Skip to main content
. 2020 Nov 18;15(11):e0242442. doi: 10.1371/journal.pone.0242442

Table 3. Multiple linear regression analysis for annual variation in competition performance (AVCP), number of races per year (races), and age.

Mean values of the last two years prior to the 2018EC were used for the regression model.

Regression model Regression coefficients
Entries R square f square F value P value Beta T value P value
All strokes and distances 589 0.22 0.28 F(3,585) = 54 P < 0.001 AVCP -0.04 T = -1 P = 0.310
Races -0.19 T = -5 P < 0.001
Age -0.39 T = -10 P < 0.001
Butterfly 95 0.29 0.41 F(3,91) = 13 P < 0.001 AVCP -0.01 T = 0 P = 0.891
Races -0.29 T = -3 P = 0.003
Age -0.37 T = -4 P < 0.001
Backstroke 116 0.46 0.85 F(3,112) = 31 P < 0.001 AVCP 0.00 T = 0 P = 0.952
Races -0.36 T = -5 P < 0.001
Age -0.49 T = -7 P < 0.001
Breaststroke 119 0.25 0.33 F(3,115) = 13 P < 0.001 AVCP 0.01 T = 0 P = 0.865
Races -0.29 T = -4 P < 0.001
Age -0.41 T = -5 P < 0.001
Freestyle 149 0.36 0.56 F(3,145) = 27 P < 0.001 AVCP -0.10 T = -2 P = 0.134
Races -0.36 T = -5 P < 0.001
Age -0.41 T = -6 P < 0.001
Individual medley 26 0.43 0.75 F(3,22) = 6 P = 0.005 AVCP -0.24 T = -1 P = 0.164
Races -0.19 T = -1 P = 0.278
Age -0.55 T = -3 P = 0.003
50m 52 0.43 0.75 F(3,48) = 12 P < 0.001 AVCP -0.04 T = 0 P = 0.758
Races -0.40 T = -3 P = 0.002
Age -0.43 T = -4 P < 0.001
100m 50 0.34 0.52 F(3,46) = 8 P < 0.001 AVCP -0.15 T = -1 P = 0.231
Races -0.36 T = -3 P = 0.005
Age -0.40 T = -3 P = 0.002
200m 47 0.35 0.54 F(3,43) = 8 P < 0.001 AVCP -0.05 T = 0 P = 0.675
Races -0.29 T = -2 P = 0.027
Age -0.47 T = -4 P < 0.001
400m 30 0.49 0.96 F(3,26) = 8 P < 0.001 AVCP -0.12 T = -1 P = 0.422
Races -0.38 T = -3 P = 0.014
Age -0.61 T = -4 P < 0.001
800m 18 0.34 0.52 F(3,14) = 2 P = 0.107 AVCP -0.20 T = -1 P = 0.384
Races -0.12 T = -1 P = 0.590
Age -0.58 T = -3 P = 0.020
1500m 15 0.50 1.00 F(3,11) = 4 P = 0.049 AVCP -0.10 T = 0 P = 0.662
Races -0.39 T = -2 P = 0.112
Age -0.62 T = -3 P = 0.016