order that they originally
changed in; that is, the first box that the participant selects is the
last one he/she saw change on the screen.

Behavioral Measures of Interest: Principal Component
Analysis

To first identify broad, aggregate measures of executive function,
we z-transformed the data and reduced data dimensionality by
performing probabilistic PCA on the data of all 88 participants
(using all outcome measures listed above), as implemented with
the ppca function in MATLAB, with missing datapoints imputed
via an expectation–maximization algorithm. We included all
measures available from the CANTAB suite for which >95% of
participants had data.

PET Acquisition

For the PET imaging protocol, participants were asked to fast
(except water) for at least 4 h prior to the PET session, which was
performed using a high-resolution research tomography (HRRT)
scanner (Siemens AG). Venous catheters were placed in the
antecubital vein for radiotracer injection and in the dorsal hand
vein for arterialized blood sampling (achieved by warming the
hand to 44–50 ◦C) to measure the concentration of radioactivity
in plasma (every minute from 1 to 10 min and then at 15,
20, 30, 40, 50, 60, and 75 min after FDG injection). After the
patient was positioned in the scanner, a transmission scan was
obtained with a 137 Cesium rotating pin source to correct emis-
sion images for attenuation. Commercially manufactured FDG (8
mCi) was injected intravenously over a period of approximately
1 min. Then a PET emission scan of the brain with ∼2.7 mm
isotropic point spread function was obtained using a 3D list
mode starting immediately after FDG injection for up to 75 min.
Fasting glucose levels were measured prior to FDG injection,
30 min after injection, and at the end of the PET scan. During
the PET imaging procedures, the subjects rested quietly under
dim illumination and minimal acoustic noise. To ensure that
subjects did not fall asleep, they were monitored throughout
the procedure and were asked to keep their eyes open. During
the PET scan, a cap with small light reflectors was placed on
the subject’s head to monitor head position with a Polaris Vicra
head tracking system (Northern Digital Inc.). Information about

head movement was used in the PET image reconstruction
process to minimize motion-related image blurring.

MRI Acquisition

All subjects underwent MRI on a 3.0-T Magnetom Prisma scan-
ner (Siemens Medical Solutions USA, Inc.). After collecting data
from the first 27 participants, the head coil and MRI sequences
changed; all statistical analyses controlled for the fact that there
were two different MRI sequences across the participants.

For cohort A (n = 27), a 20-channel head coil and a single-
shot gradient echo-planar (EPI) sequence (repetition time/echo
time, TR/TE = 1500/30 ms; flip angle, FA = 70◦; matrix = 64, 36
axial slices; 4 mm thickness; interleaved acquisition; no gap
between slices; 3-mm in-plane resolution) covering the whole
brain were used to acquire resting fMRI time series with 600
time points (15 min) while participants relaxed with their eyes
open. A fixation cross was presented on a black background
under dimmed room lighting using MRI-compatible goggles
(Resonance Technology Inc.). T1-weighted 3D magnetization-
prepared gradient-echo image (MP-RAGE) (TR/TE = 2200/4.25 ms;
FA = 9◦, 1-mm isotropic resolution) and T2-weighted spin-echo
multislice (TR/TE = 8000/72 ms; 1.1-mm in-plane resolution; 94
slices, 1.7 mm slice thickness; matrix = 192) pulse sequences
were used to acquire high-resolution anatomical brain images.

For cohort B (n = 61), a 32-channel head coil and a multiplexed
EPI sequence were used with the same parameters as the
Human Connectome Project resting fMRI sequence: multiband
factor = 8, anterior–posterior phase encoding, TR/TE = 720/37 ms,
FA = 52◦, matrix = 104, and 72 slices were used to acquire resting
fMRI time series with 2-mm isotropic voxels and 1238 time
points while the participants relaxed with their eyes open.
A fixation cross was presented on a black background under
dimmed room lighting using a liquid-crystal display screen
(BOLDscreen 32, Cambridge Research Systems). The 3D MP-
RAGE (TR/TE = 2400/2.24 ms, FA = 8◦) and variable-flip-angle
turbo spin-echo (Siemens SPACE; TR/TE = 3200/564 ms) pulse
sequences were used to acquire high-resolution anatomical
brain images with 0.8-mm isotropic voxels field-of-view
(FOV) = 240 × 256 mm, matrix = 300 × 320, and 208 sagittal slices.

We used the minimal preprocessing pipelines of the Human
Connectome Project for the spatial normalization of the struc-
tural and functional scans. Specifically, FreeSurfer version 5.3.0
(http://surfer.nmr.mgh.harvard.edu) was used to automatically
segment the anatomical MRI scans into cortical and subcortical
gray matter regions of interest (ROIs) and for spatial normal-
ization to the stereotactic space of the Montreal Neurological
Institute (MNI).

PET Processing: Regional Glucose Metabolism

Voxelwise CMRglc was computed in PMOD v3.4 (PMOD Tech-
nologies), based on an autoradiographic solution for the two-
tissue compartment model for the FDG summary image. The
CMRglc maps in μmol/100 mL/min were aligned to the subject’s
structural MRI and then normalized to the MNI template with
a 2-mm isotropic resolution using the FSL Software Library
(version 5.0; http://www.fmrib.ox.ac.uk/fsl) (Smith et al. 2004). To
assess regional differences in energetics, we computed relative
CMRglc (rCMRglc) images by normalizing the MRGlu maps to the
whole brain mean (FSL’s “MNI_T1_2mm_brain_mask” image).
We used rCMRglc instead of absolute glucose metabolism
because across the cerebral cortex, absolute glucose metabolism
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is dominated by the global signal with very little regional
variability: across the subjects the correlation between absolute
metabolism in association and sensorimotor network is
extremely high (r2 > 0.97). Since brain network segregation varies
tremendously across the networks (see Results section), regional
glucose metabolism lends itself to comparison with segregation
more readily. We nevertheless report on the associations
between absolute glucose metabolism and network segregation
in the Supplementary material.

Brain Network Parcellation Scheme: Sensorimotor and
Association Cortices

For the brain metrics (resting fMRI network segregation and
rCMRglc), we followed procedures from the prior work (Chan
et al. 2014) and extracted data from broad sets of sensorimotor
and association cortices delineated using a popular resting fMRI
parcellation scheme (Power et al. 2011) (Fig. 1a). We used the
“consensus” parcellation scheme (264 regions of interest) and
created a 5-mm sphere at each region from which we extracted
data. After computing each measure of interest (see Processing
sections below), we aggregated across networks by taking the
average value across all “sensorimotor” and all “association”
networks, as done previously (Chan et al. 2014): hand somato-
motor, mouth somato-motor, visual, and auditory networks
contributed to the sensorimotor system, and default-mode,
frontoparietal, ventral attention, dorsal attention, cingulo-
opercular, and salience networks contributed to the association
system.

Functional MRI Processing: Resting Network
Segregation

For resting fMRI time series, the Human Connectome Project
functional pipeline was used for gradient distortion correction,
rigid body realignment, field map processing, and spatial nor-
malization to the stereotactic MNI space. 0.008–0.09-Hz band-
pass filtering was used to assess the low-frequency fluctuations
in the resting fMRI data. Signals from the white matter and CSF
were regressed out of the data. Framewise displacements (FD)
were computed from head translations and rotations using a 50-
mm radius to convert angle rotations to displacements. Scrub-
bing was used to remove time points excessively contaminated
with motion. Specifically, time points were excluded if the root-
mean-square change in the BOLD signal (DVARS) from volume
to volume met the criteria: DVARS > 0.5% and FD > 0.5 mm.

Resting network segregation, a measure of the relative
strength of within-network versus between-network con-
nections, was calculated as in the prior work (Chan et al.
2014):

Network segregation = Zw − Zb

Zw
(1)

where Zw is the mean Fisher’s z-transformed correlation
between regions within the same network and Zb is the mean
Fisher’s z-transformed correlation between regions of one
network to all other networks. As in the prior work, we retained
all positive connections (i.e., node pairs where the correlation
Z value was greater than zero). Segregation was computed for
each individual network separately, before averaging across the
sensorimotor or association network sets.

Statistical Analyses

We tested for associations between age, rCMRglc, resting net-
work segregation, and executive and motor functions (princi-
pal component measures from CANTAB scores). For each brain
measure (rCMRglc and segregation), each participant had two
separate values (sensorimotor networks and association net-
works). This was the case for all analyses except hypothesis 2
(networks with lower segregation would be more vulnerable to
differences in rCMRglc with age), in which we tested an associ-
ation across all 13 resting networks in the Power et al. parcel-
lation. First, we examined the zero-order correlations between
aging and the brain measures. We then tested if sensorimotor
and association networks were differentially associated with
age: we tested if the slopes of these correlations were signifi-
cantly different using Fisher’s z-test. For all analyses below, we
controlled for the following covariates: sex, body mass index,
and MRI scan sequence. We did not include years of education
and IQ as covariates due to their known strong correspon-
dence with performance on cognitive tasks (e.g., Anstey and
Christensen 2000), which could remove substantial variance of
interest, and because in our sample, the associations between
age and years of education (r2 = 4 × 10−6) and age and IQ (r2 = 0.01)
were close to zero.

Hypothesis 1: Resting Network Segregation Mediates the
Age-rCMRglc Link
Following a recent hypothesis that network segregation is
critical for brain energetics (Wig 2017), we tested whether resting
network segregation mediated the association between age
and rCMRglc, using the causal mediation analysis toolbox in
R (Tingley et al. 2014) with 5000 permutations. We first tested
whether the mediating variable (segregation) was significantly
associated with both the predictor (age) and the outcome
measure (rCMRglc) in a regression model controlling for all
covariates, as a precondition for performing mediation analysis.
We then conducted the causal mediation analysis, Bonferroni-
correcting for two comparisons (sensorimotor and association
networks), and therefore the effective significance threshold
was P < 0.05/2 = 0.025. As a follow-up, we also tested the
reverse mediation analysis (that rCMRglc would mediate the
age-segregation link).

Hypothesis 2: Resting Networks with Low Segregation (Most
Integrated) have the Steepest Negative Association between Age and
Glucose Metabolism
We also sought to test whether the most highly integrated brain
networks show the strongest negative correlations between age
and glucose metabolism. Therefore, across all brain networks,
we tested the correlation between the average network segre-
gation and slope of age-related change in glucose metabolism.
To test for significance, we used permutation testing. Rows
representing the segregation for each network were randomly
permuted 5000 times, and the correlation with the age-FDG
slope was rerun after each permutation. The level of significance
was the number of correlations stronger than the observed cor-
relation, divided by the total number of permutations (P < 0.05).

Hypothesis 3: Glucose Metabolism and Resting Network Segregation
Mediate the Link between Age and CANTAB Performance
To understand the contribution of these brain measures to dif-
ferences in CANTAB performance across the lifespan, we again
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Figure 1. (a) Regions from the Power et al. parcellation were aggregated into sensorimotor and association networks, as in the previous work. (b) Scatterplots depicting

the associations between age and the resting network segregation (left) as well as glucose metabolism (right) across the study population (n = 88). There was a significant
interaction with aging between glucose metabolism in association networks and glucose metabolism in sensorimotor networks (z = −4.51, P < 0.0001).

performed mediation analysis. As in the analysis for hypoth-
esis 1, we first tested whether the mediating variable in each
analysis was significantly associated with both the predictor
(age) and the outcome measures (principal components reflect-
ing spatial cognition and response time) in a regression model
controlling for all covariates. In this instance, for the tests of
cognitive/motor function, there were four possible mediators:
network segregation and glucose metabolism for association
and sensorimotor networks. Therefore, we Bonferroni-corrected
for four comparisons, and the effective significance threshold
was P < 0.05/4 = 0.0125. Then, for each potential mediator that
showed a significant relationship with both the predictor and
outcome, we performed the mediation analysis.

Exploratory Analysis

We performed a series of exploratory follow-up analyses related
to the primary findings. These included testing associations
between absolute glucose metabolism (CMRglu) and network

segregation; interactions of segregation within and between
the sensorimotor and association systems; and testing for
variables independently associated with the PCs representing
performance on CANTAB tests, including sex and age-by-
sex interactions. These analyses and discussion are in the
Supplementary material.

Power Analysis

We conducted power analysis for the mediation analyses in this
study which required the most power of any of the primary
analyses. We used the Monte Carlo Power Analysis for Indi-
rect Effects toolbox in R (Schoemann et al. 2017). There are no
consensus estimates on the strength of relationships between
the variables in this study (i.e., age, network segregation, and
CANTAB performance). Estimates from the recent work sug-
gest bivariate associations are roughly r = |0.4–0.5| (Chan et al.
2014; Uresti-Cabrera et al. 2015); therefore, assuming association
strengths at the lower end of this range of r = |0.4|, an n of 88
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would yield a power of 0.76 to detect the indirect effect of a
mediation (simulations conducted with 5000 replications, 20 000
Monte Carlo draws per replication, and a confidence level of
95%).

Results
Behavior: Principal Component Analysis

The first two components accounted for nearly 40% of the
variance across all CANTAB measures and the 88 participants
(Table 2). The first component (PC1: “spatial cognition”) loaded
heavily on SWM, spatial span, and spatial planning processes.
The second component (PC2: “response time”) loaded heavily
on various measures of reaction time. Subsequent components
were very mixed between the task domains and each accounted
for <10% of the variance and were therefore not interpreted.

Associations between Age, Resting Segregation, and Glucose
Metabolism
The average number of frames removed due to motion in each
scan cohort was as follows: cohort A, 11.0 (1.8%), and cohort
B, 47.9 (3.8%). The sensorimotor networks were significantly
more segregated than the association networks (t(87) = 34.46,
P < 0.0001). In contrast, the sensorimotor networks showed
significantly lower relative glucose metabolism than the associ-
ation networks (t(87) = 19.99, P < 0.0001). The scatterplots showing
the association between age and the brain measures (for both
association and sensorimotor networks) are shown in Figure 1b.
There was a negative correlation between age and brain network
segregation in association networks (r = −0.448, P < 0.0001), and
this negative correlation was observed to a lesser extent in
sensorimotor networks (r = −0.281, P = 0.008). However, rCMRglc
only showed a negative association with age in association
networks (r = −0.384, P = 0.0002), while we observed a positive
association between age and rCMRglc in sensorimotor networks
(r = 0.279, P = 0.009). There was a significant interaction with
aging between rCMRglc in association networks and rCMRglc
in sensorimotor networks (z = −4.51, P < 0.0001) indicative of a
distinct effect of age in relative glucose metabolism between
association and sensorimotor networks. The associations
between age and segregation/rCMRglc were fairly consistent
across the individual networks within the sensorimotor and
association systems (see Supplementary Fig. 1).

Hypothesis 1: Resting Network Segregation Mediates the Age-Glucose
Metabolism Link
We first performed regression analysis to determine if the medi-
ating variable was significantly associated with the predictor
and the outcome while controlling for all covariates. While
segregation was significantly associated with age (association,
t = −4.50, P < 0.001; sensorimotor, t = −3.31, P = 0.001), it was
not significantly associated with relative glucose metabolism
in either of the networks (association, t = −0.85, uncorrected
P = 0.395; sensorimotor, t = 1.44, uncorrected P = 0.155). Nev-
ertheless, we still performed mediation analysis to confirm
the lack of a mediating effect (Zhao et al. 2010). There was
a significant direct effect of age on glucose metabolism in
association networks (direct effect estimate = −0.0006, 95%
CI = [−0.00114, −0.00014], Bonferroni-corrected P = 0.024) and
sensorimotor networks (direct effect estimate = 0.0009, 95%
CI = [0.00038, 0.00156], Bonferroni-corrected P = 0.002). How-
ever, the mediation analysis did not support a significant

mediating effect of network segregation on age and glucose
metabolism in association or sensorimotor networks (mediation
effects: uncorrected P’s > 0.20). Likewise, the reverse mediation
analysis (that rCMRglc mediates the age-segregation link)
was also not significant: (sensory networks, mediation effect
estimate = −0.00093, 95% CI = [−0.00035, 0.000564], P = 0.630;
association networks, mediation effect estimate = −0.00053, 95%
CI = [−0.00027, 0.000169], P = 0.648).

Hypothesis 2: Resting Networks with Low Segregation have the
Steepest Age-Related Differences in Glucose Metabolism
We confirmed that the level of segregation differed signifi-
cantly across the 13 networks of the Power et al. parcellation,
with the sensory mouth and the visual networks having the
greatest segregation and the salience network having the least
segregation (F(6.4, 558.0) = 125.7, P < 0.0001). rCMRglc also dif-
fered significantly across the 13 networks, with the memory
retrieval and frontoparietal networks having the highest rela-
tive metabolism and the cerebellar network having the lowest
metabolism (F(6.7, 583.0) = 442.4, P < 0.0001). There was a pos-
itive correlation between-network segregation and the slope
of age–rCMRglc association across the 88 study participants
(r = 0.675, P = 0.010, 5000 permutations). Importantly, networks
with the lowest segregation tended to show a negative associ-
ation between age and rCMRglc. The same general association
was also observed at the level of individual nodes of the Power
et al. parcellation (Supplementary Fig. 2; r = 0.30). In other words,
networks that were least segregated (or most integrated) showed
the strongest age-related differences in glucose metabolism.

Hypothesis 3: Glucose Metabolism and Resting Network Segregation
Mediate the Link between Age and CANTAB Performance
As in hypothesis 1, we first performed regression analysis to
determine if the mediating variables were significantly associ-
ated with the predictor and the outcome while controlling for all
covariates. Of the four measures, only resting segregation of the
sensorimotor networks was significantly associated with age
(t = −4.478, P < 0.0001) and the spatial cognition PC (PC1; t = 3.989,
P = 0.0001). Further, only rCMRglc of the sensorimotor networks
was significantly associated with age (t = 2.646, P = 0.0097) and
the response time PC (PC2; t = 3.989, P = 0.0001). Of note, resting
segregation of the association networks was significantly asso-
ciated with age (t = −5.020, P < 0.0001), but its association with
the “cognition” PC only showed a trend-level association that
did not reach significance after Bonferroni correction (t = 2.065,
uncorrected P = 0.0421).

Therefore, we proceeded to perform two mediation analyses:
one where age was the predictor, sensorimotor network resting
segregation was the mediator, and PC1 was the outcome vari-
able and another where age was the predictor, sensorimotor
network rCMRglc was the mediator, and PC2 was the outcome
variable. Both analyses showed significant mediation effects.
The former analysis revealed that sensorimotor network segre-
gation significantly mediated the age–PC1 link (mediation effect
estimate = −0.0355, 95% CI = [−0.0690, −0.0050], P = 0.023; direct
effect estimate = −0.033, 95% CI = [−0.0880, 0.0226], P = 0.251). The
latter analysis revealed that sensorimotor network rCMRglc sig-
nificantly mediated the age–PC2 link (mediation effect esti-
mate = −0.013, 95% CI = [−0.0292, −0.0019], P = 0.011; direct effect
estimate = −0.016, 95% CI = [−0.0553, 0.0209], P = 0.251). Since we
observed a trend-level association between association network
segregation and PC1 (uncorrected P = 0.04), we also performed
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa167#supplementary-data
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Table 2 Loadings for the top two principal components (PCs)

PC1 (cognition)
loadings

Measure PC2 (motor)
loadings

Measure

0.202 SSP span length 0.308 RTI mean simple movement time
0.200 SOC problems solved in minimum moves 0.299 RTI median simple movement time
0.167 SOC problems solved in minimum moves, three

moves
0.299 RTI mean five-choice movement time

0.159 IED stages completed 0.298 RTI median five-choice movement time
0.153 SOC problems solved in minimum moves, four

moves
0.259 RTI five-choice movement time

0.147 SOC problems solved in minimum moves, five
moves

0.257 RTI five-choice reaction time

0.137 PRM percent correct 0.243 RTI median simple reaction time
0.116 SOC problems solved in minimum moves, two

moves
0.242 RTI mean simple reaction time

0.111 SOC mean initial thinking time five moves 0.172 RTI SD five-choice reaction time
0.086 SSP total errors 0.169 RTI SD simple movement time
0.036 SOC mean initial thinking time five moves 0.169 RTI SD simple reaction time
0.011 RTI simple accuracy score 0.167 RTI SD five-choice movement time
−0.001 SOC mean initial thinking time two moves 0.122 RTI simple accuracy score
−0.009 RTI SD simple movement time 0.110 SOC problems solved in minimum moves, five

moves
−0.020 RTI five-choice accuracy score 0.110 SOC problems solved in minimum moves
−0.072 RTI SD five-choice movement time 0.100 IED stages completed
−0.072 SWM within errors 0.084 SOC problems solved in minimum moves, three

moves
−0.085 SWM double errors 0.076 SOC problems solved in minimum moves, four

moves
−0.086 SOC mean initial thinking time three moves 0.073 RTI five-choice accuracy score
−0.095 IED EDS errors 0.048 SSP span length
−0.101 SOC mean subsequent thinking time two moves 0.046 SSP total errors
−0.106 SWM mean time to first response 0.045 PRM percent correct
−0.115 SOC mean moves two moves 0.035 SOC mean moves, two moves
−0.125 RTI mean simple movement time 0.027 SWM mean time to the first response
−0.131 RTI median simple movement time 0.013 SOC mean subsequent thinking time two moves
−0.134 RTI median five-choice movement time 0.008 SOC mean initial thinking time four moves
−0.136 RTI mean five-choice movement time -0.023 IED pre-ED errors
−0.137 RTI median simple reaction time -0.026 SOC mean initial thinking time two moves
−0.138 SOC mean subsequent thinking time three moves -0.034 SOC problems solved in minimum moves, two

moves
−0.146 RTI five-choice reaction time -0.037 IED total latency
−0.150 RTI SD simple reaction time -0.044 SOC mean initial thinking time five moves
−0.151 IED pre-ED errors -0.054 SOC mean moves, four moves
−0.151 SOC mean subsequent thinking time five moves -0.063 SOC mean moves, three moves
−0.152 SOC mean moves four moves -0.071 SWM mean time to the last response
−0.154 RTI mean simple reaction time -0.085 SOC mean subsequent thinking time three moves
−0.157 RTI five-choice movement time -0.090 SWM within errors
−0.158 SOC mean moves five moves -0.093 IED EDS errors
−0.171 SOC mean moves three moves -0.097 SWM between errors
−0.172 RTI SD five-choice reaction time -0.097 SWM total errors
−0.175 IED total errors -0.100 SOC mean initial thinking time three moves
−0.176 IED total latency -0.100 SWM strategy
−0.176 IED total trials -0.103 SWM double errors
−0.181 SOC mean subsequent thinking time four moves -0.106 SOC mean subsequent thinking time five moves
−0.183 IED total errors adjusted -0.115 IED total errors adjusted
−0.187 IED total trials adjusted -0.116 IED total trials adjusted
−0.188 SWM mean time to the last response -0.119 SOC mean subsequent thinking time four moves
−0.193 SWM strategy -0.124 IED total errors
−0.200 SWM total errors -0.127 IED total trials
−0.202 SWM between errors -0.148 SOC mean moves, five moves

Note: PC1 loaded heavily on SWM, spatial span, and spatial planning processes. PC2 loaded heavily on simple reaction time measures.
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Figure 2. The association between average resting segregation (x-axis) and the
slope of age-related differences in relative glucose metabolism (rCMRglu) in that
network (y-axis). The networks with the lowest segregation (or highest level of
integration) tended to show a negative association between age and glucose

metabolism.

an exploratory mediation analysis where association network
segregation was the mediator, age the predictor, and PC1 the
outcome. Results suggested that association network segrega-
tion did not significantly mediate the age–PC1 link (mediation
effect estimate = −0.012, 95% CI = [−0.0419, 0.0150], P = 0.35).

Although we controlled for different scanner sequences in
cohort A versus cohort B in the latter analyses, we also re-
ran these analyses only using the data from cohort B (n = 61)
to confirm that findings remained significant. Indeed, results
were consistent with the larger analysis; for sensorimotor
network segregation mediating the age–PC1 link, the mediation
effect estimate = −0.0205, 95% CI = [−0.0470, −0.0019], P = 0.026
and direct effect estimate = −0.035, 95% CI = [−0.0789, 0.00826],
P = 0.116). Likewise, for sensorimotor rCMRglc mediating
the age–PC2 link, the mediation effect estimate = −0.0122,
95% CI = [−0.0301, −0.0016], P = 0.015 and direct effect esti-
mate = −0.019, 95% CI = [−0.0601, 0.0178], P = 0.321) (Figs 2
and 3).

Discussion
Here we investigated the associations between brain functional
network segregation and glucose energy utilization as a function
of age and its relevance for mediating age-related cognitive/mo-
tor differences. We discuss these findings below.

Brain Network Segregation and Glucose Metabolism:
Associations with Age

When parcellating the brain based on resting fMRI data
(Power et al. 2011), network segregation and relative glucose
metabolism showed contrasting patterns with age. Whereas
segregation showed age-related decreases in both sensorimotor
and association networks, relative glucose metabolism only
showed age-related decreases in association networks with

relative increases in metabolism in sensorimotor networks.
There was a significant aging interaction that indicated
distinct effects of age in relative glucose metabolism between
association and sensorimotor networks. The segregation
findings replicate those of many recent studies (e.g., Chan
et al. 2014; Geerligs et al. 2014; Ng et al. 2016; Spreng et al.
2016; Monteiro et al. 2019) and reiterate that the age-related
differences are more pronounced in association as compared
with sensorimotor networks (Wig 2017). The glucose metabolism
findings provide a novel perspective on previous studies
examining individual regions. For instance, strong age-related
decreases in relative glucose metabolism have been observed in
medial frontal and cingulate gyri (Volkow et al. 2000), whereas
age-related increases have been observed in thalamus and
sensorimotor cortex, at least in males (Shen et al. 2012). These
findings might reflect that the most recently phylogenetically
developed networks (i.e., association cortices) are the most
vulnerable to age-related differences in regional energetics
(Kalpouzos et al. 2009) and these networks appear to be sensitive
to neurological insult more generally (de Lange et al. 2019).
However, MRI-based measurements of brain structure do not
always appear to follow this pattern; Taubert et al. (2020)
recently observed age-related differences in brain volume
were proportionally steeper in sensorimotor and subcortical
brain regions compared with the rest of the brain. Possible
explanations for this discrepancy include methodological
differences (e.g., proportional scaling to remove global effects
of age-related volume loss); age range of participants, which
was 44–86 (Taubert et al. 2020); or differences in the functional
consequences of age-related volume loss across the brain
regions.

Contrary to the working hypothesis (Wig 2017), brain net-
work segregation did not mediate the age-related differences
in relative glucose metabolism (nor the reverse: relative glu-
cose metabolism did not mediate age-related differences in
network segregation). Hence individual differences in network
segregation do not appear to be a major factor behind the age-
related differences in regional glucose metabolism. Although
studies have documented a strong correspondence between
resting connectivity and glucose metabolism (Tomasi et al. 2013)
including in the default-mode and salience networks (Riedl et al.
2014; Passow et al. 2015), the recent work suggests that there
are brain networks where glucose metabolism and functional
connectivity are mismatched (Shokri-Kojori et al. 2019). It has
been hypothesized that the segregated organization of the brain
minimizes “wiring costs,” which should theoretically have rel-
evance for energetics including glucose metabolism. However,
it is possible that structural rather than functional connectivity
organization mediates these processes (Bullmore and Sporns
2012). Alternatively, other measures of brain energy consump-
tion, including aerobic glycolysis, may have better correspon-
dence with network connectivity organization (Raichle 2015).
Nevertheless, networks which were on average the least segre-
gated at rest (e.g., salience network) tended to show the steepest
age-related differences in glucose metabolism. Future work is
needed to determine if these findings are merely epiphenomena
or if they are in fact intrinsically linked.

Sensorimotor Network Segregation Mediates
Age-Related Differences in Spatial Cognition

The mediation analysis suggested that resting segregation of
the sensorimotor networks mediated age-related differences in
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Figure 3. (a) Principal component analysis of CANTAB executive function tasks. The top two principal components had strong loadings for SWM processes (PC1;
spatial cognition) and simple reaction time (PC2; response time). (b) Mediation analyses. Sensorimotor network segregation significantly mediated the relationship
between age and spatial cognition performance (top). Sensorimotor network glucose metabolism significantly mediated the relationship between age and response

time (bottom). In both analyses, when accounting for the mediation effects, the direct effects of age on spatial cognition and response time were no longer significant.

spatial cognition. A recent study also observed that segregation
of the sensorimotor networks was associated with age-
related differences in cognitive performance among adults
55–85 years old (Stumme et al. 2020). Based on the prior
work (Chan et al. 2014; Nashiro et al. 2017), we expected
association network segregation to be more strongly linked with
cognitive performance than sensorimotor network segregation.
However, association network segregation showed significant
mediation only at an uncorrected threshold. This may reflect
the specific tasks from the CANTAB battery used in this study:
the principal component was heavily associated with SWM,
spatial span, and spatial planning performance. Prior studies
found that association network segregation was most strongly
associated with long-term episodic memory (Chan et al. 2014)
and verbal fluency (Nashiro et al. 2017). Another recent study
using different cognitive tasks during scanning found that
reduced frontoparietal/default-mode network segregation was
associated with poorer vocabulary performance whereas
reduced dorsal attention network/memory network segregation
was associated with poorer fluid reasoning (Varangis et al. 2019).
Further, features of specific tasks, such as their complexity,
appear to have a critical association with system segregation
(Yue et al. 2017). Thus, the discrepant findings here might
relate to either the domain or the complexity of the tasks in
the CANTAB battery. It is also possible that motor responses
(apart from response time, which was largely captured in
the orthogonal PC2) in the spatial cognition tasks could be a
common feature that links sensorimotor system segregation to
task performance across the lifespan. Accordingly, Carson (2018)
has suggested that since cognition and motor control decline
in parallel with aging, it is likely that neurodegeneration of

common brain regions underlies this effect. In this context, lifes-
pan differences in sensorimotor system communication might
represent a common feature that links lifespan differences in
cognitive and motor behavior.

Regardless, since spatial processes including working mem-
ory are a fundamental building block of cognition in humans
(Baddeley 1986), the association with sensorimotor network seg-
regation is notable. Functional reorganization of sensorimo-
tor systems has been observed in association with cognitive
decline in healthy senescence (Romero-Garcia et al. 2014; He
et al. 2017) and in mild cognitive impairment and Alzheimer’s
disease (Agosta et al. 2010). It is well documented that sensory
impairments, especially vision and hearing, seem to be associ-
ated with cognitive decline in aging (Humes and Young 2016),
including episodic memory (Maharani et al. 2018) and processing
speed (Lindenberger and Baltes 1994), and these associations do
not appear to be driven by social isolation from sensory loss
(Hämäläinen et al. 2019). Sensory loss may be a top modifiable
risk factor for cognitive decline (Livingston et al. 2017), and
indeed the use of hearing aids for 6 months improved working
memory performance in a senescent cohort (Karawani et al.
2018). Baseline sensorimotor functional connectivity predicts
task learning rate over time (Mattar et al. 2018), and network
segregation has recently been posited as a key target for “brain
training” interventions to improve cognition in aging (Gallen and
D’Esposito 2019). Emerging tools such as fMRI neurofeedback
could be used to promote resting network segregation and test
whether this improves cognitive performance.

The biological origins of these network segregation changes
are unclear, which remains a major obstacle toward develop-
ing effective interventions. The recent work has attempted to
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find the neurochemical underpinnings of the brain’s network
organization (Shine and Poldrack 2018). Based on preclinical
and clinical evidence, it is suggested that noradrenaline, acetyl-
choline, and dopamine modulate the topological configuration
(segregation or integration) of functional networks during rest
and task conditions (Shine et al. 2019). The loss of sensorimotor
network segregation in aging is associated with reductions in
GABAergic transmission (Cassady et al. 2019; Lalwani et al. 2019).
This mirrors work showing that GABAergic degradation in aging
rodents and cats is associated with “dedifferentiation” (reduced
response selectivity) of a single-neuron activity in sensory cor-
tices (Hua et al. 2008; Ding et al. 2017). In addition, the NMDA-
receptor antagonist ketamine boosts network segregation in rats
(Becker et al. 2016). Together these data suggest that preserving
neurotransmitter signaling mechanisms (and thereby augment-
ing a segregated network structure while providing for an inte-
grated network structure when it is required by specific tasks)
may be a fruitful area of investigation for the prevention of age-
related cognitive/motor decline. Interestingly, visual restoration
after cataract surgery has been associated with improved struc-
ture and function of visual and cognitive brain regions (Lin et al.
2018). Thus studies that evaluate the effects of sensorimotor and
cognitive stimulation in elderly individuals are needed to assess
if they can help recover the age-associated loss of network
segregation.

Sensorimotor Network Glucose Metabolism Mediates
Age-Related Differences in Response Time

Finally, sensorimotor network metabolism mediated the age-
related differences in a principal component that largely
reflected motor slowing on a simple reaction time test. It is well-
established that brain glucose metabolism changes dramatically
with age, including the sensorimotor regions (Moeller et al. 1996;
Garraux et al. 1999). These changes likely have relevance for
motor function: hypometabolism in supplementary motor area
is associated with a fear of falling in healthy aging (Sakurai et al.
2017). Further, sensorimotor hypometabolism is implicated in
the motor deficits observed in Parkinson’s disease (Lee et al.
2011; Wu et al. 2018). The current data add to the existing
literature and suggest that relative glucose metabolism in a
broader network of sensorimotor regions mediates age-related
differences in motor performance, particularly response time.

Interestingly, it was age-related increases, rather than
decreases, in rCMRglu that were associated with the longer
response times among the elderly. To our knowledge, this is the
first study to observe this pattern. Berman et al. (2008) tested
people with chronic methamphetamine use both 1 week after
initiating abstinence and again 4 weeks later and found that
decreases in rCMRglu in ventromedial prefrontal cortex were
positively associated with slowing of RT in a vigilance task.
Another group observed that, among healthy adults aged 51–71
years old, lower glucose metabolism in an “Alzheimer signature”
meta-ROI (inferior temporal cortex, posterior cingulate cortex,
angular gyrus) was associated with slower RT in one-back
and choice RT tasks, although maps were normalized to
the cerebellum rather than the whole brain (Mielke et al.
2014). More generally, higher sensorimotor rCMRglu might be
related to poorer performance on neuropsychological tests in
aging. In a cohort of 70 healthy adults aged 20–87 years old,
Brickman et al. (2003) observed that higher caudate rCMRglu was
associated with a better verbal learning performance but higher
putamen rCMRglu was associated with a worse performance

across the lifespan. Although speculative, these data may be
relevant inasmuch as the caudate is heavily connected with
associative cortices whereas the putamen is more connected
with sensorimotor cortices (Haber et al. 2020).

Putting the network segregation and rCMRglu findings
together, these data broadly fit with a study showing that
internetwork segregation is more associated with the perfor-
mance on complex cognitive tasks whereas local activity is more
associated with the function on simple motor tasks (Cohen
and D’Esposito 2016). This provides a possible parsimonious
explanation for the set of findings observed here, where
network segregation was more associated with spatial cognition
performance and glucose metabolism was more associated with
response time.

Limitations

There were several limitations to the current study, most notably
that the data are cross-sectional and correlational. Although
cross-sectional mediation analysis provides a mathematical
framework for examining potential underlying mechanisms,
it can over- or underestimate true temporal effects, and
longitudinal studies would provide a more direct insight into
age-related processes (Maxwell et al. 2011). Second, rCMRglu
is only one aspect of brain energetics, and combining other
measures such as aerobic glycolysis would provide a more
complete picture on how energy consumption relates to
network segregation (Raichle 2015). Relatedly, absolute glucose
metabolism has little regional variability, necessitating the use
of rCMRglu (whole-brain averaged signals), which means those
values were inherently handled differently than the network
segregation signals (not whole-brain averaged). Nevertheless,
testing for associations between absolute glucose metabolism
and network segregation (see Supplementary material) yielded
similar nonsignificant findings. Third, we did not have measures
of peripheral sensory ability in this study, which may covary with
both age and CANTAB task performance. Finally, a more diverse
battery of cognitive/motor tests and more imaging sessions
(e.g., comparing task vs. resting state; Gallen et al. 2016) will
be needed to provide a more global perspective on the current
findings.

In summary, we studied the associations between brain net-
work segregation, regional brain glucose utilization, and cogni-
tive/motor performance across the adult lifespan. Brain network
segregation did not mediate age-related changes in glucose
metabolism. However, networks that were on average the least
segregated (e.g., salience network) showed the strongest age-
related differences in regional metabolism. Sensorimotor net-
work segregation mediated age-related differences in spatial
cognition, and sensorimotor glucose metabolism mediated age-
related differences in response time. Our findings are broadly
consistent with studies suggesting enriched environments that
include somatosensory stimulation in the elderly might help
prevent age-associated cognitive decline (Leon and Woo 2018).

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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