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Abstract
Background: Despite decades of research, little clarity exists 
regarding pathogenic mechanisms related to schizophrenia. 
Investigations on the disease biology of schizophrenia have 
primarily focused on neuronal alterations. However, there is 
substantial evidence pointing to a significant role for the 
brain’s microvasculature in mediating neuroinflammation in 
schizophrenia. Summary: Brain microvascular endothelial 
cells (BMEC) are a central element of the microvasculature 
that forms the blood-brain barrier (BBB) and shields the brain 
against toxins and immune cells via paracellular, transcellu-
lar, transporter, and extracellular matrix proteins. While evi-
dence for BBB dysfunction exists in brain disorders, including 
schizophrenia, it is not known if BMEC themselves are func-
tionally compromised and lead to BBB dysfunction. Key Mes-
sages: Genome-wide association studies, postmortem in-
vestigations, and gene expression analyses have provided 
some insights into the role of the BBB in schizophrenia 

pathophysiology. However, there is a significant gap in our 
understanding of the role that BMEC play in BBB dysfunction. 
Recent advances differentiating human BMEC from induced 
pluripotent stem cells (iPSC) provide new avenues to exam-
ine the role of BMEC in BBB dysfunction in schizophrenia.

© 2020 S. Karger AG, Basel

Introduction

Schizophrenia is a debilitating psychiatric disorder 
with complex genetic underpinnings as well as gene-en-
vironment interactions that play important roles in the 
disease process. Schizophrenia is characterized by posi-
tive symptoms such as hallucinations, delusions, and dis-
organized speech, by negative symptoms such as de-
creased motivation and decreased expression, and by 
cognitive deficits involving impaired executive function-
ing, memory, and processing speed [1], which together 
result in significant functional and social impairments. 
Current antipsychotic medications mainly target positive 
symptoms of psychosis, but they provide little relief from 
negative or cognitive symptoms for many patients [2]. 
Despite decades of research, little is known about the 
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pathogenic mechanisms that lead to schizophrenia. In-
vestigations have been hindered by our inability to access 
live brain tissue from patients for laboratory studies, es-
pecially before the development of disease progression, 
medication effects, and comorbidities [3–5]. Most theo-
ries and investigation on the pathophysiology of schizo-
phrenia have been focused on neuronal differences. An 
early proponent of microvascular abnormalities in schizo-
phrenia was Theodor Meynert [6], a prominent neuro-
anatomist who conducted pathological examinations of 
patient brains and proposed in 1884 that vasomotor 
problems depriving the brain of nutrients could be patho-

logic. In 1911, Eugene Bleuler, a psychiatrist recognized 
for coining the term “schizophrenia” [7], stated that “the 
fragility of the blood vessels which appears in many 
schizophrenics, both acute and chronic, seems to indicate 
a real vascular pathology” [8]. Later, Irving Gottesman, 
who pioneered studies of the genetic underpinnings of 
schizophrenia, proposed that damage to the cerebral mi-
crovasculature can result in a deteriorating course as seen 
in schizophrenia [9]. There has been increasing interest 
in the various facets of microvascular dysfunction in 
schizophrenia, including the role of early or late angio-
genic abnormalities [10, 11], neurovascular unit (NVU) 
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dysfunction [12–14] and blood-brain barrier (BBB) dis-
ruption [13, 14]. Here, we present a synthesis of the evi-
dence and theories on the mechanistic underpinnings of 
brain microvascular endothelial cells (BMEC) in schizo-
phrenia.

The BBB is composed of a monolayer of BMEC that 
line blood vessels which interact with neurons, microglia, 
pericytes, astrocytes, and the extracellular matrix (ECM) 
to form the NVU (Fig. 1). The NVU is dynamic and func-
tions to regulate molecular and cellular trafficking be-
tween the bloodstream and brain parenchyma through 
physical, enzymatic, transport, and immunological pro-
cesses that are vital for brain homeostasis. A core prop-
erty of BMEC is the strict regulation of paracellular per-
meability due to junctional complexes (tight [TJ], adher-
ens [AJ], and gap junctions [GJ]) between endothelial 
cells that limit passive diffusion. The BBB possess a high 
degree of trans-endothelial electrical resistance (TEER), 
which is a strong indicator of cellular barrier integrity and 
health [15, 16]. Regulation of brain parenchymal nour-
ishment and waste removal is performed by selective 
BMEC transporters, which regulate signal transduction, 
endocytosis, transcytosis, and molecular transport 
through facilitated and active transporters [17]. Immune 
privilege in the brain is modulated by paracellular and 
transcellular proteins that assist with transmigration and 
extravasation of leukocytes during an immune response 
[17]. Maintenance of the BBB is also provided by ECM 
proteins, which hold the NVU together to prevent vul-
nerabilities in barrier function [17]. Lastly, an important 
vascular compartment linking the peripheral environ-
ment to the CNS is the choroid plexus, a region that is 
vulnerable to chronic stress and inflammatory responses 
leading to CNS disruption [10, 17].

Convergent evidence for impaired microvascular 
function in schizophrenia arises from morphological, 
molecular, or physiological studies. In human studies, an 
increased CSF:serum albumin ratio in patients with 
schizophrenia suggests increased BBB permeability [18]. 
Postmortem brain studies show infiltration of CD3+ T 
lymphocytes and CD20+ B lymphocytes in the hippo-
campus, the frontal cortex, the thalamus, the medial tem-
poral lobe, and the cingulate cortex in schizophrenia pa-
tients, which is indicative of BBB disruption [19]. In an-
other postmortem study of hippocampal tissue, 
abnormally expressed immune and inflammatory path-
way genes were found to be more likely to be present in 
BMEC [20]. Upregulation of immune and inflammatory 
genes in the choroid plexus of schizophrenia patients has 
been found to be correlated with peripheral inflamma-

tory markers [21]. In support of this theory, we showed 
that the choroid plexus is enlarged in patients with psy-
chosis and that this enlargement is related to increased 
plasma levels of the proinflammatory cytokine interleu-
kin (IL)-6 [22]. However, hypoinflammatory states have 
also been proposed in schizophrenia, as evidenced by a 
downregulation of genes involved in cell adhesion, pro-
liferation, and inflammation in BMEC located in the dor-
solateral prefrontal cortex [23]. The evidence for BMEC 
transporters in schizophrenia is mixed. Levels of a major 
efflux transporter that carries antipsychotics out the 
brain, i.e., ABCB1, do not vary between schizophrenia pa-
tients and healthy control subjects [24], but there is in-
creased ABCB1 activity in various brain regions [25]. In 
addition, differences in a variety of peripheral proinflam-
matory and angiogenic biomarkers have been implicated 
in different stages of psychosis [26, 27]. Taken together, 
these findings point towards a potential role for BMEC 
dysregulation in schizophrenia.

Human induced pluripotent stem cells (iPSC) provide 
us with the opportunity to develop physiologically rele-
vant models of psychiatric disorders such as schizophre-
nia and bipolar disorder [28–30]. The use of iPSC-derived 
models to investigate schizophrenia pathophysiology has 
revealed disease-related changes in gene expression as 
well as deficits in specific neuronal subtypes [31, 32]. Re-
cent technical advances that enable efficient differentia-
tion of iPSC to BMEC provide an opportunity to culture 
and study BMEC with disease-specific genetic back-
grounds. Here, we discuss the role of brain microvascular 
abnormalities in schizophrenia, focusing on BMEC para-
cellular and transcellular transport, as well as ECM dys-
function. We highlight existing models for studying  
iPSC-derived BMEC and discuss emerging approaches 
using 3-D and organ-on-a-chip models for investigating 
the role of the BBB in health and disease.

Brain Microvascular Abnormalities in Schizophrenia

BMEC Paracellular Function
Paracellular transport involves the transfer of sub-

stances from the blood across the endothelium via inter-
cellular spaces. This process is controlled by a complex 
arrangement of TJ, GJ, and AJ that contribute to tissue 
integrity, barrier function, and cell-to-cell communica-
tion (Fig. 1). 

The brain endothelial TJ are complex structures com-
posed of multiple barriers and proteins involved in intra-
cellular signaling. Claudins (CLDN), the primary sealing 
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component of TJ, have tissue- or context-specific proper-
ties that can be expressed constitutively and/or through 
induction. CLDN5 is a major BBB component and it is 
linked to the cytoskeleton by zonula occludens family 
members (TJ protein [TJP]1–3). CLDN5 is regulated by 
WNT/β-catenin and it is crucial for angiogenesis and en-
dothelial maintenance [17, 33]. CLDN3 and CLDN12 are 
also present in BMEC, but their role in BBB functioning 
is less clear; CLDN3, however, may be instrumental in 
maintaining the blood-CSF barrier in choroid plexus ep-
ithelial cells [34]. Occludin (OCLN) is involved in regula-
tory, rather than adhesive, functioning and interacts with 
CLDN-based strands and TJP1–3 to form the TJ complex 
[35]. A third complex connects TJ, allowing for regula-
tion of leukocyte transmigration via endothelial cell-se-
lective adhesion molecules (ESAM), junction adhesion 
molecules (JAM1–3), and nectins (NECTIN1) [17]. Last-
ly, tricellulin (MARVELD20) and lipolysis-stimulated li-
poprotein receptors form tricellular junctions to stabilize 
junctional points between BMEC [16]. 

Gap junctions (GJ) are formed by members of the con-
nexin family, which serve to connect the cytoplasms of 2 
BMEC together and allow for the passage of various ions 
and small molecules (< 1 kDa) [36]. GJ are crucial for in-
tercellular communication, signal transduction, and 
hemichannel formation between neighboring cells. 
BMEC express GJA-1,-4,-5 [37]. 

AJ have a cytoplasmic aspect that links to the actin cy-
toskeleton to form TJ. BMEC-specific AJ include vascular 
endothelial (VE)-cadherin (CDH5) and N-cadherin 
(CDH2), which mediate pericyte and BMEC interactions 
[17]. AJ are responsible for cell adhesion, scaffolding, and 

regulation of out-in signaling [35]. Another AJ protein is 
platelet-endothelial cell adhesion molecule 1 (PECAM1), 
which makes up a large proportion of BMEC-specific in-
tercellular junctions and is implicated in transendothelial 
migration [17].

BMEC Paracellular Abnormalities in Schizophrenia
TJ proteins involved in paracellular transport are vital 

for maintaining BMEC integrity. Several studies have de-
scribed paracellular deficits in schizophrenia, particularly 
in CLDN5. For example, 22q11 deletion syndrome, which 
includes CLDN5 haploinsufficiency, confers a 30% risk of 
developing schizophrenia [38]. While 2 postmortem 
studies did not find significant differences in CLDN5 lev-
els in schizophrenia [38, 39], 1 postmortem study report-
ed a reduced CLDN5 expression [12]. Studies have also 
implicated CLDN5 in both BBB integrity and schizophre-
nia. A CLDN5 knockdown mouse model exhibited learn-
ing and memory impairment, anxiety-like behaviors, 
sensorimotor gating deficits, and contrast agent extrava-
sation on MRI, suggesting that CLDN5 has a role in main-
taining BBB integrity and schizophrenia phenotypes [38]. 
Dose-dependent increases in CLDN5 levels were ob-
served with lithium or antipsychotics in rodent models, 
suggesting that the potential therapeutic effects of these 
agents may extend beyond neurotransmitter regulation 
[38]. In addition, a genetic variant of CLDN5 (rs10314) 
that results in a 50% reduction in BMEC-specific CLDN5 
expression was found to be weakly associated with in-
creased schizophrenia risk [38, 40–43], though the asso-
ciation did not reach genome-wide significance (Table 1) 
[44, 45].

Table 1. Polymorphisms related to BBB function as reported in the schizophrenia PGC database

SNP Gene Function Chromosome A1 A2 OR p value

rs10314 CLDN5 TJ chr22 C G 1.02 1.84E–01
rs10791345 JAM3 TJ chr11 A G 0.95 4.10E–04
rs55661361 ESAM TJ chr11 A G 0.92 3.68E–12
rs989192 GJA8 GJ chr1 A G 1.01 4.85E–01
rs4950495 GJA8 GJ chr1 T C 1.01 4.20E–01
rs1045642 ABCB1 TPA chr7 A G 0.97 5.38E–03
rs12814239 LRP1 TPA chr12 T C 0.86 1.48E–09
rs324017 LRP1 TPA chr12 A C 0.94 2.13E–07
rs11098403 NDST3 ECM chr4 A G 0.95 3.52E–05
rs2445142 HSPG2 ECM chr1 C G 0.98 8.72E–02

Presented is a list of BBB gene polymorphisms that have been reported in smaller case-control studies, and 
those polymorphisms were cross-referenced with the findings described in the large schizophrenia PCG database. 
SNP, single-nucleotide polymorphism. Bold text indicates findings that are genome wide significant level.
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CLDN3, a TJ protein, was found to be expressed at sig-
nificantly higher levels in the frontal cortex of people with 
schizophrenia in a postmortem study, although there 
were no such differences for CLDN1, CLDN12, OCLN, 
MARVELD20, or CDH5 [39]. Higher CDH5 levels in the 
dorsolateral prefrontal cortex, however, have been de-
scribed in schizophrenia [46]. These 2 studies used bulk 
cerebral tissue and did not differentiate between cell types 
(neuronal, glial, or endothelial) when determining dif- 
ferences in gene expression [39, 46]. Another postmor-
tem study examining 15 cortical regions demonstrated 
that various critical BMEC genes, including CDH5 and 
PECAM1, were decreased in schizophrenia patients [12]. 
Pathway analysis of differentially expressed genes in 
schizophrenia has also shown them to be associated with 
downregulation of angiogenesis, migration, prolifera-
tion, and TJ and integrin signaling, as well as WNT, 
VEGF, IGF1, oncostatin M, angiopoietin, and ephrin re-
ceptor signaling [12, 47]. A small postmortem study in 
schizophrenia using laser capture dissection to measure 
gene expression in BMEC from the dorsolateral prefron-
tal cortex found a reduced expression of genes enriched 
in regulation of cell adhesion, the response to organic 
substance, and immune response [23].

ESAM plays an essential role in BBB permeability and 
leukocyte transmigration. A genome-wide association 
study (GWAS) testing the neuroimmune hypothesis in 
schizophrenia identified ESAM as an immune protein of 
interest from the 108 significant loci identified in the 
schizophrenia Psychiatric Genome Consortium (PGC) 
study (Table 1) [48]. In addition, de novo mutations re-
sulting in a damaging frameshift deletion of the ESAM 
gene have been associated with schizophrenia [49, 50]. 
Since ESAM is normally expressed at lower levels in the 
temporal, occipital, and frontal lobes [48], we hypothe-
size that ESAM may play an important role in schizophre-
nia disease biology. 

TJP1 is important for intercellular signal transduction 
and JAM3 is essential for cell-to-cell adhesion and limit-
ing the passage of solutes and water through paracellular 
spaces [35].

In a GWAS examining treatment response in schizo-
phrenia, researchers found a trio of TJP1 polymorphisms 
(i.e., rs711355, rs785423, and rs813676) to be associated 
with risperidone treatment efficacy [51]. A meta-analysis 
of JAM3 found that rs10791345 was associated with a sig-
nificant risk of developing bipolar disorder [52]. A weak 
association has also been found between rs10791345 and 
an elevated risk of both bipolar disorder (p = 2.5 ×10–3) 
and schizophrenia (p = 4.1 × 10–4) (Table 1) [44, 45]. 

GJ proteins have also been implicated in schizophrenia 
pathology with copy number variations in GJA5 and 
GJA8 [53]. A GJA8 haplotype (rs989192 and rs4950495) 
is also associated with schizophrenia, although 4 other 
GJA5 polymorphisms tested were not found to be associ-
ated [54] and these variants were not genome-wide sig-
nificant (Table 1) [44, 45]. While we do not currently un-
derstand the functional implications of GJ proteins in 
schizophrenia, there are animal studies showing that 
chronic treatment with clozapine increases, while halo-
peridol and lithium decrease, GJA1 expression in the pre-
frontal cortex, which could have potential clinical impli-
cations [55].

Peripheral blood markers associated with BBB dys-
function have also been examined in schizophrenia. For 
example, greater levels of CLDN5 and OCLN were ob-
served in the blood of patients with deficit schizophrenia 
(syndrome consisting of primarily negative symptoms), 
compared to nondeficit schizophrenia or healthy con-
trols, which may suggest a breakdown of BMEC [56]. In 
a serum proteomic study, increased CDH5 levels in 
schizophrenia patients were associated with greater posi-
tive symptoms compared to schizophrenia patients with 
greater negative symptoms [57].

BMEC Transcellular Function 
BMEC contain proteins that regulate BBB permeabil-

ity, leukocyte migration, integrin activation, and transcel-
lular flow (Fig. 1). The plasmalemma vesicle-associated 
protein (PLVAP) forms the diaphragm that bridges en-
dothelial fenestrae and regulates permeability, leukocyte 
transmigration, and angiogenesis [58]. During inflam-
mation, adhesion molecules such as vascular cell adhe-
sion molecule-1 (VCAM1) and intercellular adhesion 
molecule-1 (ICAM1) are elevated in the endothelium, 
which allows for attachment and transmigration of leu-
kocytes across the BBB [17]. The translocator protein 
(TSPO), thought to be primarily expressed in microglia 
was recently demonstrated to have a strong endothelial-
binding component [59] and this is consistent with evi-
dence from experimental animals that TSPO expression 
is predominantly found in ependymal and endothelial 
cells [60]. Additionally, in cellular studies of BMEC, ge-
netic knockdown of TSPO increased the expression of 
VCAM1 [61].

BMEC Transcellular Abnormalities in Schizophrenia
In a postmortem study of schizophrenia, there were 

higher levels of ICAM1 in the dorsolateral prefrontal cor-
tex, which was associated with an increased number of 
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perivascular and parenchymal macrophages [46]. Lower 
levels of ICAM2, a protein involved in lymphocyte recir-
culation and immune response and surveillance, have 
been reported in multiple cortical brain regions in schizo-
phrenia [47]. While ICAM1 polymorphisms (e.g., G241A) 
are not associated with schizophrenia risk [62], allele car-
riers of G241A have lower levels of soluble ICAM1 [63]. 
In the peripheral blood of patients with deficit schizo-
phrenia, greater levels of PLVAP have been observed 
compared to levels in nondeficit schizophrenia patients 
or healthy controls [56], with mixed results reported for 
ICAM1 and VCAM1 [64, 65]. In a transcriptomic analy-
sis of postmortem tissue, ICAM1 was found to be highly 
upregulated in the brains for schizophrenia subjects, 
while VCAM1 was highly downregulated. However, it is 
unclear if these differences were specific to BMEC [66]. 
Interestingly, a recent study using stem cell-derived 
BMEC from schizophrenia patients with 22q11 deletion 
syndrome identified impaired barrier integrity and up-
regulation of endothelial ICAM1 that was associated with 
increased leukocyte transmigration [67]. However, fur-
ther studies are required to determine which of the mul-
tiple genes deleted in this syndrome are associated with 
this BBB phenotype. 

With regard to TSPO, the radioligand binding for 
TSPO has been shown to be reduced in the early stages of 
psychosis [68] and in relevant experimental rodent mod-
els, including in endothelial cells [60]. Thus, addressing 
the role of endothelial TSPO expression in schizophrenia 
using hiPSC models would be of interest to determine 
how much TSPO radioligand bindings reflect brain en-
dothelial dysfunction.

BMEC Transporter Function 
BMEC contain facilitated and active transporters 

(Fig. 1), as well as transcellular transporters that regulate 
signal transduction and molecular transport [17, 69, 70]. 
BMEC express multiple efflux transporters, including 
ATP binding cassettes (ABC) that consist of ABCB1, 
ABCG2, and ABCC1, all of which function to return sub-
strates to the bloodstream [17, 35, 71, 72]. Influx trans-
porters regulate the flow of molecules from the periphery 
to the CNS and include the solute carrier organic anion 
transporter family member 1A2 (SLCO1A2), solute car-
rier family 22 member 1 (SLC22A1), SLC22A2, SLC22A3, 
SLC7A5, SLC2A1 [69, 70], and SLC39A8 [73]. Low-den-
sity lipoprotein receptor-1 (LRP1) and the receptor for 
advanced glycation end-products (RAGE) are also ex-
pressed by BMEC and use the receptor-mediated trans-
port system to carry peptides, neurotransmitters, hor-

mones, growth factors, and other neuronal products into 
the CNS [69]. Other transcellular transporters include the 
major facilitator superfamily domain and caveolin-1 
(CAV1), which regulate omega-3 fatty acid transport and 
lipid compositions of BMEC, respectively [17]. These 
transcellular and transporter proteins prevent CNS entry 
and facilitate removal of harmful molecules to maintain 
CNS homeostasis.

BMEC Transporter Abnormalities in Schizophrenia
Efflux Transporters. ABCB1 is of particular interest in 

schizophrenia since it is a major efflux transporter for an-
tipsychotics, (e.g., aripiprazole, olanzapine, risperidone, 
and paliperidone) [74]. For example, tetrahydrocannabi-
nol, which is associated with schizophrenia risk, increas-
es the expression of ABCB1 without altering D2 or 
5-HT2A receptor binding, which subsequently decreases 
the concentration of risperidone, but not clozapine (not 
a substrate of ABCB1), in the brain [75]. In a human PET 
imaging study measuring ABCB1 function in patients 
with chronic schizophrenia, increased ABCB1 activity 
was observed and it was hypothesized that this could be a 
factor in antipsychotic drug resistance [25]. A postmor-
tem study in patients with chronic schizophrenia also 
showed a reduced expression of the efflux transporter 
ABCG2, though not of ABCB1 or ABCC1, and this effect 
was independent of antipsychotic (chlorpromazine 
equivalents) treatment when tested using immortalized 
BMEC from humans [46].

Genetic variants of ABCB1 have been studied as po-
tential susceptibility factors for schizophrenia in relative-
ly small samples and they have also been associated with 
treatment response (risperidone, olanzapine, paliperi-
done, and clozapine) or antipsychotic side effects (agran-
ulocytosis, prolactin levels, weight gain, metabolic distur-
bances, and QT interval) [76, 77]. The ABCB1 polymor-
phism rs1045642 has been associated with a reduced P300 
event-related amplitude, an intermediate phenotype of 
schizophrenia, and it is modestly associated with schizo-
phrenia [78]. There is evidence to suggest that ABCB1 
single-nucleotide polymorphisms (rs1128503, rs2032582, 
and rs1045642) are associated with schizophrenia, but ev-
idence is inconclusive [74]. These commonly studied 
ABCB1 variants are considered “silent” in that they do 
not change amino acid sequence or expression levels. 
However, changes in amino acid codons and relative 
tRNA availability may result in altered conformation, sta-
bility, and function [79, 80]. In a study of the 16p12.11 
copy number variation in 10,397 individuals with neuro-
developmental conditions that included schizophrenia, 
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ABCC1 was reported as a potential core pathogenic gene 
[81]. High-depth targeted sequencing studies have also 
found that ABCC1 may be associated with psychosis and 
cognitive impairment [82]. To date, however, there are no 
definitive studies showing whether any of these trans-
porter variants has functional consequences.

Influx Transporters. A reduced expression of SLC2A1 
was described the postmortem brains of schizophrenia 
patients, which may have implications for insulin resis-
tance and/or reduced glucose metabolism in the CNS 
[12]. There is early evidence associating SLC7A5 poly-
morphisms with schizophrenia risk; however, SLC7A5-
mediated transport did not differ between controls  
and schizophrenia patients [83]. In addition to the  
above mentioned solute carriers, the missense variant  
Ala391Thr (rs13107325) for SLC39A8, a zinc/metal ion 
transporter, has also been found to be associated with 
schizophrenia [73]. Ala391Thr is a pleiotropic variant 
that affects the function of SLC39A8, including immune-
related traits, such as Crohn disease and ulcerative colitis, 
in patients with schizophrenia [73, 84]. SLC39A8 codes 
for Zip8, which is a negative feedback mediator of the NF-
κB pathway and is responsible for regulating the brain’s 
immune response and neuronal development [73]. The 
Ala391Thr variant is hypothesized to decrease Zip8 func-
tion, leading to hyperstimulation of the NF-κB pathway 
and enhancing immune response in the brain [73].

Transcellular Transporters. LRP1 has been strongly 
implicated in BBB function and in the etiopathology of 
developmental disorders, including schizophrenia. For 
example, 4 highly pathogenic de novo variants have been 
described in schizophrenia (2 variants), intellectual dis-
ability and autism spectrum disorder, demonstrating the 
pleiotropic effects of this gene [85, 86]. Three LRP1  
nonsense mutations (rs75873762, rs79339212, and 
rs113087094) have been identified [87]. Additionally, 2 
GWAS variants have been described and include rs324017 
and rs12814239 (Table 1) [44]. However, there are also 
studies that fail to identify links between de novo muta-
tions in LRP1 and schizophrenia risk [88]. A study exam-
ining genetic variation of myelination-related genes in 
schizophrenia using GWAS and exome sequencing iden-
tified rare variants for LRP1, but this effect did not survive 
multiple testing corrections [89]. Thus, LRP1 may be im-
portant not only for its role in lipid and lipoprotein me-
tabolism but also for its involvement in regulation of BBB 
permeability, cell growth and migration, inflammation, 
and apoptosis.

While fewer studies have examined RAGE, 2 studies 
found that soluble RAGE protein levels were lower in pa-

tients with schizophrenia compared to controls. Con-
versely, 2 other studies reported elevated RAGE levels, 
and elevations in this protein are hypothesized to occur 
in the context of oxidative stress and inflammatory ac
tivation [90–92]. In a genetic study of Chinese schizo-
phrenia patients, a RAGE functional polymorphism 
(rs1800625) was weakly associated with schizophrenia 
[93]. In a separate candidate gene study, the RAGE poly-
morphism rs2070600 was found to be associated with 
schizophrenia [94]. RAGE may also have important 
pathophysiologic implications as evidenced by altered 
RAGE levels due to vascular damage in both cardiovascu-
lar disease and diabetes [95, 96]. 

CAV1, a scaffolding protein that interacts with various 
cellular signaling molecules, has also been implicated in 
schizophrenia. In CAV1 knockout mice, there is an in-
creased sensitivity to the psychomimetic actions of phen-
cyclidine (an NMDA receptor antagonist), resulting in 
behavioral observations similar to those seen in schizo-
phrenia patients, who were subsequently unresponsive to 
antipsychotic treatment [97]. Another study showed that 
neuron-specific overexpression of CAV1 increased the 
expression of proteins involved in synaptic plasticity, 
with CAV1 knockout having the opposite effect [98]. A 
microduplication of CAV1 has also been associated with 
schizophrenia, but the mechanism is unclear [99]. There-
fore, disruptions in CAV1 may contribute to schizophre-
nia pathophysiology by impairing vascular and neuronal 
signaling.

BMEC ECM Function 
The ECM (Fig. 1) interacts with cell-surface integrins 

and glycoproteins to hold NVU components together 
and to provide signaling cues [100, 101]. BMEC and peri-
cytes produce ECM components such as collagen type IV 
(COL4A), fibronectin (FN), laminin 1 (LAMA1), and 
LAMA2 [17, 101], while astrocytes provide additional 
support by secreting LAMA1, LAMA2, and nidogen 
(NID1) [17]. Other ECM components include reelin, 
chondroitin sulfate proteoglycans, hyaluronic acid (HA), 
and heparan sulfate proteoglycans perlecan (HSPG2) and 
agrin (AGRN), which have surface receptors that seques-
ter and interact with growth factors [100–103]. Heparan 
sulfate proteoglycans are metabolized by N-deacetyl- 
ase/N-sulfotransferase 3 (NDST3), a brain enzyme in-
volved in leukocyte adhesion at the BBB [13, 104]. CO-
L4A provides stability to the ECM by maintaining LAMA 
and HSPG2, while FN influences brain capillary endothe-
lial cell proliferation in vitro [101]. Both COL4 and FN 
regulate BBB function by increasing TEER [101].
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BMEC ECM Abnormalities in Schizophrenia
ECM abnormalities have been identified in postmor-

tem investigations of brains of schizophrenia subjects. 
These include differences in reelin and chondroitin sul-
fate proteoglycans, which may lead to impairments in 
neuronal migration and the synaptic function of GABA-
geric, glutamatergic, and dopaminergic connectivity 
[103]. HA is another major component of the ECM that 
binds to the cell adhesion molecule CD44 [102, 105]. In a 
postmortem study, CD44 was found to be upregulated in 
the dorsolateral prefrontal cortex of patients with schizo-
phrenia [66]. However, it is unclear whether these differ-
ences were specifically related to BMEC as opposed to 
other brain cell types.

In other postmortem studies, a reduced brain expres-
sion of LAMA1, FN1, COL4A1, and COL4A2 has been 
previously reported in schizophrenia [12]. In a serum 
proteomic analysis of paranoid schizophrenia patients, 
researchers found reductions in COL4A1 but not  
COL4A2, although this effect was not significant [106]. 
De novo mutations have been identified in schizophrenia 
for LAMA1 (missense mutation) [87] and LAMA2 
(frameshift and splice site mutations) [107]. FN1 poly-
morphisms were not associated with schizophrenia risk 
in a Japanese study [108]. In a study of whole blood gene 
expression, FN1 levels were reduced in chronic schizo-
phrenia patients with greater symptoms of hallucinations 
or delusions [109]. However, no information is available 
on any possible association between the effect of antipsy-
chotic medications on FN1 levels in these patients [109]. 
The NDST3 polymorphism (rs11098403) was associated 
(p < 6.6 ×10–9) with schizophrenia and bipolar disorder 
risk in an Ashkenazi Jewish population, and this was in-
dependently replicated in 6 schizophrenia and 5 bipolar 
disorder cohorts [110]. However, this association did not 
reach genome-wide significance (Table 1) [44] and a 
study evaluating NDST3 copy number variation did not 
find a significant association in a Japanese sample [111]. 

Ex Vivo Models of BMEC Function in Schizophrenia

Differentiation of BMEC from iPSC 
Before the advent of somatic cell reprogramming, im-

mortalized BMEC were used to study BBB function, but 
this method was limited by subphysiologic range TEER 
values [112]. Now, iPSC can be used to generate patient-
derived BMEC that recapitulate the contribution of dis-
ease-specific genetic backgrounds. Recent methodologi-
cal advances have led to robust and reliable protocols for 

the generation of homogeneous populations of iPSC-de-
rived BMEC [15, 72, 113–115]. BMEC identity is con-
firmed by cytochemical analysis showing the coexpres-
sion of PECAM1, TJP1, OCLN, CLDN5 and SLC2A1, 
and the BBB phenotype is confirmed by the presence of 
physiologic range TEER values (2,000 Ω × cm2), angio-
genic potential, and measurable transporter activity [72]. 
Coculturing BMEC with neural progenitor cells, peri-
cytes, or astrocytes further enhances BBB function, with 
the combination of BMEC, pericytes, and astrocytes pro-
viding the greatest TEER values (∼5,000 Ω × cm2) [116]. 
These protocols have been used to generate BMEC from 
patients with Huntington disease and schizophrenia with 
22q11 deletion syndrome [67, 71] and to test the effects 
of various infectious agents on BBB function [112, 117].

Two-Dimensional and Three-Dimensional Models for 
Studying BMEC Function
The capacity of BMEC to foster angiogenesis is of in-

terest in elucidating proposed vascular pathologies in 
schizophrenia. Recently, methods have been developed 
for the generation of vasculature using iPSC-derived 
BMEC seeded within a fibrin gel, which is often used as a 
matrix for angiogenesis assays [118]. A multiculture mi-
crofluidic platform containing endothelial cells and fi-
broblasts encapsulated within a fibrin gel has been shown 
to provide a controlled environment to generate lumen-
ized and perfusable vasculature [119]. Biomaterial scaf-
folds such as poly(L-lactic acid) and poly(lactic-co-glycol-
ic acid) sponges used in combination with a fibrin gel 
have also been shown to support in vitro vascularization 
as well as in vivo graft neovascularization upon implanta-
tion [120].

Additional sophisticated fabrication methods are be-
ing developed that use complex scaffolds, such as the An-
gioChip, a fabricated device made from polycarbonate 
and poly(dimethylsiloxane). This device contains nano-
pores and micro-holes and supports endothelial cell seed-
ing and subsequent vascularization into the matrix with-
in which the device is encapsulated [121]. One templating 
strategy includes 3-D printing of a sacrificial carbohy-
drate lattice encased within a fibrin gel that can undergo 
hydrolysis to yield hollow channels. These channels sup-
port the attachment of endothelial cells along the wall, 
which can further sprout into the surrounding fibrin gel 
network [122]. Other approaches involve building the 
vasculature in a geometrically defined micropatterned 
template or developing biodegradable polymer scaffolds 
with a desired architecture using high-resolution projec-
tion micro stereolithography [123–125]. The limiting fac-
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tor of these approaches to fabrication is the relatively low 
resolution of the resulting vascular constructs compared 
to the microcapillaries that form within hydrogels. Com-
mercially available or naturally derived microbead-based 
cocultivation systems have also been adapted to in vitro 
angiogenesis assays. These assays provide a controlled en-
vironment for the rapid and reliable study of phenome-
nological events involved in microvascular network for-
mation that are difficult to perform in fabricated struc-
tures [126–129]. While 2-D Transwell/coculturing 
models are simple and less expensive than 3-D models, 
they cannot fully recapitulate the complexity of the mul-
ticellular system of the BBB [130]. Few studies have fo-
cused on the development of a 3-D ex vivo model that 
faithfully recapitulates the properties of the BBB. When 
iPSC-derived BMEC were grown in hydrogel scaffolds 
made with an alginate/gelatin composite, they failed to 
attach and grow on the hydrogel coated with alginate, but 
they did grow on a hydrogel containing gelatin, promot-
ing the development of better barrier phenotypes [131]. 
iPSC-derived BMEC grown using this 3-D model had 
more robust barrier properties and retained barrier func-
tion for up to 21 days [131].

Organ-chip Models for Studying BMEC Function
BBB chips and microfluidic devices are also being uti-

lized for the study of BBB function [132, 133]. 3-D models 
allow for direct interaction between BMEC and other 
NVU cells and the shear force from laminar blood flow 
enhances BMEC maturation, proliferation, and angio-
genesis [134–136] by increasing OCLN, CDH5,  
PECAM1, and caveolin expression [130]. Flow-induced 
vascularization has been demonstrated in organ-on-chip 
technologies for other systems such as kidney organoids 
[137]. BMEC have been combined with organ-chip tech-
nology to create a 3-D model of the BBB that provides a 
better representation of the microvascular environment 
in both healthy control and Huntington disease cell lines 
[130]. This model allows for real-time TEER measure-
ment through vessel perfusion, as well as permeability 
measurement of targeted molecules across the BBB in 
both normal and disease conditions [130]. In a perfused 
BBB model, the effect of inflammatory cytokines can be 
observed through their pathophysiologic effects on 
BMEC. For instance, when TNF-α, IL-1β, and IL-8 were 
perfused through ex vivo blood vessels, TJP1 expression 
was reduced in response to TNF-α and IL-1β, but not IL-
8, which consequently led to an increase in BBB leakage 
[130]. These BBB chip models have also been used for 
drug permeability studies and the metrics for permeabil-

ity were comparable to in vivo values [138]. These studies 
show that BBB chips can be a valuable tool for the inves-
tigation of disease pathophysiology and for screening of 
novel drug candidates.

Brain Organoid Models for Studying BMEC Function
Endothelial coculture methods have been studied as a 

way to promote neovascularization to enhance brain or-
ganoid survival and development [139]. Transplantation 
of brain organoids into mice has shown progressive neu-
ronal and glial maturation in multiple regions of the host 
brain [140]. However, while there was extensive infiltra-
tion of the host vasculature in the organoid, there was no 
evidence of graft-derived BMEC; this led to other studies 
attempting to coculture brain organoids with BMEC pri-
or to transplantation. For example, when a human brain 
organoid is grown in the presence of BMEC from the 
same patient, there is greater vascularization and im-
proved integration into a living mouse brain [141]. This 
early work is promising and future studies should exam-
ine the effects of vascularization on cytoarchitectural or-
ganization, neurophysiology, and BBB development.

Quality Control and Technical Consideration in the 
Use of iPSC and iPSC-Derived BMEC
The quality of iPSC can impact the variability of the 

phenotype of interest. Therefore, quality control is carried 
out by examining embryonic-like morphology, pluripo-
tency, chromosomal stability, and contamination [142]. 
The pluripotency of iPSC is confirmed by testing for stem 
cell markers such as Nanog, SOX2, and OCT-3/4 [142, 
143]. Karyotype analysis is used to determine the level of 
chromosomal stability and microbiological assessment is 
typically performed by screening for mycoplasma [142].

Additional considerations include whether iPSC-de-
rived brain endothelial cell protocols recapitulate BBB 
formation/ontogeny, whether BMEC derivation is reli-
able/reproducible, and whether the developmental stage 
of BMEC influences the use/interpretation of these mod-
els. In the most recent iPSC-derived BMEC protocol, the 
maximum TEER reported was approximately 3,000 Ω × 
cm2 in a healthy control female iPSC line, with low levels 
of variability across 10 independent biological replicates 
[15]. The same was true for a healthy male iPSC line 
which had a maximal TEER of 2,000 Ω × cm2 and small 
SD across 4 independent biological replicates [15]. This 
new protocol was also successfully applied to 2 indepen-
dent diseased lines, i.e., Huntington disease and tuberous 
sclerosis, with a small amount of variability across inde-
pendent biological replicates [15]. In this protocol, the 
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maximum TEER values are consistently observed after 
1–2 days of culturing on collagen/fibronectin substrate 
and retinoic acid treatment [15, 115]. Retinoic acid regu-
lates BMEC specification as indicated by a high expres-
sion of PECAM1, SLC2A1, and nuclear β-catenin, a sign 
of robust activation of the Wnt signaling pathway, which 
is necessary for inducing BBB properties in vivo [72, 144]. 
These results demonstrate the robustness of this protocol 
for establishing physiologic TEER values ex vivo. In the 
first week of BMEC culture, the variability of TEER values 
is low, with a small increase in variability thereafter. Also, 
the maximal TEER value is not generally maintained after 
day 2 (although in some cases a second peak is observed) 
and TEER values progressively decline over the course of 
1–2 weeks [15, 115]. Therefore, this BMEC protocol is 
robust, reproducible, and reliable for generating BBB 
models ex vivo. However, more work is needed to deter-
mine the developmental stage of BMEC in these models.

Discussion

BBB disruption in one or more of the following com-
ponents: paracellular, transcellular or extracellular ma-
trix may be a final common pathological pathway in 
schizophrenia that results from genetic alterations that 
increase the vulnerability to psychosis. For example, 
CLDN5 knockdown in a mouse model leads to an in-
crease in the extravasation of gadolinium into the brain 
[38], while a study using human iPSC-BMECs from 
schizophrenia patients with 22q deletion syndrome iden-
tified an increase in leukocyte transmigration into the 
brain that was meditated by the increased expression of 
ICAM1 [67]. GWAS studies have identified common risk 
variants for schizophrenia in ESAM and LRP1. ESAM in-
duces interendothelial cell interaction to regulate vascu-
lar development and for the extravasation of immune 
cells, such as neutrophils, during the early phase of in-
flammation [37]. While there are no studies examining 
the pathophysiological role of LRP1 in schizophrenia, we 
know from the Alzheimer disease literature that LRP1, a 
protein involved in the transport of substrates across the 
BBB, is also important for removing Aβ from the brain of 
patients with Alzheimer [145, 146]. The loss of LRP1 in-
hibition on matrix metallopeptidase 9 (also implicated in 
schizophrenia) [147] subsequently leads to degradation 
of TJP (TJP1, OCLN, and CLDN5) and ECM (COL4) in 
the BBB [146]. Accelerated aging, as noted by progressive 
cognitive decline and brain loss, has been proposed in 
schizophrenia [148]. This literature could potentially be 

understood in the context of age-related cognitive and 
neuroanatomical impairments, which are thought be re-
lated to progressive BBB disruption mediated by in-
creased TGF-β signaling [149]. Upregulation of TGF-β 
signaling occurs in the context of albumin infiltration 
into the aging brain (an observation noted in schizophre-
nia [18]), which in turn activates astrocytes to not only 
increase TGF-β signaling but also release inflammatory 
cytokines that cause further disruption of the BBB [149]. 

Environmental factors such as stress, peripheral in-
flammation, and infection also contribute to BBB disrup-
tion. In response to injury-related stress, exposure to in-
fections, and medication-induced stress (e.g., type I in
terferon therapy for malignancies), BMEC release 
proinflammatory cytokines and adhesion molecules such 
as ICAM1 and VCAM1 to recruit immune cells into the 
brain [150, 151]. A recent study showed that social stress 
induced an increase in peripheral inflammation that led 
to the loss of CLDN5 expression in the TJ of BMEC and 
subsequent BBB breakdown [152, 153]. Another study 
suggested that ESAM may influence the susceptibility to 
schizophrenia by regulating the BBB in response to 
chronic low-grade inflammation [48]. The hypothesis 
that infection-induced BBB disruption increases the 
schizophrenia risk has been proposed for decades be-
cause many infections are associated with proinflamma-
tory activation that increases the risk of developing 
schizophrenia or bipolar disorder [9, 104, 154]. A mecha-
nistic study using iPSC-derived BMEC showed that Neis-
seria meningitidis disrupted the blood-CSF barrier by in-
ducing the TJ transcriptional repressor gene known as 
Snail-1, which results in a decrease in TJP1, OCLN, and 
CLDN5 expression, as well as a decrease in TEER values 
[112]. This finding coincides with a previous study show-
ing that Group B Streptococcus induces BBB deficits by 
decreasing TEER and TJ protein expression [117]. It is 
possible that environmental factors disrupt the BBB via 
paracellular and transcellular alterations, leading to ex-
travasation of immune cells and activation of astrocytes 
and microglia, perpetuating proinflammatory cytokine 
release and subsequent BBB disruption.

Moreover, after BBB disruption occurs, compounds 
circulating in the blood such as albumin, toxins, cyto-
kines, and immune cells are able to enter the brain, result-
ing in the continued activation of astrocytes and micro
glia. Peripheral proinflammatory cytokines, such as 
IFN-γ and TNF-α, can activate microglia to release other 
proinflammatory cytokines such as IL-12, IL-1β, IL-6, 
and IFN-γ, resulting in astrocyte activation and release of 
additional cytokines and chemokines [155]. IL-6, IL-1β, 
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and TNF-α are also thought to inhibit GJA1-mediated GJ 
intercellular communication in astrocytes and contribute 
to inflammasome pathway activation by opening hemi-
channels [156]. Thus, either primary or secondary dis-
ruption of the BBB can trigger a neuroimmune cascade 
resulting in neuronal death.

In addition to cytokines, other immune response mol-
ecules such as VCAM1, ICAM1, and P-, E-, and L-selec-
tins, can be found circulating in the blood of patients and 
may be indicators of BMEC dysfunction [104, 157, 158]. 
During inflammation, VCAM1 and ICAM1 are elevated 
to allow for the attachment and transmigration of leuko-
cytes across the BBB [17, 150]. In schizophrenia, it is not 
clear whether ICAM1 and/or VCAM1 is elevated primar-
ily due to induction of the immune response system or 
whether genetic variants directly cause their overexpres-
sion. Another potential pathogenic mechanism involves 

heparan sulfate, which is metabolized by NDST3 and has 
been weakly associated with schizophrenia and bipolar 
disorder [13, 104]. Heparan sulfate may facilitate ECM 
degradation through leukocyte extravasation and it is also 
expressed during inflammation to assist with the initial 
attachment of leukocytes to the inflamed endothelium 
[159]. Findings from existing studies suggest that BBB 
disruption induced by genetic or environmental factors 
can result in infiltration of harmful substances into the 
brain that activates microglia and astrocytes, which then 
release cytokines and other immune response molecules. 
The consequences of this cytokine release include trans-
migration and extravasation of leukocytes (Fig.  2) and 
immune cell stimulation causing the release of additional 
inflammatory cytokines, further exacerbating BBB dys-
function. We believe that BMEC are central to this pro-
cess and identification of the major pathways involved in 
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Fig. 2. Conceptual model of the consequential pathways resulting 
from BMEC dysfunction in schizophrenia. (1) A disrupted para-
cellular structure allows blood materials including harmful sub-
stances to infiltrate into the brain parenchyma. (2) In the paren-
chyma, these blood materials activate astrocyte and/or microglia, 
causing them to release proinflammatory cytokines. (3) Astrocytic 
cytokines either activate microglia to release additional inflamma-
tory cytokines or activate BMEC to release other proinflammatory 
cytokines, cytokine receptors, or adhesion molecules such as 
ICAM1. (4) Microglial cytokines stimulate the continued astro-

cytic release of proinflammatory cytokines that follow the positive 
feedback loop pathway described in (3). (5) Microglial cytokines 
also activate BMEC to release proinflammatory cytokines and oth-
er immune response molecules as described in (3). (6) Cytokines 
released by BMEC recruit other immune cells such as neutrophils, 
macrophages, B cells, and T cells. (7) Cytokines and adhesion mol-
ecules such as ICAM1 help immune cells to extravasate into the 
parenchyma. (8) Immune cells stimulate continued microglial and 
astrocytic activation and the subsequent release of proinflamma-
tory cytokines, worsening BBB integrity.
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BBB disruption is key to identifying drug targets that 
could stop and/or reverse this process. For example, stud-
ies of age-related pathologies have shown that increased 
TGFβ signaling and BBB dysfunction secondary to age-
related neurological changes can be reversed by TGFβ in-
hibition [149]. Before similar treatments can be designed 
for schizophrenia, we need to better understand the 
mechanisms of BBB dysfunction as they relate to this dis-
order. The knowledge gained from these studies will have 
the potential to change the way we understand and treat 
schizophrenia and other related disorders.

While there is evidence for BMEC dysfunction in 
schizophrenia, some of these findings need to be consid-
ered in the context of the stage of illness, antipsychotic 
status, and treatment resistance. Many of the genetic 
studies involved moderately sized study samples from 
various countries, with the PGC study having the largest 
sample of patients with schizophrenia. We also discussed 
findings from 6 postmortem studies [12, 38, 39, 46, 66, 
103], 3 studies with patients who had chronic schizophre-
nia [25, 46, 109], 1 study with subjects with acute para-
noid schizophrenia [160], and 2 animal studies [38, 55]. 
There is limited information in terms of these finding in 
relation to exposure to antipsychotic medications. In one 
study, a dose-dependent increase in CLDN5 expression 
was observed in vitro in mouse BMEC after treatment 
with the antipsychotic medications haloperidol and 
chlorpromazine [38]. In a postmortem study of subjects 
who had chronic schizophrenia, there was evidence of a 
lower CLDN5 immunoreactivity in the parietal lobe of 
patients with schizophrenia compared to controls, but 
there was no information on the type and duration of an-
tipsychotic treatment [38]. In another study of serum 
from patients with chronic schizophrenia and schizoaf-
fective disorder, antipsychotic treatment was associated 
with elevated peripheral sICAM1 levels [46]. Experi-
ments in immortalized human BMEC showed that expo-
sure to a number of antipsychotics (clozapine, haloperi-
dol, and risperidone) did not result in any changes in 
ICAM1 or any of the other BMEC biomarkers (CDH5, 
OCLN, and ABCG2) [46]. In patients with major depres-
sion, antipsychotic treatment was shown to reduce serum 
levels of sRAGE [90], while serum sRAGE was found to 
be increased in patients with acute paranoid schizophre-
nia after 6 weeks of antipsychotic treatment [160]. There 
is a gap in our understanding of how antipsychotic med-
ications affect BBB function in the context of schizophre-
nia. The iPSC-derived BMEC can provide new ways to 
test how different antipsychotic medications alter TJ pro-
teins and inflammatory cytokines and may provide fur-

ther insights into understanding the pathophysiology of 
BBB disruption in schizophrenia.

Conclusion

BMEC are involved in a wide range of cellular pro-
cesses (paracellular, transcellular, transporter, and extra-
cellular matrix) that contribute to BBB and possibly neu-
roimmune dysfunction in schizophrenia. While existing 
studies have examined the relationship between BBB 
functionality and those biological processes associated 
with schizophrenia, no studies have delineated the role of 
BMEC in the etiopathogenesis of schizophrenia. Human 
iPSC-derived BMEC may allow us to clarify the role of 
BMEC and the BBB in neuropsychiatric disorders such as 
schizophrenia. Technological and methodological ad-
vances in 2-D and 3-D model generation using iPSC-de-
rived BMEC from patients with schizophrenia may help 
to determine whether a causative relationship exists be-
tween BMEC dysfunction and schizophrenia. 
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