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Abstract

Antibodies, an essential part of our immune system, develop through an intricate process to bind a 

wide array of pathogens. This process involves randomly mutating DNA sequences encoding these 

antibodies to find variants with improved binding, though mutations are not distributed uniformly 

across sequence sites. Immunologists observe this nonuniformity to be consistent with “mutation 

motifs”, which are short DNA subsequences that affect how likely a given site is to experience a 

mutation. Quantifying the effect of motifs on mutation rates is challenging: a large number of 

possible motifs makes this statistical problem high dimensional, while the unobserved history of 

the mutation process leads to a nontrivial missing data problem. We introduce an ℓ1-penalized 

proportional hazards model to infer mutation motifs and their effects. In order to estimate model 

parameters, our method uses a Monte Carlo EM algorithm to marginalize over the unknown 

ordering of mutations. We show that our method performs better on simulated data compared to 

current methods and leads to more parsimonious models. The application of proportional hazards 

to mutation processes is, to our knowledge, novel and formalizes the current methods in a 

statistical framework that can be easily extended to analyze the effect of other biological features 

on mutation rates.

1. Introduction

We introduce a proportional hazards model approach to study DNA mutation processes. Our 

study is motivated by somatic hypermutation, a mutation process that occurs in DNA 

sequences that encode B-cell receptors (BCRs), proteins that recognize and neutralize 

*Co-corresponding authors: vminin@uci.edu, nrsimon@u.washington.edu, matsen@fredhutch.org.
§Co-first authors

HHS Public Access
Author manuscript
Ann Appl Stat. Author manuscript; available in PMC 2020 November 18.

Published in final edited form as:
Ann Appl Stat. 2019 June ; 13(2): 1268–1294. doi:10.1214/18-aoas1233.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathogens. When BCRs are secreted from B cells they are known as antibodies. The immune 

system relies on this somatic hypermutation process to generate a diversity of BCRs that can 

bind to a large and continually evolving variety of pathogens. The starting material for this 

mutation process is a BCR sequence that is formed by recombination (Tonegawa, 1983; 

Schatz and Ji, 2011). From this sequence, a complex system of enzymes introduces 

mutations in a random pattern that is known to be highly sensitive to the sequence motif: the 

sequence of DNA bases surrounding the mutating position (Dunn-Walters et al., 1998; 

Chahwan et al., 2012; Rogozin and Kolchanov, 1992; Methot and Di Noia, 2017).

Our goal is to develop a solid statistical framework that estimates the mutation rates of 

motifs and provides interpretable results for this mutation process. A better understanding of 

somatic hypermutation will help in designing vaccines for challenging viruses (Haynes et 

al., 2012; Hwang et al., 2017; Wiehe et al., 2018), in furthering understanding of the 

biological mechanisms at play (Pham et al., 2003; Rogozin et al., 2001), and in gaining 

insight into the natural selection process occurring in the immune system (Hershberg et al., 

2008; Uduman et al., 2011; McCoy et al., 2015; Hoehn, Lunter and Pybus, 2017).

Several strategies have been used to model a motif’s mutability – that is, how likely a 

position is to mutate given the motif at that position. The general approach is to compare a 

mutated sequence with its inferred ancestor sequence and model the differences between 

them. Cohen, Kleinstein and Louzoun (2011) and Elhanati et al. (2015) model the 

mutabilities of motifs as the product of the mutabilities of short subsequences (usually 1 or 2 

bases). By using a log-linear model with only first-order terms they keep the parameter 

count low, but miss interactions between the positions. Yaari et al. (2013) and Cui et al. 

(2016) do not use this log-linear assumption: they allow a separate parameter for each 

possible five-nucleotide motif (of which there are 45), and use ad-hoc methods to handle 

motifs with few observations. Rather than these restrictive and ad-hoc approaches, a more 

data-adaptive variable selection method is desirable.

Another drawback of these methods is that they ignore mutations that occur in neighboring 

positions, even though such events can carry important information about highly mutable 

motifs. Indeed, these methods require counting the number of times a motif is observed to 

mutate: if mutations occur in neighboring positions, they cannot attribute the mutation to the 

correct motif. For settings with high rates of mutation, these methods end up estimating the 

mutabilities poorly. To properly estimate mutabilities, one needs to account for the different 

possible orders that mutations occurred in. Previous work has developed methods for 

performing various types of inference when this mutation order is unknown (Hwang and 

Green, 2004; Hobolth, 2008), but these inference procedures make the parametric 

assumption that the mutation process follows a continuous time Markov process. Here we 

relax this model assumption and use a semiparametric model instead.

In this paper, we advance the modeling of motif mutabilities in several directions. We 

propose a method to fit mutabilities using survival analysis of mutation motifs, called samm. 

We formalize the problem using Cox proportional hazards, in which mutations are the 

failure events to be investigated. Although survival models are used implicitly by 
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computational immunologists for simulation (Yaari, Uduman and Kleinstein, 2012; Sheng et 

al., 2017), we believe this is the first time they have been used for inference.

To estimate motif mutabilities, our method uses the Monte Carlo expectation–maximization 

algorithm (MCEM, Wei and Tanner, 1990). Since the orders in which mutations occur are 

unobserved in our data, expectation–maximization (EM, Dempster, Laird and Rubin, 1977) 

allows us to perform maximum likelihood while averaging over these unknown orders. 

However the E-step in EM requires calculating the expected log-likelihood, which is 

analytically intractable since we must average over all possible mutation orders; thus we 

estimate this expectation using Gibbs sampling. This approach is similar to that used by 

Goggins et al. (1998) to model interval-censored failure-time data where the order in which 

the failure events occur is unknown.

Our method also handles high-dimensional settings in which there are many more predictors 

than observations, which is important because many motifs are hypothesized to affect the 

mutation rate but the specific ones are unknown. For instance, Yaari et al. (2013) and Cui et 

al. (2016) consider all motifs of length 5. We use the lasso (Tibshirani, 1996) to improve 

estimation and perform variable selection. To provide a measure of uncertainty of our 

estimates, we use a two-step approach: we fit an ℓ1-penalized Cox proportional hazards 

model (Tibshirani et al., 1997) to perform variable selection and refit an unpenalized model 

over the selected variables to obtain our final estimates along with approximate confidence 

intervals.

Section 2 describes our estimation methods, starting with a simplified logistic regression 

model and then progressing to our full estimation method. Section 3 presents simulation 

results. In Section 4, we apply our method to model somatic hypermutation of BCR 

sequences from Cui et al. (2016) and compare results with previous methods.

2. Methods

Our data consists of BCR nucleotide sequences that have mutated for an unknown period of 

time. Specifically, we target sequences that are undergoing mutation but not natural 

selection. Such data can be obtained, for example, through immunization experiments in 

transgenic mice designed to have a DNA segment that is carried along and mutated but not 

expressed as part of the BCR (Yeap et al., 2015; Cui et al., 2016).

Though we focus on modeling the somatic hypermutation process of BCRs, our approach 

can be framed more generally as a problem of modeling a sequence-valued mutation 

process. We refer to the original, unmutated sequences as “naïve” and their descendants as 

“mutated” sequences. Throughout, we suppose that these naïve sequences are known. In the 

BCR case, we restrict our attention to a computationally-identified naïve segment coded in 

germline DNA (the V region, Yaari and Kleinstein, 2015).

More formally, the mutation process of a sequence with p positions can be described as a 

vector-valued stochastic process {X(t) = (X1(t), …, Xp(t)) : t ∈ [0, ∞)} indexed by time t. 
Each {Xj(t)} represents the mutation process of the jth position in the sequence. For a given 

time t, the state space of Xj(t) is the set of nucleotides {A, C, G, T} and the state space of 
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X(t) is the set of length-p nucleotide sequences S = A, C, G, T p. At the start of the 

mutation process, X(0) is fixed to be the naïve sequence.

In a context-sensitive model, the probability that a position mutates at time t depends on the 

current nucleotide sequence X(t). In our work, we assume that only local context matters: 

The mutation rate at each position is affected only by the local nucleotide sequence called 

the motif. For motif m, we denote the length of the motif as len(m), where len(m) is 

typically much smaller than the number of nucleotides in X(t). The function I(X(t), m, j, j′) 

is the binary indicator of whether motif m appears in sequence X(t) from positions j −j′ +1 

to j − j′ + len(m). More formally, it is defined as

I X t , m, j, j′ = ∏
k = 1

len m
1 Xj − j′ + k t = mk , (1)

where mk is the nucleotide in the kth position of motif m. This is known as a len(m)-mer, 

i.e., a motif of length len(m). For example, a 5-mer is a motif of length 5. In the special case 

where len(m) is odd and j′ = (len(m) + 1)/2, (1) checks if X(t) has motif m centered at 

position j. We call this a centered motif; for all other cases we say that (1) is checking for an 

offset motif.

Define a motif dictionary to be a set ℳ of sequence features (m, j′) that may affect mutation 

rate. Example dictionaries include 1-mers (all length 1 motifs), offset 2-mers (length 2 

motifs with j′ = 1, 2), all of the central and offset 3-mers (length 3 motifs, with j′ = 1, 2, 3), 

and all of the central 5-mers. We may also consider all possible unions of these dictionaries. 

Suppose we have selected a set ℳ. To ease exposition, we choose an arbitrarily assigned but 

fixed order {(m(1), j′(1)), …, {(m(q), j′(q))} where q is the number of motif features in the 

dictionary ℳ. We may now define a function that indicates which elements in ℳ occur at 

each position. For each position j, let ψj: S 0, 1 q be defined by [ψj(X(t))]k ≡ I(X(t), 

m(k), j, j′ (k)) for k = 1, …, q. We use ψj as the feature vector for modeling the mutation rate 

of position j (Figure 1).

Of course, the framework we present here generalizes to other types of dictionaries, 

including dictionaries that only specify bases for a subset of positions, but we will restrict to 

the above-described dictionaries in this paper for concreteness.

2.1. Logistic regression

As a simplified approach to modeling the mutation process, one may ignore the time 

component and use logistic regression. In this model, each position in the sequence is 

independent and the probability of each position mutating only depends on the initial 
nucleotide sequence X(0), i.e.

Pr(mutation at position j)  = 1
1 + exp −θTψj X 0

∀j ∈ 1, …, p . (2)
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Yaari et al. (2013) essentially take this approach; the logistic model here just formalizes their 

intuition within a statistical framework and allows us to generalize their method to be 

applicable for any feature vector mapping. Moreover, we can use penalized logistic 

regression for handling high-dimensional models and encode various structural assumptions 

regarding the mutation rates; we discuss this in detail later in Section 2.4.

Logistic regression ignores the time component in a mutation process, and as such ignores 

how the mutation rate of each position may change as other positions mutate (Figure 2). The 

assumption that the mutation rate only depends on the initial nucleotide sequence is most 

problematic when the mutation rate is high. Also, logistic regression ignores censoring: the 

method estimates the average mutation probability with respect to a particular sampling 

process. The estimates will be different if we tend to sample sequences that mutate for long 

vs. short periods of time. The following section addresses these issues by modeling the 

mutation process using a survival analysis framework.

2.2. Cox proportional hazards

We propose using a survival analysis framework to model the mutation process. We view 

positions in a single sequence as subjects observed for the same time period. A mutation 

event at position j occurs at time t if the nucleotide immediately before time t, lims→t− Xj(s), 

differs from the nucleotide at time t, Xj(t). If a position never mutates, we consider its 

mutation time to be censored.1 The hazard (or mutation) rate of a position is the 

instantaneous risk of mutating at time t given that it has been conserved up to time t. In 

between successive mutation times, each position has a constant hazard rate, and mutates 

independently from all other positions. The dependence between positions is introduced 

when a mutation occurs: upon a mutation event, the hazard rate for each neighboring 

position can change (Figure 2).

Accounting for how the sequence can change over time complicates our estimation 

procedure. Since we do not observe the order of mutation events in the data – we only 

observe pairs of naïve and mutated sequences – there are many possible mutation orders that 

could explain how the mutated sequence arose from the naïve sequence; each mutation order 

corresponds to a distinct sequence of hazard rates.

For ease of exposition, we present our estimation method for the mutation process of a 

single pair of naïve and mutated nucleotide sequences. The method readily applies to 

estimating rates given many independent mutation processes (a typical application will be to 

thousands or more sequences).

As part of our modeling framework, we assume that each position can mutate at most once 

during the mutation process. This is a simplification of the somatic hypermutation process 

since it is possible for a position to mutate more than once, though in our data the naïve and 

mutated sequence typically differ in 1–5% of the positions. We think this assumption is 

1By using a survival analysis framework, we implicitly assume that a mutation will occur at every position given a sufficiently long 
period of time. This assumption is reasonable for somatic hypermutation – the complex system of enzymes has the ability to mutate 
any position along the sequence (Chahwan et al., 2012). This assumption may not hold for other DNA mutation processes, and the 
method may need to be modified accordingly.
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reasonable and makes the problem easier to handle from a computational standpoint. We 

discuss how this assumption affects performance under model misspecification in Section 

C.2 of the Appendix.

We model the hazard rate of position j using Cox proportional hazards, which supposes that 

the hazard rate j at time t is assumed to be of the form

ℎj t = ℎ0 t exp θ⊤ ψj X t , (3)

where θ ∈ ℝq and the baseline hazard rate h0(·) is an arbitrary unspecified baseline hazard 

function. Extending (3), we can additionally model the rate at which our process mutates to 

a specific nucleotide – the target nucleotide. Previous work (Cowell and Kepler, 2000; 

Rogozin et al., 2001; Yaari et al., 2013; Cui et al., 2016) suggests that the context-dependent 

mutation process is biased in favor of mutations to particular bases. We can take into account 

these preferences by considering a per-target model. In such a model, we additionally define 

vectors θN for each possible target nucleotide N ∈ {A, C, G, T}. Using a competing events 

framework, the rate of mutating to nucleotide N at position j at time t is modeled as

ℎj, N t = 1 Xj t ≠ N ℎ0 t exp θ + θN
⊤ ψj X t . (4)

As N → N is not considered a mutation, we include the indicator function 1{·} in (4) to 

specify that a position cannot mutate to the nucleotide that currently appears there.

2.3. Maximum likelihood via MCEM

We are now ready to present a maximum likelihood estimation method for our model. We 

assume that the hazard rate follows (3). The per-target model in (4) is a straightforward 

extension of this simpler case. Let the observed data, namely the single pair of naïve and 

mutated nucleotide sequences, be denoted Sobs, where we suppose that n positions have 

mutated.

When h0(t) is an arbitrary unspecified baseline hazard function, only the order of the 

mutations carries information about θ, even if the mutation times are observed (Kalbfleisch 

and Prentice, 2011). Explained intuitively, time can be transformed by an arbitrary 

increasing function and the form of the hazard function would still be of the form (3). (For 

more details, see Chapter 4 in Kalbfleisch and Prentice, 2011). Consequently, estimating θ 
involves only maximizing the likelihood of observing the mutation order.

For now, suppose we observe the order that the mutations occurred in. Let πj be the position 

of the jth mutation for j = 1, …, n. Let π1:j denote the positions of the first through jth 

mutation, where π1:0 is defined to be the empty set. Define S(π1:j) to be the nucleotide 

sequence after positions π1:j mutate. Thus the observed data is Sobs = {S(π1:0), S(π1:n)}. 

The set R(π1:j) ≡ {1, …, p}\π1:j is the set of positions at risk of mutating, commonly 

referred to as the risk group in the survival analysis literature. Then the marginal likelihood 

of θ is
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ℒc Sobs, π; θ = ∏
j = 1

n exp θ⊤ψπj S π1: j − 1

∑k ∈ R π1: j − 1 exp θ⊤ψk S π1: j − 1
. (5)

Our result looks like the marginal likelihood derived in equation 4.47 in (Kalbfleisch and 

Prentice, 2011) except that it is derived under a more general set of assumptions – whereas 

they assume the covariates are fixed, we assume the covariates to be fixed between events. 

The derivation of (5) is given in the Appendix.

The marginal likelihood in (5) implies that the mutation order can be simulated by drawing 

positions from successive multinomial distributions. To simulate mutation at the jth position, 

we draw a position from the risk group R(π1:j−1). In fact, Gupta et al. (2015) use this 

procedure to simulate the somatic hypermutation process, though they do not provide a 

statistical justification.

Unfortunately the mutation order π is not observed in our problem. We instead maximize 

the observed data likelihood, which is the complete data likelihood marginalized over all 

admissible mutation orders A Sobs :

ℒ Sobs; θ = ∑
π ∈ A Sobs

ℒc Sobs, π; θ .
(6)

Assuming positions mutate at most once, A Sobs  is a set of n! possible mutation orders. 

When the number of mutated positions n is small, we can enumerate all possible mutation 

orders and maximize (6) using a nonlinear optimization algorithm such as EM (Dempster, 

Laird and Rubin, 1977). However, in most data sets, n is much too large for direct 

enumeration to be computationally tractable, so we maximize (6) using MCEM.

MCEM extends the traditional EM algorithm by approximating the expectation in the E-step 

using a Monte Carlo sampling method. Let π = π1:n be a full mutation order. We use the 

Gibbs sampler in Algorithm 1 to sample π | {Sobs, θ}. Given a full mutation order π, let 

π(−j) be the partial mutation order where the jth mutation is removed from π; a full mutation 

order π′ is consistent with π(−j) if there is some j′ ∈ {1, …, n} such that π′(−j′) = π(−j). For 

instance, if π = [1, 3, 2] then the partial mutation order π(−2) is [1, 2] and π′ = [3, 1, 2] is 

consistent with π(−2) since π(−2) = π′(−1). For each Gibbs sweep, the index j cycles through 

{1, …, n} in some random order. For Gibbs step k, we sample a full mutation order π(k) that 

is consistent with the partial mutation order π −j
k − 1 . The proof that this sampler converges to 

the desired probability distribution is standard and similar to that of Goggins et al. (1998).

We efficiently calculate the probability of a full mutation order given a partial mutation 

order by reusing previous computations. In particular, for partial mutation order π(−j), we 

calculate the probabilities of each consistent full mutation order starting from the full 

mutation order where position πj mutates first to that where position πj mutates last. By 

ordering consistent full mutation orders in this way, the j′th consistent full mutation order π
′ and (j′ + 1)th consistent full mutation order π″ are the same except that the j′ and (j′ 
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+1)th mutations are swapped. The ratio of the conditional probabilities of π′ and π″ given 

π(−j) is

Pr π′ | π −j
Pr π″ | π −j

=
exp θ⊤ ψπ′j′ S π′1: j′ − 1 + ψπ′j′ + 1 S π′1: j′

exp θ⊤ ψπ″j′ S π″1: j′ − 1 + ψπ″j′ + 1 S π″1: j′

×
∑i ∈ R π″1: j′ exp θ⊤ψi S π″1: j′

∑i ∈ R π′1: j′ exp θ⊤ψi S( π′1: j′ )
.

(7)

So if we already have Pr(π″|π(−j)), we can divide it by (7) to quickly obtain Pr(π′|π(−j)). 

Moreover, we can efficiently calculate (7) by storing previous computational results: for 

instance, the summation over the risk group R(π′1:j′) shares many elements with the 

summation over the risk group R(π″1:j′). Similar ideas can be used to speed up other 

calculations required for MCEM.

Given the Monte Carlo samples from the E-step, the M-step maximizes the mean log-

likelihood of the complete data. Suppose the E-step generates Monte Carlo samples π(1), …, 

π(E). Then during the M-step, we solve

max
θ

1
E ∑

i = 1

E
log ℒc Sobs, π i ; θ (8)

using iterative procedures such as gradient ascent.

We use ascent-based MCEM (Caffo, Jank and Jones, 2005) to maintain the monotonicity 

property of the EM algorithm. Briefly, ascent-based MCEM gives a rule for deciding if the 

proposed MCEM estimate at each iteration should be accepted or if the Monte Carlo sample 

size should be increased. As the number of Monte Carlo samples increases, the standard 

error of the estimated expected log likelihood decreases. So for a sufficiently large number 

of Monte Carlo samples, we can ensure that the observed data likelihood increases with high 

probability.

2.4. Regularization and variable selection

In many cases, it is desirable to model the effects of many features. For instance, Yaari et al. 

(2013) estimate a 5-mer model with 1024 parameters. Estimating the parameters for a per-

target model increases the number of parameters by an additional factor of four. If the 

number of sequences in the dataset is small compared to the number of features, the 

optimization problem in (6) can be ill-posed. For such high-dimensional settings, it is 

common to use regularization to stabilize our estimates and encourage model structure.
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In particular, we may believe that only a small subset of the features affects the mutation 

rate. Yaari et al. (2013) assume that the nucleotides closest to a position have the most 

significant effect on its mutation rate: for 5-mer motifs with a small number of observations, 

they estimate its mutation rate using an offset 3-mer motif. In our method, we use the lasso 

(Tibshirani, 1996) to perform variable selection.

To incorporate the lasso, our estimation procedure requires two steps. The first step 

maximizes the observed log-likelihood with a lasso penalty and thereby performs variable 

selection. The second step aims to quantify the uncertainty of our model parameter 

estimates: we refit the model parameters by maximizing the unpenalized objective and use 

the confidence intervals for the unpenalized model as an assessment of uncertainty.

In the first step, we split the data into training and validation sets denoted Sobs,train and 

Sobs,val, respectively, and maximize the penalized log-likelihood of the training data

θ = argmax
θ

logℒ Sobs,train; θ − λ θ 1 , (9)

where λ > 0 is a penalty parameter. To solve (9), we use a variant of MCEM: the E-step is 

the same as before, but we maximize the penalized EM surrogate function during the M-

step. The penalized EM surrogate function is simply (8) with a lasso penalty:

1
E ∑

i = 1

E
log ℒc Sobs,train, π i ; θ − λ θ 1 . (10)

This can be maximized using the generalized gradient ascent algorithm given in Algorithm 2 

(Beck and Teboulle, 2009; Nesterov, 2013).

We tune the penalty parameter λ in (9) by training-validation split. In the typical ideal case, 

we choose the penalty parameter that maximizes the likelihood of the observed validation 

data. Unfortunately the likelihood of observed data is computationally intractable. Instead 

we use the property that, for any θ and θ′, the difference between the log-likelihoods of the 

observed data is bounded below by the difference between the expected log-likelihoods of 

the complete data

logℒ Sobs; θ − logℒ Sobs; θ′ ≥ E logℒc Sobs, π ; θ − logℒc Sobs, π ; θ′
|Sobs; θ′ , (11)

which follows directly from Jensen’s inequality. The expectation above is taken with respect 

to the conditional distribution of the mutation orders π given the observed data Sobs and 

model parameter θ′. Thus the right-hand side can be estimated by sampling mutation orders 

from the Gibbs sampler in Algorithm 1. If the right-hand side of (11) is positive, then θ has a 

higher log-likelihood than θ′ on the validation set. However, if the right-hand side is 

negative, we do not know how the two parameters compare.
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Our proposal for tuning the penalty parameter, Algorithm 3, is based on (11). The algorithm 

searches across a one-dimensional grid of penalty parameters, from largest to smallest. For 

consecutive penalty parameters, we estimate the right-hand side of (11) to determine if the 

smaller penalty parameter has a higher observed log-likelihood. We keep shrinking the 

penalty parameter until the estimate for the right-hand side of (11) is negative. Since the 

check based on (11) is conservative, we may end up choosing a penalty parameter that is 

slightly larger than desired. Nonetheless, our simulation results suggest that this procedure 

works well in practice.

Algorithm 3 can be easily extended to incorporate multiple training-validation splits such as 

in k-fold cross-validation: we average the estimates of the right-hand side of (11) across the 

training-validation splits and stop shrinking the penalty parameter if the average is negative. 

After selecting a penalty parameter, we obtain the final parameter support from the k-fold 

procedure by refitting the penalized model on the whole training set.

Now we move on to the second step where our goal is to quantify the uncertainty of our 

estimated model parameters. Unfortunately, estimating confidence intervals after model 

selection is a difficult problem, even in the much simpler case of linear models (Dezeure et 

al., 2015). Hence some papers use the approach of fitting a penalized model, refitting an 

unpenalized model based on the selected variables, and then using the confidence intervals 

generated using traditional inference procedures for unpenalized models (Leeb et al., 2015; 

Hesterberg et al., 2008). We proceed in the same manner: we refit the model by maximizing 

the unpenalized observed log-likelihood (6) of the entire dataset with respect to the selected 

variables and constraining the others to zero; then we construct confidence intervals for the 

unpenalized model, ignoring the fact that we have already peeked at the data in the first step. 

Though these confidence intervals are asymptotically valid only under very restrictive 

conditions, they provide some measure of the uncertainty of our fitted parameters; we show 

via simulation in Section 3 that the coverage of these intervals is close to nominal. To 

highlight that these intervals are not truly confidence intervals, we refer to them as 

uncertainty intervals, where 100(1 - α)% uncertainty intervals are constructed using intervals 

with nominal 100(1 - α)% coverage.
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To obtain these uncertainty intervals, we calculate the standard error of our estimates using 

an estimate of the observed information matrix. Louis (1982) shows that the observed 

information matrix is related to the complete data likelihood via the following identity:

I θ Sobs = − E ∇θ
2logℒc Sobs, π ; θ Sobs; θ − E ∇θlogℒc Sobs, π ; θ ∇θlogℒc Sobs, π ; θ ⊤

|Sobs; θ + E ∇θlogℒc Sobs, π ; θ Sobs; θ E⊤ ∇θlogℒc Sobs, π ; θ Sobs; θ .

Therefore we can estimate the observed information matrix using samples from the final 

MCEM iteration and then invert it to obtain uncertainty intervals.

Finally, one caveat of our method is that the two-step procedure is not guaranteed to give 

estimates of standard errors/uncertainty intervals: The first step of our procedure may choose 

a penalty parameter such that the estimated information matrix in the second step is not 

positive definite. We see this behavior in a small number of simulations in Section 3, though 

we do not observe such behavior in our data analysis. To avoid this issue, we suggest 

combining k-fold cross-validation with Algorithm 3 and use the average estimate of the 

lower bound (12) from each of the k folds to tune the penalty parameter.

Our GPLv3-licensed Python implementation of samm is available at http://github.com/

matsengrp/samm. The repository includes code used for generating plots in this manuscript, 

as well as a tutorial for how to run samm. All output from Sections 3 and 4 as well as the 

Appendix is available on http://zenodo.org/record/1321330 with DOI 10.5281/

zenodo.1321330.

2.5. Examples

By varying the motif dictionary ℳ, our procedure can fit different models of the mutation 

process. In this section, we list some example models that can be fit using our procedure and 

discuss the interplay between the motifs included in ℳ and our feature-selection step. In the 

simplest case, analogous to existing work (Yaari et al., 2013; Cui et al., 2016), we can 

estimate a “k-mer model” (where k is odd) by letting

ℳ = m, k + 1 /2 : m ∈ A, C, G, T k . (13)

The lasso would encourage setting elements in θ to zero, which means that these k-mer 

motifs would have the same baseline risk of experiencing a mutation.

In practice, instead of modeling only the effects of k-mers for a fixed k, we may believe that 

the hazard rate for a position is affected more by positions closer to it. In this case, we can 

model the effect of z-mers of varying length, e.g., 1, 3, …, k-mer motifs, with

ℳ = m, z + 1 /2 : m ∈ A, C, G, T z, z ∈ 1, 3, …k . (14)

We refer to this model as “hierarchical”, as the elements in ℳ relate to each other in a nested 

fashion. By including motifs in a hierarchical fashion, the lasso penalty encourages z-mers 

with the same inner (z − 2)-mer to share the same mutation rate. This model formalizes the 
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intuition used by Yaari et al. (2013): they try to estimate the mutation rates of 5-mers but fall 

back to using a 3-mer sub-motif if that 5-mer does not appear enough times in the data.

As mentioned before, we can add offset motifs to our motif dictionary as previous work 

suggests the mutation rates depend on upstream or downstream motifs (Rogozin and 

Kolchanov, 1992; Pham et al., 2003; Yaari et al., 2013). For instance, one can include all the 

offset motifs that overlap the mutating position in the motif dictionary. We refer to such 

models as offset k-mer models.

Finally, we can model the hazard rate of motifs mutating to different target nucleotides as in 

(4). We parameterize the model using θ and θN for N ∈ {A, C, G, T} since the penalized 

per-target model

arg max
θ, θN: N ∈ A, C, G, T

logℒ Sobs,train; θ, θN: N ∈ A, C, G, T

− λ θ 1 + ∑
N ∈ A, C, G, T

θN 1
(15)

will encourage hazard rates for the different target nucleotides to be the same if they share 

the same motif.

Many of these example models are overparameterized in order to obtain some desired 

sparsity pattern. Such overparameterized models may have singular information matrices 

during the refitting procedure. However this is not a problem since we are truly interested in 

the confidence intervals for the parameters θagg = Aθ associated with the simple k-mer 

model, where A is a matrix that aggregates hierarchical motifs into a single k-mer. Since this 

aggregate k-mer model is identifiable, we can get uncertainty intervals for θagg: we calculate 

the pseudo-inverse I− of the (estimated) information matrix and then use AI−A⊤ to get an 

estimate of the covariance matrix of θagg.

3. Simulation results

We now present a simulation study of our procedure, including a comparison to the current 

state-of-the-art method SHazaM (Yaari et al., 2013, version 0.1.8) and the logistic 

regression approach in Section 2.1.

3.1. Understanding the effect of various models and settings

We fit the following three models to simulated data:

• 3-mer model: the hazard rate modeled by (3) with motif dictionary (13) where k 
= 3,

• 3-mer per-target model: the hazard rate modeled by (4) with motif dictionary 

(13) where k = 3,

• 2, 3-mer model: the hazard rate modeled by (3) with motif dictionary
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ℳ = m, j′ : m ∈ A, C, G, T 2, j′ ∈ 1, 2 ∪ m, 2 : m ∈ A, C, G, T 3 .

To understand how dataset composition affects the performance of our procedure, we 

simulate different datasets by varying the sample sizes, sparsity levels, and effect sizes.

We generate the true θ* according to the same hierarchical structure as each model we 

consider. Let the model parameters corresponding to the motif m be θm*  and corresponding to 

motif m with target nucleotide N be θm N* . To obtain the desired sparsity level, we 

randomly select a portion of the parameters to zero out. For per-target parameters, instead of 

setting the probability of mutating to N to zero, we set θm N*  to log1/3 for all possible 

values of N, indicating no mutation preference. We scale the model parameters appropriately 

to control the effect size.

Our goal with these simulations is to obtain synthetic data that reflects different possible 

settings one may encounter when analyzing experimental data. We use the experimental data 

in Cui et al. (2016) analyzed in Section 4 as a template and alter various underlying 

properties of this dataset to simulate data that replicates what typical real-world datasets 

look like. We first generate naïve sequences using partis2 (Ralph and Matsen IV, 2016a, b) 

by drawing a set of genes from the IMGT database (Lefranc et al., 1999) and simulating an 

observation frequency for each. Antibodies are composed of two units, a heavy and a light 

chain. Further, light chains can be classed as either κ or λ depending on where the encoded 

sequence came from in the genome. Both mice and humans have antibodies structured in 

this way. We select only κ-light chain mouse BCRs for our simulation, as this reflects our 

experimental data in Section 4. To generate the true θ* parameters, we randomly draw 

values from the mouse somatic hypermutation targeting model MK RS5NF of Cui et al. 

(2016); we refer to these parameters as θMK* . The MK RS5NF model is a collection of 

mutabilities and substitution probabilities from a 5-mer fit to κ-light chain mouse BCR data.

The average length of the naïve sequences is around 290 nucleotides. We use the survival 

model to mutate between 1% and 5% of the positions of each naïve sequence, obtaining a 

collection of simulated BCR sequences. Conditional on their naïve sequences, BCR 

sequences mutate independently.

We vary sparsity, effect size, and sample size as follows. We generate the true θ* parameters 

with 25%, 50%, and 100% non-zero elements. We also consider different effect sizes by 

scaling θ* such that its variance is 50%, 100%, and 200% of the variance of the values in 

θ*MK. Finally, we fit the model using 100, 200, and 400 mutated BCR sequences. For the 

main manuscript, we report the simulation settings where we vary one simulation setting and 

fix the other settings to the middle value (e.g., we vary number of samples but keep the 

effect size at 100% and the number of non-zero elements at 50%); we report the result from 

running one hundred replicates for each setting. For the remaining possible settings, as each 

2Version 0.12.0: http://git.io/fNvOx
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separate model fit takes on average an hour to complete, we run only ten replicates and 

report the results in the Appendix Section C.3.

To determine the optimal penalty parameter for samm, we split the data by gene subgroups, 

an externally-defined categorization that groups genes that share at least 75% identity at the 

nucleotide level (Lefranc, 2014), reserving 20% of subgroups for validation and the 

remainder for training. Splitting by gene subgroup ensures that the training and validation 

sets look sufficiently different; otherwise the sequences in the validation set look nearly 

identical to those in the training set, and we select a penalty parameter that is too small. We 

then apply Algorithm 3 over a decreasing sequence of penalty parameter-values 10−j, 

10−(j+0.5), 10−(j+1), …. The starting value for the sequence of penalty parameter values was 

pre-tuned so that we use a smaller j for smaller effect sizes and sample sizes. In particular, 

we chose j = 1 if effect size is 50% or sample size is 100; j = 2 if the effect size is 200% or 

sample size is 400; and j = 1.5 otherwise.

For each penalty parameter-value, we run a maximum of ten MCEM iterations. Mutation 

orders are sampled from each Gibbs sampler run every eight sweeps, after an initial burn-in 

period of 16 Gibbs sweeps. For each E-step, we sample four mutation orders and continue to 

double the number of sampled mutation orders if the proposed estimate is not accepted by 

ascent-based MCEM. Once we have an estimate of the support of our model, we refit an 

unpenalized model to obtain uncertainty estimates. We run MCEM until the model has 

converged and the variance estimates of the estimated model parameters are all nonnegative.

We assess the performance of our procedure using three measures. These performance 

metrics are all calculated with respect to the aggregate model since our complete model is 

overparameterized by design. We calculate the relative θ error, defined as ‖θ−θ*‖2/‖θ*‖2, to 

see how close the estimated parameters are to the true parameter θ*. We also calculate 

Kendall’s tau coefficient to see how well our procedure ranks the motifs in terms of their 

mutabilities. Finally we calculate the coverage of our approximate 95% uncertainty 

intervals. We define the average coverage as the proportion of aggregate model parameters 

where the uncertainty intervals covered the true value. The coverage calculations only 

involve aggregate parameters not zeroed out by our models.

These simulations demonstrate that our estimation procedure performs as expected (Figure 

3). As the sample size and effect size increase, the relative θ error decreases and the rank 

correlation increases. On the other hand, as the percent of non-zero elements increases, both 

the relative θ error and rank correlation increase. The error increases because there are more 

parameters to estimate. The increase in rank correlation is likely an artifact of how the 

metric is calculated, as Kendall’s tau removes ties from the calculations. In particular, as the 

percent of non-zero elements increases, the number of ties in the data decreases, so the rank 

correlation seems to increase. In all the plots, we see that the 3-mer per-target model tends to 

be the most difficult to estimate. This is expected as it contains 256 parameters whereas the 

3-mer model only has 64 parameters.

Our simulations show that the coverages for the 3-mer and the 2, 3-mer models are close to 

95%, which is surprising as our uncertainty intervals ignore the double-peeking issue 
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(Figure 3). Zhao, Shojaie and Witten (2017) explain why this procedure might work: under 

certain assumptions, the variables selected by the lasso are deterministic with high 

probability, so using the lasso to select variables does not really constitute as peeking at the 

data twice.

However, the coverage of the 3-mer per-target is much lower, dropping below 80% in certain 

settings (Figure 3). We suspect that the low coverage is mainly due to a lack of data, as the 

coverage improves with the number of samples. When there is a small number of samples 

compared to the number of parameters, our method may only provide a reasonable ranking 

of how mutable the motifs are but may not provide good estimates and uncertainty intervals.

Across the 2700 simulation runs, there were twenty where the estimated information 

matrices were not positive definite and therefore uncertainty intervals cannot be calculated 

(Table 5). We believe that this occurs when the selected penalty parameter is too small; for 

small penalty parameters, the support of the fitted model becomes too large. In this case, 

when we refit the model with no penalty parameter the problem is ill-posed and therefore the 

estimated information matrix is not positive definite. To avoid this issue, we recommend 

using k-fold cross-validation in practice, rather than just a training/validation split. (We use 

5-fold cross-validation for the real data analysis and do not run into this issue.)

3.2. Method comparisons

In this section, we compare the performance of samm to SHazaM and penalized logistic 

regression on simulated data. Since SHazaM only estimates the effect of 5-mer motifs, we 

simulate data such that the mutation rate at a specific site depends on the 5-mer centered at 

that position and the target nucleotide. We simulate 2000 BCR sequences from 4 mice. For 

each mouse, we generate a separate set of naïve sequences using the same procedure as in 

Section 3.1. From these naïve sequences, we simulate the mutation process independently to 

generate BCR sequences. We use two methods to simulate the mutation process:

• Survival Simulation: We generate model parameters θ by resampling the values 

from θMK into a 3, 5-mer per-target model structure. We then mutate the naïve 

sequences according to the survival model.

• SHMulate Simulation: We use θMK and mutate the naïve sequences using the 

SHMulate function in the SHazaM package (Yaari et al., 2013; Gupta et al., 

2015). SHMulate simulates the mutation process using a procedure that is 

similar to a survival model. However the exact calculations differ somewhat (e.g. 

it does not allow the mutation process to create stop codons).

SHazaM should have an advantage in the SHMulate simulations since the θMK was 

estimated using SHazaM on a separate BCR dataset and SHazaM uses some prior 

assumptions about the model structure. In particular, SHazaM assumes that 5-mer motifs 

that share certain upstream/downstream nucleotides have similar mutabilities. The 

simulations are run until 1–5% of the sequence is mutated. This mutation rate is on the low 

end for affinity-matured BCR sequences (compare the 3× higher rate in He et al., 2014), 

giving SHazaM and logistic regression a slight edge since the mutation rates will not change 

for most positions with accumulation of BCR mutations.
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We fit a 3, 5-mer per-target samm model using the same procedure as in Section 3.1. Using 

the same motif dictionary, we also fit a 3, 5-mer per-target logistic regression model using 

logistic regression with a lasso penalty. We measure model performance by the relative θ 
error and rank correlation over 100 simulation replicates.

Our method implemented in samm significantly outperforms logistic regression and 

SHazaM in both scenarios (Table 1), even though SHazaM should have an advantage when 

we simulate data using a dense model from SHMulate. Logistic regression and SHazaM 
tended to produce similar estimates, though logistic regression tended to do better when we 

simulated using the survival model and SHazaM tended to do better when we used the 

SHMulate model.

We present the results of model fitting in more detail in Figure 4. For negative θ values, all 

the methods are biased towards zero, though SHazaM and logistic regression tend to be 

more so. For positive θ values, samm is nearly unbiased while SHazaM and logistic 

regression are somewhat biased towards zero. The methods probably have trouble estimating 

negative values since we only observe a small number of mutations per sequence and the 

data is more informative for finding motifs with high mutation rates rather than those with 

low mutation rates. Based on results from Section 3.1, we expect the bias of samm to shrink 

as the number of training observations increases.

4. Data analysis

We fit models to the BCR sequence data obtained from a vaccination study of four 

transgenic mice published in (Cui et al., 2016). In this experimental setting, the substitutions 

present in the κ-light chain sequences are unlikely to be affected by natural selection on 

BCR function. Thus we restrict our analysis to only κ-light chain data in order to estimate 

somatic hypermutation rates, rather than a combination of somatic hypermutation and 

selection (Yaari, Uduman and Kleinstein, 2012; McCoy et al., 2015; Yaari et al., 2015). A 

single naïve sequence can give rise to many different B-cell receptors by somatic 

hypermutation, forming a so-called “clonal family” which may have varying levels of shared 

evolutionary history. We use partis (Ralph and Matsen IV, 2016a) to assign mutated 

sequences to clonal families and infer the most likely naïve sequence in each family. In both 

the sequencing and the clonal family inference there is the possibility of error propagation; 

we begin our analysis by assuming BCRs are accurately sequenced and assigned to clonal 

families. The resulting data has the composition shown in Table 2. To mitigate double-

counting mutations, we sample a single mutated sequence from each clonal family. Though 

this discards a lot of the data, we believe this gives more accurate estimates than other 

approaches that try to use all the data or estimate mutation history; we analyze this issue in 

more depth in Section C.1 in the Appendix.

We fit a 3, 5-mer model using samm using the same settings as before (Figure 5), though 

with 5-fold cross-validation to determine the optimal parameter support. The θ estimate has 

a block-like and 4-fold-repetitive pattern because many 5-mer motifs were zeroed out during 

the lasso step. The 95% uncertainty intervals suggest that many motifs have a marked 

nonzero effect.
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Our model recovers many of the well-known “hot” (more mutable) and “cold” spots (less 

mutable k-mers), which are denoted by the red, blue, and green bars in Figure 5. Hot/cold 

motifs are typically denoted with an underline indicating which position is mutating and 

represented by degenerate bases W = {A, T}, R = {A, G}, Y = {C, T}, S = {C, G}, N = {A, 

G, C, T}. We confirm that many highly mutable 5-mer motifs match the classical hot spot 

motif WRC and its reverse complement GYW (since the mutation process can happen on 

either DNA strand) (Rogozin and Diaz, 2004). We also confirm that many less mutable 5-

mer motifs match the canonical cold spot SYC/GRS (Yaari et al., 2013). For example, one of 

the 5-mers we estimate to have high mutability (θ = 1.688) is AAGCT, which is of the form 

NNGYW and ends with the 3-mer GYW. As C is an example of a Y nucleotide and T is an 

example of a W, AAGCT is an example of the hot spot motif GYW.

Our model also reveals shortcomings with the current hot and cold spot definitions. Our 

estimates show significant variability in the mutabilities of motifs, even if they contain the 

same hot or cold spot motif. For instance, in the established literature the ATGGC motif is 

considered to be a cold spot since it is of the form GRS. We estimate its θ value to be very 

large (θ = 2.206) relative to the other θ values, suggesting that it is actually a hot spot. We 

also see SHazaM estimates all motifs of the form CCCNN to have negative mutability, and 

these are examples of the known cold spot SYC. Estimates from samm show CCCGN has a 

positive mutability even though it is also of the form SYC, indicating the inner 3-mer CCG 

may increase mutation rate more than the two C nucleotides to the left of the mutating 

position. In addition, the classic hot spots with a central T nucleotide actually had very low 

mutability estimates; this suggests that using the well-known WA/TW to identify hot spots 

may not be appropriate.

Finally, our model suggests that samm can be used to discover new hot and cold spots. For 

example, consider motifs with the central base C mutating. We find that the mutabilities of 

the 5-mer CACGC and of the 3-mers GCG, GCT, ACT, and ACG are all higher than any 

motif of the form WRC. As each of these motifs are of the form NRC, this indicates the R 

nucleotide immediately preceding the mutating C may affect mutation rate more than the W 

nucleotide two bases away. A well-defined inferential procedure to determine significant 

collections of hot and cold spots with ample support from the data will require additional 

future work.

For comparison, we fit SHazaM on the same data without sampling a single sequence from 

each clonal family, as was done by Yaari et al. (2013). We also fit the logistic model on the 

same data as samm. All models use the data to determine the degrees of freedom to use in 

fitting θ, resulting in the number of unique θ values fit to be less than the saturated model 

size of 1024 for a 5-mer model. SHazaM estimated 1015 unique θ values out of a maximum 

of 1024 while samm only estimated 137 unique θ values and logistic estimated 485. 

Visually, estimates from the three models look similar, with similar hot- and cold-spots, 

though SHazaM is more “spiky” than samm and logistic (Figure 6). In terms of model 

interpretability, samm or logistic regression seem to be preferable to SHazaM as they 

produce much more parsimonious models. The logistic model seems to fit a model that is 

intermediate to samm and SHazaM in terms of parameter support.
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Ideally, we would be able to compare the different methods in terms of their observed data 

likelihood on a test set. However due to methodological difficulties and incompatibilities of 

the methods, we were unable to come up with a concrete way to compare the methods. In 

particular, SHazaM is not a likelihood-based method. In addition, the observed data 

likelihood for samm is computationally intractable, which makes it difficult to compare to 

other likelihood-based methods. We hope to come up with a good solution for assessing 

samm on real-world data in the future.

5. Discussion

We have modeled somatic hypermutation of BCR sequences using Cox proportional 

hazards. Due to the context-dependence of mutation rates, we must take into account the 

unknown mutation order to compute the full likelihood. To deal with this missing data, we 

used MCEM, where we marginalize over the possible mutation orders using Markov chain 

Monte Carlo. Unlike current methods, our regression framework can model the effect of 

arbitrary features, such as varying motif lengths and sequence positions. In this paper, we 

use the lasso to perform feature selection and stabilize our estimates in high-dimensional 

settings. One can easily extend this approach to use other sparsity-inducing penalties to 

reflect other prior beliefs about the model structure. We show that samm achieves better 

performance than the state-of-the-art method under a variety of simulation settings.

There are a few limitations with our current method. We currently subsample our data 

significantly to ensure our training set is composed of independent observations. This would 

not be necessary if we were able to perform accurate phylogenetic ancestral sequence 

estimation using context-sensitive models. In addition, our method returns “uncertainty” 

intervals rather than confidence intervals since there are no guarantees on their nominal 

coverage. Simulations show that our uncertainty intervals are close to their nominal coverage 

levels if there is a sufficient amount of data (Figure 3), but better methods may be available.

While the present analysis only considers sequence context, other biologically-motivated 

features may be just as informative: nucleotide position, proximity to other contexts, etc. By 

incorporating other types of features into the model, we may be able to help verify or find 

problems with the currently accepted model of somatic hypermutation (Methot and Di Noia, 

2017).

Finally, our model can be used in other contexts to model other biological processes. For 

instance, our method could be used to model the rate of single-nucleotide polymorphisms 

(Aggarwala and Voight, 2016) and transcription-factor binding (Zhou and Liu, 2004).
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Appendix A:: Proof of marginal likelihood

We now prove the statement in Section 2 that the marginal likelihood of θ is given by (5) 

and only depends on the mutation order π1:n.

Proof. Suppose the mutation times are observed, so ui is the time of the ith mutation. Then 

the conditional probability of observing a mutation order π1:n given mutation times u = (u1, 
…, un) can be written as

Pr π1:n u; θ, ℎ0 = ∏
i = 1

n
Pr πi π1: i − 1 , ui − 1, ui; θ, ℎ0 (16)

= ∏
i = 1

n Pr πi , ui π1: i − 1 , ui − 1; θ, ℎ0
∑q ∈ R π1:i − 1 Pr q, ui π1: i − 1 , ui − 1; θ, ℎ0

, (17)

where the conditional probability of observing a mutation in position q at time ui is defined 

as

Pr q, ui π1: i − 1 , ui − 1; θ, ℎ0 (18)

= ℎ0 ui exp θTψq S π1: i − 1 × (19)

exp − ∑
q′ ∈ R π1:i − 1

exp θTψq′ S π1: i − 1 ∫ui − 1

ui
ℎ0 t dt . (20)

Notice that in (18), the terms h0(ui) and (20) do not depend on q. So plugging (18) into (17), 

these two terms cancel and we get

Pr π1:n u; θ, ℎ0 = ∏
i = 1

n exp θTψπi S π1: i − 1

∑q ∈ R π1:i − 1 exp θTψq S π1: i − 1
. (21)

Since the conditional probability of the mutation order does not depend on mutation times u, 

then the marginal probability of the mutation order Pr(π1:n;θ, h0) is also equal to (21).

Appendix B:: Pre-processing data

If we are interested in modeling the effect of k-mer motifs on the hazard rate where k > 1, 

then the positions at the ends of the B-cell receptor sequences must be properly handled. The 

issue is that the positions at the ends might not have enough neighboring nucleotides to fully 

construct a k-mer motif.
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In order to deal with this issue, we first preprocess our data by trimming the two ends of the 

BCR sequences until the ends of the naïve and mutated sequences are the same. We then 

assume that these end positions are fixed and not part of the mutation process.

For example, if we are interested in modeling how 3-mer motifs affect the mutation rate of 

the center position, we need to handle the special case of the two positions at the ends of the 

sequence. Given a naïve BCR sequence and its associated mutated sequence, we trim away 

the positions at the ends of both sequences until the first and last positions are the same. If 

our trimmed sequence is of length p′, we suppose that only positions 2 through p′ − 1 can 

undergo mutation. We can now apply our estimation method since all positions use the same 

feature vector mapping.

Appendix C:: Other simulations

C.1. Reconstructing mutation history

Since most clonal families contain multiple sequences, including all sequences without 

reconstructing the shared mutation history within each family can introduce bias by 

considering some mutations more than once. To overcome this bias, we consider two 

approaches: we can either attempt to estimate this history using standard methods, or we can 

randomly sample a single sequence from each clonal family. For the former case, to date, 

there are no methods that incorporate context-specific mutation models; we introduce one 

standard and useful approach to consider for a single clonal family.

Assume we have a collection of nucleotide sequences that have mutated away from a known 

naïve sequence. In time, as we mutate away from this naïve sequence, a series of 

intermediate nucleotide sequences are introduced on the way to obtaining the mutated 

sequences. These intermediate sequences, known as “ancestral states, ” are related to one 

another and to our observed sequences by an unknown phylogeny: a tree of dependencies 

that ties all sequences together by common ancestry. For a comprehensive treatment of 

phylogenetics, see Felsenstein (2003).

Unfortunately we do not observe these ancestral states. A simple approach to estimate them 

is to use parsimony imputation (Farris, 1970), a method that minimizes the total number of 

mutations that occur on the tree. Reconstructing ancestral states using parsimony with 

dnapars (Felsenstein, 2005) involves searching through a number of candidate trees and 

computing the minimum number of changes necessary to obtain each tree. Among the 

equally parsimonious trees returned by dnapars, we choose the first one to compute mutation 

contexts.

To determine the optimal data processing strategy between sampling, imputing ancestral 

states, and including all sequences without imputation, we simulate 3000 clonal families 

with realistic sizes. The composition for each of these clonal families is determined by 

sampling at random a cluster size and an inferred naïve sequence from the partis-processed 

Cui et al. (2016) dataset. Cluster sizes range from 1–109. The median cluster size is two, and 

about 42% of all clusters are singletons. Sequences are 2.5% mutated on average. We take θ 
to be a random resampling of θMK parameters (Cui et al., 2016).
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In Table 3 we see imputing ancestors using parsimony does not provide any improvements 

in the model fit in most cases. Given that mutations in the simulation above occur based on 

the sequence context, the relatively poor performance of imputing ancestors may be due to 

the heterogeneity of mutation rates among sites (Ho and Jermiin, 2004). Sampling a random 

descendant from each clonal family decreases the relative error for samm. For SHazaM, 

using all of the data results in the lowest relative error, most likely due to the fact that 

SHazaM fits mutabilities differently when not enough observations are present, and this 

case has more data than in the case of sampling. In Section 4, we sample from each clonal 

family to estimate the fit for samm while using all of the data for SHazaM.

C.2. Model misspecification: mutating with replacement

Throughout this manuscript, we have assumed that the positions in a BCR sequence mutate 

at most once. This assumption is for computational simplicity: if a position can mutate more 

than once, our estimation procedure must consider every single possible nucleotide 

sequence. However, this may not be realistic biologically. In this section, we present a 

simulation study to see how samm’s accuracy changes when positions are allowed to mutate 

multiple times.

Much of the simulation settings are similar to before. For the somatic hypermutation model, 

we resample from θMK – defined in Section 2.5 – for each 3-mer motif, then randomly set 

half of them to zero. Each dataset consists of 300 simulated BCR sequences from a single 

mouse. Mutations are simulated using a survival model where each position can mutate 

multiple times versus at most one time. This simulation study is run twenty times.

For low mutation rates of 1–5%, we have similar accuracy when the model is misspecified 

(Table 4). The accuracies are similar since a position is very unlikely to mutate more than 

once in a low mutation rate setting.

We also try higher mutation rates as it is common to see mutation rates of 5–15% in humans, 

especially in individuals with chronic viral infections (He et al., 2014). Even in this scenario 

with higher mutation rates, the accuracies are still similar. These results suggest that our 

simplifying assumption gives up very little accuracy for a huge gain in computational 

efficiency.

C.3. Simulation results for the 27 settings

We report the results from the full set of possible simulation settings from Section 3.1 for the 

unpenalized (Tables 6 and 7) and penalized (Table 8) fits. Settings reported in the main 

manuscript were run 100 times; the others were run ten times. Across all 2700 simulation 

runs, a total of twenty replicates fail to obtain confidence intervals after eighty MCEM 

iterations, given in Table 5.

In most cases, the penalized fits and unpenalized fits obtain similar relative errors and rank 

correlations. In roughly half of cases, the penalized fits obtain smaller relative errors than the 

unpenalized fits; this may be an effect of the shrinkage present in the penalized θ. In all 

cases but four, the unpenalized fits have higher correlation. We prefer unpenalized fits as 
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they are the only way to obtain reliable uncertainty estimates, though if reconstructing θ is 

the primary goal then penalized fits provide a quicker solution.

For the unpenalized fits, the average number of false positives is less than one in the 

majority of settings, indicating our procedure has good support recovery. Our model has the 

most false positives with hierarchical fits on large numbers of samples. Moreover, we see 

expected trends in the output – relative error decreases and correlation increases as sample 

size increases, and per-target models are more difficult to fit than same-target ones. Varying 

effect size and sparsity levels does not seem to affect our method’s performance 

significantly.

Appendix D:: Computing the survival process likelihood on a tree with 

ancestral sequences at internal nodes

Sequences evolve along a tree with a shared mutation history. Often, given a set of sequence 

data, many candidate trees optimize the maximum parsimony objective function (Farris, 

1970), and thus phylogenetic algorithms can return multiple solutions. We have found it to 

be useful to rank a set of equally-parsimonious phylogenetic trees in terms of an additional 

objective function (Davidsen and Matsen, 2018; DeWitt et al., 2018). To do such ranking 

with a motif mutability model requires taking into account mutation order – though the 

naïve and mutated sequences are the same across trees, the pairs of parent and descendant 

sequences on each branch are not. Though tempting, we cannot use the surrogate function 

(11) on different trees separately and compare them as the observed data differs between 

different trees. Instead we are interested in

logℒ Sobs; θ − logℒ S′obs; θ (22)

which requires estimating the observed likelihood.

To obtain the observed likelihood of data given a tree with inferred ancestral sequences at 

internal nodes, we use Chib’s method to integrate out mutation order along each branch 

(Chib, 1995). This gives us an estimate of the observed likelihood and allows us to compare 

multiple trees fit to the same data.
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Fig 1. 
An example of how feature vectors are generated: if we believe that the mutation rate at a 

position depends on the 4-mer (i.e. length 4 motif) starting one position to its left, then the 

feature vector for position j is a one-hot encoding of the sequence that appears in position j − 

1 through j + 2. More formally, each element in the feature vector at position j indicates 

whether or not a motif m appears from start position j − j′ +1 through end position j − j′ + 

len(m) (here m = 4 and j′ = 2). The start and end positions are derived by aligning position j 

of the sequence with position j′ of the motif.
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Fig 2. 
Survival analysis for BCR sequences, where the positions that have not mutated are 

indicated by light gray squares and those that have mutated are indicated by dark gray 

squares. In a context-dependent mutation model, a mutation event can change the mutation 

rates of other positions. Suppose the hazard (i.e. mutation) rate of a position depends on the 

position’s two neighboring bases. Then, for example, when the T in the third position 

mutates to a G, the hazard rate for C in the fourth position changes from the original TCC 

motif to the GCC motif. Changes in the motif at a potential mutating position, and thus its 

hazard rate, are indicated by a change from solid to dashed lines.
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Fig 3. 
Relative error, correlation and coverage under different simulations settings for 3-mer, 3-mer 

per-target and 2, 3-mer models.
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Fig 4. 
Boxplots of the differences between median-centered fitted and true θ values for samm 
(left), SHazaM (middle), and logistic regression (right).
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Fig 5. 
Estimated somatic hypermutation model for mouse light chains using samm for 5-mer 

motifs centered on the bases A (top left), T (top right), G (bottom left), and C (bottom right). 

The motif corresponding to an x-axis position can be read from bottom to top. Plots depict 

the estimated aggregate θ of 5-mer motifs after estimating the model for a 3, 5-mer model 

and aggregating estimates using the procedure outlined in Section 2.5. A negative value 

means a reduced mutation rate relative to the baseline hazard, whereas a positive means an 

enhancement. Well-known hot spots, WRC/GYW and WA/TW, are colored red and green, 

respectively. The well-known cold spot SYC/GRS is colored blue. All other motifs are 

colored grey. The 95% uncertainty intervals for the estimates are depicted by black lines in 

the center of each bar.
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Fig 6. 
A comparison of fitted aggregate θ values from SHazaM (left), samm (middle), and logistic 

regression (right) for 5-mer motifs with central base C. The samm fit is the same as in 

Figure 5. Both samm and logistic are 3, 5-mer fits aggregated into 5-mer models. samm and 

logistic tend to fit more parsimonious models compared to SHazaM, so the left plot looks 

more “spiky” than the middle and right ones. samm produces the most parsimonious fits 

among the three methods.
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Table 1

Comparison of samm, SHazaM, and penalized logistic regression given 2000 simulated B-cell receptor 

sequences from 4 mice. Relative θ error and Kendall’s tau computed separately for each of the 100 replicates. 

Monte Carlo standard errors calculated over these 100 estimates are given in parentheses.

Simulator Model Relative θ error Kendall’s tau

survival model samm 0.571 (0.002) 0.630 (0.001)

SHazaM 0.731 (0.002) 0.507 (0.002)

logistic 0.611 (0.002) 0.596 (0.001)

SHMulate samm 0.478 (0.001) 0.689 (0.001)

SHazaM 0.489 (0.001) 0.690 (0.001)

logistic 0.499 (0.002) 0.677 (0.001)
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Table 2

Statistics of processed κ-light chain data from Cui et al. (2016). SHazaM uses all sequences while samm 
samples a single sequence from each clonal family. We filter sequences with indels in all analyses. There are 

fewer clonal families in the sampled sequences as samm filters out sequences with no mutations.

All sequences Sampled sequences

Number of mutated sequences 15,025 2,429

Number of clonal families 2,565 2,429

Median mutated sequence length 282 282

Average mutation frequency (%) 2.32 2.17

Number of 5-mers in naive sequences 1,014 967
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Table 3

Statistics on reconstructing θ using various data preprocessing methods.

Data processing Model Relative θ error Kendall’s tau

All data SHazaM 0.677 0.595

samm 0.515 0.657

Imputation SHazaM 0.721 0.580

samm 0.537 0.639

Sampling SHazaM 0.721 0.515

samm 0.500 0.647
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Table 4

Results on twenty replicates of simulated data with standard errors (SE).

Mutation Rate (%) True Model Relative θ error (SE) Kendall’s tau (SE)

1–5
Mutate at most once 0.364 (0.015) 0.722 (0.008)

Mutate multiple times 0.348 (0.014) 0.723 (0.008)

5–15
Mutate at most once 0.194 (0.010) 0.791 (0.008)

Mutate multiple times 0.190 (0.010) 0.781 (0.007)
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Table 5

Number of failed replicates, i.e. replicates where variance estimates are negative, out of total number of failed 

replicates for the simulations

% effect size % nonzeros # of samples Model: failed reps/total reps

50 50 200 2,3-mer: 1/100

100 25 200 2,3-mer: 2/10

50 100 2,3-mer: 1/100

3-mer per-target: 1/100

200 2,3-mer: 1/100

400 2,3-mer: 7/100

100 200 2,3-mer: 2/100

200 50 200 2,3-mer: 1/100

3-mer per-target: 1/100

400 3-mer per-target: 1/10

100 100 3-mer per-target: 1/10

200 3-mer: 1/10
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