
Research Article
Succinylation Site Prediction Based on Protein Sequences Using
the IFS-LightGBM (BO) Model

Lu Zhang , Min Liu , Xinyi Qin , and Guangzhong Liu

College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China

Correspondence should be addressed to Guangzhong Liu; gzhliu@shmtu.edu.cn

Received 31 August 2020; Revised 25 September 2020; Accepted 24 October 2020; Published 11 November 2020

Academic Editor: Hui Ding

Copyright © 2020 Lu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Succinylation is an important posttranslational modification of proteins, which plays a key role in protein conformation regulation
and cellular function control. Many studies have shown that succinylation modification on protein lysine residue is closely related
to the occurrence of many diseases. To understand the mechanism of succinylation profoundly, it is necessary to identify
succinylation sites in proteins accurately. In this study, we develop a new model, IFS-LightGBM (BO), which utilizes the
incremental feature selection (IFS) method, the LightGBM feature selection method, the Bayesian optimization algorithm, and
the LightGBM classifier, to predict succinylation sites in proteins. Specifically, pseudo amino acid composition (PseAAC),
position-specific scoring matrix (PSSM), disorder status, and Composition of k-spaced Amino Acid Pairs (CKSAAP) are firstly
employed to extract feature information. Then, utilizing the combination of the LightGBM feature selection method and the
incremental feature selection (IFS) method selects the optimal feature subset for the LightGBM classifier. Finally, to increase
prediction accuracy and reduce the computation load, the Bayesian optimization algorithm is used to optimize the parameters
of the LightGBM classifier. The results reveal that the IFS-LightGBM (BO)-based prediction model performs better when it is
evaluated by some common metrics, such as accuracy, recall, precision, Matthews Correlation Coefficient (MCC), and F-measure.

1. Introduction

Posttranslational modification (PTM) is the chemical modi-
fication of the precursor protein after translation, such as
the addition of a small molecule protein or the introduction
of a functional group, so that the inactive precursor protein
can obtain biological functions. There are many forms of
posttranslational modifications of proteins, such as ubiquiti-
nation, glutarylation, sumoylation, palmitoylation, acetyla-
tion, and methylation. Succinylation is PTM that occurs on
lysine. Lysine is an α-amino acid encoded by codons AAA
and AAG and is easily modified [1]. Succinylation is a
broadly conserved protein posttranslational modification
that exists in prokaryotic and eukaryotic cells and can coor-
dinate various biological processes [2–4]. Compared with
the methylation and acetylation that occur on lysine, succi-
nylation will cause more substantial changes in the chemical
structure of lysine [5]. And in a variety of cell functions,
including metabolism and epigenetic regulation, succinylated
proteins are involved.

Some studies have shown that abnormalities and varia-
tions of succinylation associated with the pathogenesis of
many diseases, including tumors [6–10], cardiac metabolic
diseases [11, 12], liver metabolic diseases [13], and nervous
system diseases [7, 14, 15]. Therefore, understanding succi-
nylation and identifying the site of succinylation will help
determine the pathogenesis of related diseases and develop
targeted drugs [16].

Nowadays, many biological experimental methods have
been developed to detect succinylated proteins or succinyla-
tion sites, such as the high-performance liquid chromatogra-
phy assays, spectrophotometric assays, and radioactive
chemical labeling [17, 18]. However, it is an arduous work
on detecting protein succinylation through experiments,
which inevitably waste lots of time and money. Machine
learning, in contrast, has the advantage of performing a large
number of experiments in a short time and has not been
affected and restricted by external conditions, which are
helpful on recognizing the succinylation sites. Zhao et al.
[19] built a predictor called SucPred based on SVM using
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position amino acid weight composition, van der Waals
volume normalized, grouped weight-based encoding, and
autocorrelation functions. By using SVM, Xu et al. [20]
developed iSuc-PseAAC that implemented a composition
of pseudo amino acid (PseAAC) scheme. And then, Xu
et al. [21] developed another predictor named SuccFind,
which considered several amino acid-based composition
encodings, including amino acid composition (AAC), k
-spaced amino acid pairs (CKSAAP), and amino acid index
(AAindex). Hasan et al. [1] proposed the approach Succin-
Site predictor with the RF classifier by integrating multiple
sequence features. Ning et al. [22] built a predictor called
PSuccE based on SVM using amino acid composition
(AAC), binary encoding (BE), physicochemical property
(PCP), and grey pseudo amino acid composition (GPAAC).

Although many methods for predicting succinylation
sites based on machine learning have been proposed, there
is still much room for improvement based on machine learn-
ing. Firstly, the protein sequences’ feature information is not
clearly illuminated for predicting the effects of succinylation
site interaction. Secondly, multi-information fusion produces
high-dimensional feature vectors, which brings redundancy
and noise information. There is an urgent need to use an effi-
cient feature selection method to rank the importance of
features and select the best feature subset from them. Finally,
the development of experimental technology produced a
large amount of succinylation data. How to make full use of
experimental data to design effective prediction algorithms
is very necessary.

In this study, we propose an IFS-LightGBM (BO) predic-
tion framework based on machine learning to identify
succinylation sites of lysines in protein sequences. Four
sequence-based features are firstly used to represent the pep-
tides: (1) pseudo amino acid composition (PseAAC), (2)
position-specific scoring matrix (PSSM), (3) disorder status,
and (4) Composition of k-spaced Amino Acid Pairs
(CKSAAP). Secondly, the LightGBM method is used to pri-
oritize the 2501-D feature vector, which obtains from these
four sequence-based features. Thirdly, we combine the incre-
mental feature selection (IFS) method and the machine
learning methods to perform effective feature fusion and then
determine the optimal feature subset, which can eliminate
the noise and redundancy information in the original feature
vector. Finally, the Bayesian optimization (BO) algorithm is
used to optimize the parameters of the LightGBM classifier.
This work provides not only a better understanding of the
sequence characteristics of protein succinylation modifica-
tion but also an effective algorithm for directly predicting
the succinylation sites in proteins.

2. Materials and Methods

2.1. Dataset. In this work, the training data were collected
from dbPTM [23, 24] (http://dbptm.mbc.nctu.edu.tw/index
.php), which integrated published literatures, public
resources, and a total of eleven biological databases related
to PTMs. We obtained 2599 protein sequences including
5049 experimentally verified lysine succinylation sites and
5526 nonsuccinylation sites remained from dbPTM. The

data in the dataset used a window size of 2r + 1 to extract
the corresponding peptide fragment with lysine (K): “1”
was a lysine (K) which was extracted as the central site of a
polypeptide segment; “r” was equal to 10, which meant that
10 AA (amino acid) residues were selected from the
upstream and downstream of lysine; and finally, a polypep-
tide segment with a length of 21 was obtained. Among them,
the positive sample took the succinylated residue as the
central site.

2.2. Description and Representation of Samples. Encode each
polypeptide segment as a numeric vector and input it as a fea-
ture into the model. This is the most critical step in building
an effective predictive model. Therefore, it is necessary to use
high-quality sequence encoding methods to generate features
that can effectively predict succinylation sites. In this study,
we use four types of amino acid feature encoding methods
including CKSAAP, disorder, pseudo amino acid composi-
tion, and PSSM.

2.2.1. CKSAAP Encoding. The CKSAAP is one of the most
classic encoding methods which has been widely used by
people in bioinformatics tasks [1, 25–31]. In this study, we
use polypeptide segments of length 21. Take AxA as an
example, whose space number k is equal to 1. For the poly-
peptide segment which is composed mainly of 20 basic
amino acids (i.e., A, R, D, C, ..., W, Y, V), when k = 0, the res-
idue pairs that we need to extract are AA, AR, AD,..., VV,
namely, there have a total of ð20 × 20Þ = 400 amino acid
pairs.

The following formula is used to calculate the feature
vector:

NA,A
N total

, NA,R
N total

, NA,D
N total

,⋯, NV ,V
N total

� �
400

, ð1Þ

where Ni,j represents the number of amino acid pairs i, j
with a distance of k,N total is the total number of k-spaced res-
idue pairs in the fragment. In this study, the optimal kmax is
set as 4 (i.e., k = 0, 1, 2, 3, 4); then, the N total will be 20, 19,
18, 17, and 16, which is obtained by calculating N total = L −
k − 1. Thus, a polypeptide segment with a length of 21 is
transformed into a 2000-dimensional (400 × 5) AA composi-
tion feature vector.

2.2.2. Disorder. One of the important indicators to measure
the degree of protein structure is its inherent disorder. A
large number of research results show that the inherent dis-
order of proteins plays a very important role in the prediction
of protein structure and function [32–34]. In order to charac-
terize this property, we use the VSL2B [35] program to pre-
dict the disorder score value. By running the tool, two types
of results will be obtained, namely, qualitative and quantita-
tive. The quantitative result is a value in the range [0, 1]. It
is generally believed that 0.5 is the boundary value for distin-
guishing order and disorder. If the scoring result exceeds 0.5,
it is considered disorder, otherwise order. For a polypeptide
segment with a length of 21, the disorder features with 21-
dimensional will eventually be obtained.

2 Computational and Mathematical Methods in Medicine

http://dbptm.mbc.nctu.edu.tw/index.php
http://dbptm.mbc.nctu.edu.tw/index.php


2.2.3. Pseudo Amino Acid Composition (PseAAC). In order to
avoid complete loss of sequence-order information, the
PseAAC [36] was proposed by Chou. PseAAC is an extended
form of AAC, and it can identify salient hidden information
[37–39]. In this work, Type-1 PseAAC is used as the domi-
nating sequence representations. Let A be a polypeptide seg-
ment with the length of L, and Riði = 1, 2,⋯, LÞ is the ith
residue of A:

A = R1, R2 ⋯ RL: ð2Þ

The Type-1 PseAAC is a function of A, which produces a
ð20 + λÞ-D vector. The mathematical formulation of Type-1
PseAAC is

P Að Þ = p1, p2, p3 ⋯ p20, p21, p22, p23 ⋯ p20+λ½ �T , ð3Þ

where the first 20 features that can be obtained based on the
composition of a given polypeptide segment, hydrophobicity,
side-chain mass, and hydrophilicity of AAs are used to calcu-
late the remaining λ features [38]. The pn of P can be com-
puted by Equations (4) and (5):

pn =

f n
∑20

i=1 f i +w∑λ
j=1bj

1 ≤ n ≤ 20ð Þ,

wbn−20
∑20

i=1 f i +w∑λ
j=1bj

20 < n ≤ λ + 20ð Þ,

8>>>><
>>>>:

ð4Þ

bλ =
∑L−λ

i=1 1/3ð Þ H1 Rið Þ −H1 Ri+λð Þð Þ2 + H2 Rið Þ −H2 Ri+λð Þð Þ2 + M Rið Þ −M Ri+λð Þð Þ2� �
L − λ

,

ð5Þ
where f i reflects the occurrence frequency of the 20 standard
amino acids, bj is the jth tier sequence correlation factor, ω is
the weight balance parameter for the sequence order effect,
and λ is the lag parameter.H1ðRiÞ andH2ðRiÞ are normalized
values of hydrophilicity and hydrophobicity, respectively.
The normalized values of the side-chain mass of Ri are
MðRiÞ. Therefore, when λ = 20 and w = 0:05, each polypep-
tide segment is transformed into 40 dimensions AA compo-
sition feature vector.

2.2.4. PSSM (Position-Specific Scoring Matrix). Use PSI-
BLAST [40] software to search against the SWISS-PROT
database to obtain protein evolution information, where the
BLAST local protein database is an authoritative protein
database which is established by the University of Geneva
and the European Bioinformatics Institute (EBI) [41]. By

running the PSI-BLAST tool, two L × 20 ðL = 21Þ matrices
can be obtained. The first one is the position-specific scoring
matrix (PSSM), which is used to represent the conversation
scores of 20 standard AAs occurring at specific sequence
positions during evolution. The second one is the position-
specific frequency matrix (PSFM), which contains the fre-
quency of occurrence for a given amino acid at a specific
sequence position. For the PSSM, we expand it into a 440-
dimensional vector (420 + 20) in the following way. Firstly:

FPSSM = S1A , S1R ,⋯, S1V
� �

,⋯, SLA , SLR ,⋯, SLV
� �� �

: ð6Þ

In addition, FPSSM−mean features can be extracted from the
PSSM:

FPSSM−mean =
∑L

i=1SiA
L

∑L
i=1SiR
L

⋯
∑L

i=1SiV
L

" #T

, ð7Þ

where L is the length of each polypeptide segment, Sij
ði = 1,⋯, L ; j = 1,⋯, 20Þ is the values in the matrix. The fea-
tures of PSSM are achieved by the integration of FPSSM−mean
and FPSSM.

We combine four characterizations to obtain a total of a
2501-D feature vector from each polypeptide segment. The
distribution of the 2501 features is listed in Table 1. Then,
several kinds of feature selection method will be used to rank
the 2501-dimensional features according to their importance.

2.3. Feature Selection Method. Before models are developed,
because the dataset may have features that are unrelated to
target value or noise interfered, it is necessary to select the
optimal feature subset through feature selection, so as to
reduce the dimension of feature space to further decrease
the risk of overfitting. At the same time, the generalization
performance and the prediction ability of the models can be
further improved when irrelevant features are removed
ahead of training. In this article, the LightGBM feature selec-
tion method is used to select independent variables that are
used to form the optimal feature subset.

LightGBM is an effective GBDT implementation algo-
rithm, which is designed by Microsoft Research Asia [42].
For the LightGBM algorithm, two kinds of the importance
type are contained: one is the “split” and the other is “gain.”
“Split” reflects the number of times the feature is used in a
model. When building the boosted trees, the important fea-
tures are used more frequently, and the rest are used to
improve on the residuals. In this study, the importance type
is “gain.” Different from the “split,” the “gain” measures the

Table 1: Distribution of 2501-dimensional features on four typical feature types.

Features Feature description Feature dims

CKSAAP Short sequence motif information of polypeptide segments 2000

Disorder Protein intrinsic disorder score 21

PseAAC Physicochemical characteristics of amino acid factors 40

PSSM Evolutionary information of amino acid residues 440

Total — 2501
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actual decrease in node impurity. The feature rankings of
gain-based importance can be obtained after LightGBM
fitting [43].

2.4. Incremental Feature Selection Method. The combination
of the IFS method and feature selection method is helpful to
select the optimal feature subset. First, the feature selection
method is used to construct the feature list. Specifically, dif-
ferent feature selection methods will firstly generate the
importance scores of all features in light of the calculation
criteria, then arrange the features in descending order
according to the importance scores, and finally construct a
corresponding feature list based on the importance scores,
where the feature list is denoted as F = ½ f1, f2,⋯, f L�ð1 ≤ L
≤ 2501Þ. Next, incremental feature selection (IFS) [44]
makes a series of feature subsets. IFS is a process of building
an increasing number of feature subsets by gradually adding
features. In this study, the incremental step length of the IFS
method is set to 1, thereby constructing a series of feature
subsets which can be denoted as FS1m, FS2m,⋯, FSLm, in which
the feature subset of FS1m is constructed using the features
ranked first in the feature list, and FS2m has the top 1 and
top 2 features, namely, FSim = ½ f1, f2,⋯f i�ð1 ≤ i ≤ LÞ. Then,
the generated feature subsets are sequentially input into the
classifier, which use the 10-fold cross-validation method to
evaluate. Finally, when the fitness function of the predictor
uses a certain feature subset to reach its maximum value, its
corresponding feature subset is the best feature subset.

2.5. LightGBM. LightGBM is an algorithm that has been suc-
cessfully applied in the field of classification, ranking, and
many other ML tasks [43, 45–48]. It is an ensemble model
based on a decision tree algorithm. In order to reduce mem-
ory usage and increase the training speed, the Histogram
Algorithm is used in LightGBM, which tries to discretize
every feature (successive floating-point eigenvalues) in the

dataset into k small bins. After that, these bins are used to
construct the histogram with width k. Once all the samples
are traversed, the histogram will accumulate the required sta-
tistics that are gradients and number of samples’ in each bin.
After accumulating these statistics, the optimal segmentation
point can be found based on the maximum gain provided
when k bins are divided into two parts.

Besides Histogram Algorithm, LightGBM proposes
gradient-based one-side sampling (GOSS), exclusive feature
bunding (EFB), and leaf-wise growth methods to further
improve computational efficiency without hurting the accu-
racy. When finding the best split in GOSS, the absolute value
of samples’ gradients is firstly used to sort the data instances.
Then, preserve data instances with higher gradients, and ran-
domly sample instances with low gradients. Finally, GOSS
calculates the variance gain ~V jðdÞ of feature j to give the best
split node.

~V j dð Þ = 1
n

∑xi∈Ar
gi + 1 − að Þ/bð Þ∑xi∈Bl

gi

� 	2

nj
l dð Þ

+
∑xi∈Ar

gi + 1 − að Þ/bð Þ∑xi∈Bl
gi

� 	2
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l dð Þ

0
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1
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Al = xi ∈ A : xij ≤ d
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,
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, Br = xi ∈ A : xij > d
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,

nj
l dð Þ =〠I xi ∈ Al ∪ Blð Þð Þ,

nj
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ð8Þ

Dataset Feature extraction
and feature selection

PseAAC Disorder

PSSMCKSAAP

Feature selection via LightGBM

Feature list
Final model

Optimize
hyperparameter

with GP approach

IFS-LightGBM(BO)
model construction

Incremental feature selection

Feature subsets

Build up LightGBM modelPositive Negative

Figure 1: The overall framework of IFS-LightGBM (BO) for succinylation site prediction.

Table 2: Performance table for instances labeled with a class label A.

True label A True not A

Predicted label A True positive (TP) False positive (FP)

Predicted not A False negative (FN) True negative (TN)
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where A is the instance set with high gradients and B is
the instance set with low gradients. gi is the gradients of each
sample, a is the sampling ratio of large gradient data, b is the
sampling ratio of small gradient data, and d is the number of
iterations.

Furthermore, EFB can speed up the training process of
GBDT via bundling exclusive features into a single “big” fea-
ture. Compared with the level-wise growth strategy, the leaf-
wise growth strategy will choose the leaf with max delta loss
to grow, which can reduce more errors and obtain better
accuracy under the same splitting times.

2.6. Model Construction and Performance Evaluation. For
convenience, the succinylation site prediction method pro-
posed in this study is called IFS-LightGBM (BO). The use
of flowcharts can more intuitively show the internal mech-
anism of model construction. Therefore, we draw Figure 1
to show the overall framework of IFS-LightGBM (BO).
The framework is implemented using PyCharm 2020 and
Python 3.6. The experiment is conducted on a computer
with 2.30GHz, 32.0GB RAM, and Windows operating
system.

The specific steps of IFS-LightGBM (BO) for the succiny-
lation site prediction are described as follows:

(1) Dataset. The dataset is used to predict succinylation
sites, and it is divided into two categories: positive
samples containing succinylation sites and negative
samples without succinylation sites; the numbers
are 5049 and 5526, respectively

(2) Feature Extraction and Feature Selection. In this
study, four feature extraction methods are used:
PseAAC, disorder, PSSM, and CKSAAP, which

transform the protein sequence signal into a numer-
ical signal. For PSSM, two kinds of encoding
methods are used, namely, averaged by column
and expanded by row. Then, these four feature
extraction methods are fused to predict the succiny-
lation site. As what follows, the LightGBM method
is used to prioritize the features and generate the
feature list

(3) IFS-LightGBM (BO) Model Construction. The IFS
method builds a series of feature subsets based on
the feature list, and then, the generated feature sub-
sets are input into the LightGBM classifier in turn.
The 10-fold cross-validation is used to evaluate the
predictive ability of the classifier. When the perfor-
mance of the classifier reaches the best, the corre-
sponding feature subset is the optimal feature
subset. The selected best feature subset is used as
the input features of the model, and then, the BO
algorithm is used to optimize the hyperparameters
of IFS-LightGBM (BO). Five measurement metrics
including ACC and F-measure are used to evaluate
model performance

Protein PTM site prediction is essentially a binary classi-
fication problem, which can be measured using the notation
in Table 2.

TP and FP represent the numbers of true positive and
false positive, and the numbers of true negative and false
negative are represented by TN and FN, respectively. To
evaluate the prediction performance of our proposed
method, five measures including accuracy (ACC), recall,
precision, Matthews Correlation Coefficient (MCC), and
F-measure are used [49]. These metrics are calculated as
follows:

Table 3: Predictive metrics of different feature extraction methods.

Features Dimensional ACC Recall MCC Precision F-measure

PseAAC 40 0.7061 0.6970 0.4113 0.6904 0.6937

Disorder 21 0.5709 0.5906 0.1434 0.5469 0.5679

CKSAAP 2000 0.6964 0.6849 0.3916 0.6810 0.6829

PSSM 440 0.6985 0.6576 0.3950 0.6947 0.6756

All 2501 0.7253 0.7053 0.4492 0.7153 0.7103

All (IFS) 2501 0.7360 0.7223 0.4708 0.7240 0.7232

Table 4: Predictive metrics of different feature selection methods.

Feature selection methods Optimal subsets ACC Recall MCC Precision F-measure

LightGBM 351 0.7360 0.7223 0.4708 0.7240 0.7232

ReliefF 2314 0.7319 0.7150 0.4626 0.7211 0.7181

LinearSVR 2107 0.7304 0.7114 0.4594 0.7204 0.7159

XGBoost 563 0.7351 0.7231 0.4692 0.7224 0.7228

ANOVA 1203 0.7316 0.7142 0.4620 0.7211 0.7176

t-SNE 3 0.5526 0.5112 0.1019 0.5328 0.5218

PCA 1517 0.6952 0.6617 0.3885 0.6880 0.6746
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Figure 2: (a) Describes the IFS curve of the ACC value of each feature selection method, and (b) describes the IFS curve of the F-measure
value of each feature selection method. According to the constructed dataset described in Materials and Methods, the IFS curve shows the
trend of (a) ACC value and (b) F-measure value of the five feature selection methods as the number of input features increases. The five
feature selection methods are LightGBM, ReliefF, LinearSVR, XGBoost, and ANOVA.
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Accuracy =
TP + TN

TP + FP + TN + FN
,

Recall sensitivityð Þ = TP
TP + FN

,

Precision =
TP

TP + FP
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ,

F‐measure =
2 × Precision × Recall
Precision + Recall

:

ð9Þ

ACC describes the proportion of samples that is cor-
rectly predicted, and its value ranges from 0 to 1, where
1 indicates the best prediction. Recall is the ability to iden-
tify positive cases, and precision denotes the class agree-
ment of the data labels with the positive labels given by
the classifier. MCC is a correlation coefficient describing
the relationship between actual classification and predicted
classification. F-measure can combine recall and precision
into a single class-specific accuracy, which is selected as
the key measurement in this study.

3. Results and Discussion

3.1. Integrated Optimal Feature Extraction. CKSAAP charac-
terizes the short sequence motif information of polypeptide
segments, PSSM reflects evolutionary information, disorder
features reflect natively disordered residues recognized by
VSL2B [35], and PseAAC reflects the physicochemical infor-
mation of polypeptide segments. Therefore, it is possible that
the integration of such four kinds of encodings will charac-
terize the sequence and structural features of polypeptide
segments better. But at the same time, the dataset after fea-
ture fusion may have features that are unrelated to the target
value, so the LightGBM ranking algorithm will be used to
sort the fused features and generate a feature list, and then,
the IFS method will be used to select the optimal feature sub-
set. This section uses 10-fold cross-validation to evaluate the
performance of the model. The corresponding results are
shown in Table 3. “All (IFS)” represents the fusion of the four
feature extraction methods and the dimensionality reduction
through the IFS and LightGBM feature selection method.

“All” represents the fusion of the four feature extraction
methods without dimensionality reduction.

It can be seen that when using the PseAAC, disorder,
CKSAAP, PSSM, and “All” feature extraction methods, the
F-measure scores are 69.37%, 56.79%, 68.29%, 67.56%, and
71.03%, respectively. The prediction F-measure of “All
(IFS)” is 72.32%, which is 1.29% higher than that of “All”
and 15.53% higher than that of disorder. We can clearly see
that when the four feature extraction methods are fused, as
well as the IFS and LightGBM are used to select the optimal
feature subset, the prediction F-measure is significantly
improved. Moreover, we can see that the prediction accuracy
of “All (IFS)” is 2.99%, 16.51%, 3.96%, 3.75%, and 1.07%
higher than those of PseAAC, disorder, CKSAAP, PSSM,
and “All.” In summary, fusing the four feature extraction
methods and using IFS and LightGBM to select the optimal
feature subset can improve the prediction performance of
protein succinylation sites. Hence, we combine the four fea-
ture extraction methods of PseAAC, disorder, CKSAAP,
and PSSM to characterize information of each polypeptide
segment.

3.2. Results of the IFS and Feature Selection Methods. Using
multiple feature extraction methods can better characterize
polypeptide segments, but at the same time, it will increase
the risk of feature redundancy. In order to select the optimal
features, the combination of the IFS method and different
feature selection methods will be introduced. Meanwhile, in
order to clearly reflect the superiority of the LightGBM fea-
ture selection method, we also use ReliefF [50], LinearSVR
[51], XGBoost [52], and ANOVA [53] to find the optimal
feature subset.

It can be seen from Table 4 that for the dataset, different
feature selection methods have a great impact on the accu-
racy of succinylation site prediction. Among them, the
LightGBM feature selection method enables the classifier to
obtain the best prediction performance. When the top 351
features are selected as the feature subset, the ACC, recall,
precision, MCC, and F-measure are 73.60%, 72.23%,
72.40%, 47.08%, and 72.32%, respectively. The F-measure
of LightGBM is 0.51%, 0.73%, 0.04%, and 0.56% higher than
that of ReliefF, LinearSVR, XGBoost, and ANOVA, respec-
tively. The ACC is 0.41%, 0.56%, 0.09%, and 0.44% higher
than that of ReliefF, LinearSVR, XGBoost, and ANOVA,
respectively. The number of optimal features of LightGBM
is 1963, 1756, 212, and 852 less than that of ReliefF,

Table 5: Predictive metrics of respective feature subsets classified by each classifier.

Classifier Optimal subsets ACC Recall MCC Precision F-measure

LightGBM 351 0.7360 0.7223 0.4708 0.7240 0.7232

RF 37 0.7182 0.6795 0.4345 0.7158 0.6972

ET 33 0.6010 0.5934 0.2013 0.5804 0.5868

GBDT 94 0.7267 0.7223 0.4528 0.7102 0.7162

kNN 32 0.6596 0.7209 0.3258 0.6242 0.6691

XGBoost 427 0.7271 0.7114 0.4529 0.7154 0.7134

NB 805 0.6878 0.7724 0.3867 0.6444 0.7026
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Figure 3: IFS curve describing the ACC value and F-measure value of each classifier. On the basis of the dataset constructed as described in
Materials andMethods, the IFS curve shows the trend of the (a) ACC values and (b) F-measure values of the seven classifiers as the number of
input features increases. The seven classification algorithms are LightGBM, Random Forest, ExtraTree, GBDT, kNN, XGBoost, and NB.
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LinearSVR, XGBoost, and ANOVA, respectively. Further-
more, we also try the dimensionality reduction methods of
the principal component analysis (PCA) [54] and t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE) [55] without
using the IFS method. As we can see from Table 4, when
PCA is used to select the best feature subset, the F-measure
value of the model is 0.6746, which is 4.86% less than
LightGBM and 4.13% less than LinearSVR. Meanwhile,
when t-SNE is used to select the best feature subset, the F
-measure value of the model is 0.5218, which is 20.14% less
than LightGBM and 19.41% less than LinearSVR. The exper-
imental results indicate that although they consume less time,
their predictive performances are worse than using other
feature selection methods which combined with IFS, when
processing the data in this study. Thus, we choose the way
in combining IFS with different feature selection methods
to select the optimal feature subset.

To further analyze, we draw the IFS curve plots of the
predicted values for each feature selection method (i.e.,
LightGBM, ReliefF, LinearSVR, XGBoost, and ANOVA) as
shown in Figure 2. It can be seen from Figure 2(b) that the
LightGBM achieves the optimal F-measure result through a
subset with 351 features, while the ReliefF, LinearSVR,
XGBoost, and ANOVA achieve the optimal F-measure value
when using the subset of the top 2314, 2107, 563, and 1203
features in their own feature list, respectively. Meanwhile,
the LightGBM achieves the optimal ACC result using the
subset of the top 351 features, while the ReliefF, LinearSVR,
XGBoost, and ANOVA achieve the optimal ACC value when
using the subset of the top 1465, 2130, 421, and 1203 features
in their own feature list, respectively. In this section, the
feature lists are different because these feature lists are con-
structed through different feature selection methods, but
the feature subsets generated based on the feature lists will
be input to the same classifier. The number of features used
in the optimal feature subset determined by the LightGBM
method is the least, while its corresponding ACC and F
-measure scores are the highest. Conversely, the best feature
subset of the LinearSVR contains the largest number of fea-
tures, and its prediction accuracy and F-measure are smaller.
Given the above, the prediction effect of the LightGBM fea-
ture selection method is better than ReliefF, LinearSVR,
XGBoost, and ANOVA. Thus, we use the LightGBM feature
selection method to select the best feature subset.

3.3. Selection of Classification Algorithms. The choice of clas-
sifier plays a crucial role in constructing an effective predic-
tion model of succinylation sites. According to the
discussion in Section 3.1, the 2501-dimensional feature vec-
tor will be obtained by fusing four feature extraction methods
including PseAAC, disorder, CKSAAP, and PSSM. Accord-
ing to the analysis in Section 3.2, LightGBM will be used as
the feature selection method and combined with the IFS
method to construct the optimal feature subset. For the sake
of reflecting the superiority of the LightGBM classifier in pre-
dicting succinylation sites clearly, Random Forest (RF) [56],
ExtraTree (ET) [57], Gradient Boosting Decision Tree
(GBDT) [58], k-nearest neighbor (kNN) [59], XGBoost,
and Naïve Bayes (NB) [60] algorithms will be introduced

and compared with it. The number of neighbors in kNN is
5, the number of base decision tree in RF is 100, the number
of iterations of LightBGM, XGBoost, and GBDT is 100. It can
be seen from Table 5 that when the LightGBM classifier uses
a subset of the top 351 features in the LightGBM feature list,
the F-measure value can achieve the best classification per-
formance, which is 0.7% higher than GBDT and 13.64%
higher than ET. Meanwhile, the ACC value of the LightGBM
classifier is 0.7360, which is 1.78%, 13.5%, 0.93%, 7.64%,
0.89%, and 4.82% higher than that of RF, ET, GBDT, kNN,
XGBoost, and NB, respectively.

Moreover, Figure 3 depicts the IFS curves of the ACC
value and F-measure value of each classifier. It can be seen
from the curve in the figure that when a subset of the top
351 features in the LightGBM feature list is used by the
LightGBM classifier, both the F-measure and ACC achieve
the optimal classification performance. For RF, ET, GBDT,
KNN, XGBoost, and NB algorithms, the highest F-measure
values are obtained when they use the top 37, 33, 94, 32,
427, and 805 features in the LightGBM feature list, respec-
tively. And when separately using the top 41, 9, 131, 16,
427, and 44 features in the LightGBM feature list, they can
obtain the highest ACC.

To prove that the LightGBM classifier is better than the
other six machine learning algorithms, we conduct 100 times
10-fold cross-validation on different classifiers by setting dif-
ferent random seed numbers for the cross-validation
method, in which the optimal subsets constructed by IFS
are acted as the trainset for training different classifiers. To
further measure the performances of the seven machine
learning methods, we calculate the mean of maximum ACC

Table 6: The average and standard deviation of the maximum ACC
of different classifiers.

Classifier Max_ACC mean Max_ACC std Max of Max_ACC

LightGBM 0.7290 0.0027 0.7360

RF 0.7148 0.0023 0.7203

ET 0.5960 0.0049 0.6081

GBDT 0.7250 0.0021 0.7296

kNN 0.6614 0.0021 0.6661

XGBoost 0.7177 0.0032 0.7271

NB 0.6923 0.0008 0.6944

Table 7: The average and standard deviation of the maximum F
-measure of different classifiers.

Classifier
Max_F-measure

mean
Max_F

-measure std
Max of Max_F

-measure

LightGBM 0.7145 0.0029 0.7232

RF 0.6932 0.0027 0.6989

ET 0.5718 0.0060 0.5868

GBDT 0.7128 0.0022 0.7194

kNN 0.6677 0.0020 0.6730

XGBoost 0.7034 0.0035 0.7134

NB 0.7017 0.0009 0.7039
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Figure 4: The maximum F-measure value distribution obtained by the different classifiers for 100 random tests is shown. The x-coordinate
represents the maximum F-measure value, and the y-coordinate represents the number of corresponding intervals. The seven classifiers are
(a) LightGBM, (b) Random Forest, (c) ExtraTree, (d) GBDT, (e) kNN, (f) XGBoost, and (g) NB.
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(Max_ACCmean), the mean of maximum F-measure (Max_
F-measure mean), the standard deviation of the maximum
ACC (Max_ACC std), and the standard deviation of the
maximum F-measure (Max_F-measure std) of each classi-
fier. The results are listed in Tables 6 and 7, respectively. As
shown in Tables 6 and 7, the prediction performance of the
LightGBM classifier is better than the other six machine
learning methods because its “Max_F-measure mean” and
“Max_ACC mean” are higher than the RF, ET, GBDT,
kNN, XGBoost, and NB algorithms. The “Max_F-measure
std” and “Max_ACC std” of NB are smaller than other algo-
rithms, which show that it has a relatively stable prediction
performance. It can be seen from Figure 4 that the results
of F-measure basically fit the normal distribution, and the
continuities of the evaluation metric distributions of the RF,
GBDT, kNN, XGBoost, and NB are better than the
LightGBM. And the maximum F-measure of the 100 exper-
iments of the LightGBM method is concentrated between
0.712 and 0.718. In conclusion, the LightGBM model has a
better predictive performance than the other six models. So,
we use LightGBM as the classifier. Figure 4 describes the his-
togram of the results of the 100 experiments.

3.4. Parameter Tuning and Performance Analysis. In order to
further improve the performance of the LightGBM model,

the Bayesian optimization (BO) algorithm is used to optimize
the model parameters. Bayesian optimization is an extremely
powerful method, which uses a surrogate function to esti-
mate the noisy, expensive black-box functions. The core idea
of the Bayesian hyperparameter optimization algorithm is to
establish a probabilistic model that defines a distribution over
objective functions from the input space to the objective of
interest [61]. BO uses prior knowledge to approach the rela-
tively cheap posterior distribution and then infers where to
explore the next optimum hyperparameter combination
according to the distribution. In this study, the Gaussian pro-
cess (GP) approach is selected as a surrogate model and

Table 8: Hyperparameter optimization results of IFS-LightGBM (BO).

Hyperparameters Meanings Search ranges Optimal values

learning_rate Learning rate (0.01, 1.0) 0.0274

max_depth Maximum depth of the tree (1, 50) 20

max_bin The max number of bins that feature values will be bucketed in (10, 100) 10

reg_alpha L1 regularization (1e-9, 1.0) 0.9647

boosting_type Training method gbdt; goss; rf; dart goss

num_leaves Number of leaf nodes (1, 50) 11

n_estimators Number of iterations (100, 600) 600

Table 9: Hyperparameter optimization results of LightGBM (GS).

Hyperparameters Meanings Search ranges Optimal values

learning_rate Learning rate (0.01, 1.0) 0.1

max_depth Maximum depth of the tree (1, 50) 15

max_bin The max number of bins that feature values will be bucketed in (10, 100) 20

reg_alpha L1 regularization (1e-9, 1.0) 1e-5

boosting_type Training method gbdt; goss; rf; dart gbdt

num_leaves Number of leaf nodes (4, 50) 36

n_estimators Number of iterations (100, 600) 450

Table 10: Performance comparison of IFS-LightGBM (BO), LightGBM, and LightGBM (GS).

Classifier Optimal subsets ACC Recall MCC Precision F-measure

IFS-LightGBM (BO) 351 0.7392 0.7219 0.4771 0.7291 0.7255

LightGBM 351 0.7360 0.7223 0.4708 0.7240 0.7232

LightGBM (GS) 351 0.7377 0.7190 0.4740 0.7282 0.7235

Table 11: The average and standard deviation of the maximum F
-measure of IFS-LightGBM (BO), LightGBM, and LightGBM (GS).

Classifier
Max_F

-measure mean
Max_F

-measure std
Max of Max_F

-measure

IFS-
LightGBM
(BO)

0.7229 0.0028 0.7292

LightGBM 0.7145 0.0029 0.7232

LightGBM
(GS)

0.7194 0.0027 0.7259
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Expected Improvement (EI) is selected as an acquisition
function.

For the surrogate model hyperparameters Θ, let
D = fðxn, ynÞNn=1g be the observations of input-target pairs,
σ2ðx ;D,ΘÞ be the predictive variance function, the predic-
tive mean value is μðx ;D,ΘÞ, and define

aPI x ;D,Θð Þ =Φ γ xð Þð Þ,

γ xð Þ = f xbestð Þ − μ x ;D,Θð Þ
σ x ;D,Θð Þ ,

aEI x ;D,Θð Þ = σ x ;D,Θð Þ γ xð ÞΦ γ xð Þð Þ + ϕ γ xð Þð Þ½ �,
ð10Þ

where f ðxbestÞ is the lowest observed value,Φ and ϕ are the
standard cumulative and normal density, respectively [62].

The Bayesian optimization (BO) algorithm is used to
optimize some critical hyperparameters in the LightGBM
classifier as shown in Table 8. The F-measure between train-
ing values and predictive values of 10-fold cross-validation is
defined as the fitness function evaluation of hyperparameter
optimization of the LightGBM classifier. In order to distin-
guish from the LightGBM without hyperparameter opti-
mized, the classifier which is optimized by the BO
algorithm is called IFS-LightGBM (BO).

For the IFS-LightGBM (BO) model which uses the opti-
mal feature subset with the 351 features, the parameters
learning_rate, max_depth, max_bin, reg_alpha, boosting_
type, num_leaves, and n_estimators need to be optimized by
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Figure 5: Distributions of the top 351 features in the LightGBM feature list on four feature types. Figures (a), (b), and (c) show the
distribution of the four types of features ranked in the top 100, top 101-200, and top 201-351 in the feature list, respectively.
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using the BO algorithm. The IFS-LightGBM (BO) model
with the highest F-measure can be implemented when learn-
ing_rate is 0.0274,max_depth is 20,max_bin is 10, reg_alpha
is 0.9647, boosting_type is goss, num_leaves is 11, and n_esti-
mators is 600, which gave F-measure of 0.7255. For the sake
of reflecting the superiority of the BO algorithm in tuning
parameters clearly, we also employ a grid search (GS)
method to optimize parameters of the LightGBM classifier,
and the optimization process of the hyperparameters is
shown in Table 9. Table 10 lists other measurement results
of IFS-LightGBM (BO), LightGBM, and IFS-LightGBM
(GS). In Tables 10 and 11, “LightGBM (GS)” represents the
model with the GS method; “LightGBM” represents the
model without hyperparameter optimization.

To confirm that the performance of the LightGBM classi-
fier has been further improved by the BO algorithm, we
conduct 100 times 10-fold cross-validation on the IFS-
LightGBM (BO) model. Meanwhile, the LightGBM classifier
and LightGBM (GS) model are also evaluated by 10-fold
cross-validation 100 times. Table 11 shows the average and
standard deviation of the maximum F-measure of three
models for 100 random tests, which are IFS-LightGBM
(BO), LightGBM, and LightGBM (GS). As can be seen from
Table 11, the “Max_F-measure mean” of the IFS-
LightGBM (BO) model is higher than the LightGBM (GS)
model and LightGBM classifier. Meanwhile, compared with
the grid search method, the Bayesian optimization algorithm
has less time consumption in searching the optimal parame-
ters for the LightGBM classifier. Therefore, the Bayesian
optimization algorithm is used to optimize parameters of
LightGBM to construct the optimal model.

Next, we will further analyze the model output results.
On the basis of the output from Section 3.2, we find that
when we use the subset of the top 351 features in the
LightGBM feature list, the values of F-measure and ACC
reach the highest point. It can be seen from Figure 5(a) that
among the top 100 features in the feature list, the numbers
of PseAAC, disorder, CKSAAP, and PSSM are 38, 16, 9,
and 37, respectively. The evolution information (i.e., PSSM)
and the physicochemical information (i.e., PseAAC) account
for 38% and 37% of the total. Among the top 101-200 fea-
tures in the feature list, the numbers of PseAAC, disorder,
CKSAAP, and PSSM are 2, 5, 29, and 64, respectively. At
the same time, among the top 201-351 features in the feature
list, the numbers of CKSAAP and PSSM are 46 and 105,
respectively.

4. Conclusions

The study of succinylation and its sites plays an important
role in determining the pathogenesis of related diseases
and the development of targeted drugs. In this study, we
propose a model IFS-LightGBM (BO) based on machine
learning for the prediction of succinylation sites. For the
dataset, the PseAAC, disorder, PSSM, and CKSAAP four
feature extraction methods are used to extract the sequence
information and physicochemical information of polypep-
tide segments. At the same time, the IFS method and differ-
ent feature selection methods are introduced and combined

with the LightGBM classifier to eliminate redundant and
noise information to determine the best feature subset.
Through comparison, we find that compared with ReliefF,
LinearSVR, XGBoost, and ANOVA methods, the
LightGBM feature selection method can search for the opti-
mal feature subset faster, and its corresponding model
performance evaluation metrics are better. Finally, the BO
algorithm is used to adjust the parameters of the LightGBM
classifier to establish the best model. The results show that
the IFS-LightGBM (BO) model is a very effective way to
predict succinylation sites because of owing ACC of
0.7392, recall of 0.7219, MCC of 0.4771, precision of
0.7291, and F-measure of 0.7255.
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