Skip to main content
. 2020 Nov 10;2020:8858489. doi: 10.1155/2020/8858489

Table 9.

Hyperparameter optimization results of LightGBM (GS).

Hyperparameters Meanings Search ranges Optimal values
learning_rate Learning rate (0.01, 1.0) 0.1
max_depth Maximum depth of the tree (1, 50) 15
max_bin The max number of bins that feature values will be bucketed in (10, 100) 20
reg_alpha L1 regularization (1e-9, 1.0) 1e-5
boosting_type Training method gbdt; goss; rf; dart gbdt
num_leaves Number of leaf nodes (4, 50) 36
n_estimators Number of iterations (100, 600) 450