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ABSTRACT Mycobacterial F1Fo-ATP synthases (�3:�3:�:�:�:a:b:b=:c9) are incapable of
ATP-driven proton translocation due to their latent ATPase activity. This prevents
wasting of ATP and altering of the proton motive force, whose dissipation is lethal
to mycobacteria. We demonstrate that the mycobacterial C-terminal extension of
nucleotide-binding subunit � contributes mainly to the suppression of ATPase activ-
ity in the recombinant mycobacterial F1-ATPase. Using C-terminal deletion mutants,
the regions responsible for the enzyme’s latency were mapped, providing a new
compound epitope.
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F1Fo-ATP synthase is essential in Mycobacterium tuberculosis isolates for the forma-
tion of ATP (1, 2) and has become a drug target to fight tuberculosis (3–7). The F1

domain contains subunits �3:�3:�:�, the proton-translocating Fo domain (a:c9), and
subunits b:b=:� holding both domains together (8–10). Rotation of �:� connects H�

conduction and ATP formation within subunits �3:�3. Interestingly, mycobacterial
F1Fo-ATP synthase does not perform ATP hydrolysis-driven proton translocation be-
cause of latent ATPase activity (11, 12). Different structural features in the mycobacterial
nucleotide-binding subunit � (13, 14) and �:� have been proposed to be linked to
suppress ATPase activity (11, 12, 15, 16). These features include the extended 3.5-kDa
C terminus of subunit � (�CTD) (14) (Fig. 1), the extra 14-amino-acid �-loop (12), and the
C terminus of subunit � (15, 16). Understanding these mycobacterial entities resulted in
discovery of the mycobacterial F1Fo-ATP synthase inhibitors GaMF1 (17), epigallocat-
echin gallate (2) and EpNMF1 (16).

The mycobacterial �CTD was unresolved in the crystallographic structure (PDB ID
6FOC) (18). Residues 514 to 549 and 540 to 549 of the M. tuberculosis �CTD were
predicted to form a random coil, whereby residues 526 to 539 were determined to form
an �-helix (13). The chromosomal deletion mutation of the �CTD mutant Δ�(514 –548)
stimulated ATP hydrolysis of inverted membrane vesicles (IMVs) (13), whereas fusing
the M. tuberculosis �CTD at the C terminus of subunit � of the Geobacillus stearother-
mophilus (formerly Bacillus PS3) F1-ATPase decreased ATPase activity of the hybrid
enzyme (13). These data suggest that the mycobacterial �CTD may play a role in latency.

The 8-fold decrease of recombinant Mycobacterium smegmatis F1-ATPase compared
with its �-free form �3:�3:� demonstrated an inhibitory effect of subunit � in ATP
hydrolysis (16). However, the �3:�3:� ATPase activity is still significantly lower than the
nonlatent �3:�3:� complex, e.g., of G. stearothermophilus [4.9 � 0.04 �mol min�1 (mg of
protein)�1] (13), highlighting a significant contribution of another mycobacterial F1-
ATPase element to latency. To fully comprehend the mechanical system of latency and

Citation Wong C-F, Grüber G. 2020. The
unique C-terminal extension of mycobacterial
F-ATP synthase subunit α is the major
contributor to its latent ATP hydrolysis activity.
Antimicrob Agents Chemother 64:e01568-20.
https://doi.org/10.1128/AAC.01568-20.

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Gerhard Grüber,
ggrueber@ntu.edu.sg.

Received 20 July 2020
Returned for modification 31 August 2020
Accepted 16 September 2020

Accepted manuscript posted online 28
September 2020
Published

MECHANISMS OF ACTION:
PHYSIOLOGICAL EFFECTS

crossm

December 2020 Volume 64 Issue 12 e01568-20 aac.asm.org 1Antimicrobial Agents and Chemotherapy

17 November 2020

https://orcid.org/0000-0002-5730-8319
https://www.rcsb.org/structure/6FOC
https://doi.org/10.1128/AAC.01568-20
https://doi.org/10.1128/ASMCopyrightv2
mailto:ggrueber@ntu.edu.sg
https://crossmark.crossref.org/dialog/?doi=10.1128/AAC.01568-20&domain=pdf&date_stamp=2020-9-28
https://aac.asm.org


the role of the �CTD and its three regions, a systematic assessment using recombinant
M. smegmatis F1-ATPase mutants at the �CTD was performed.

First, the �CTD-deleted M. smegmatis F1-ATPase mutant, MsF1-�Δ514-549���, was
engineered using the recently generated template of the atp genes AGDC, encoding
subunits �:�:�:� within the pYUB1049 vector (16, 18) and the primers listed in Table S1

FIG 1 Amino acid sequence alignment of subunit � of different mycobacterial organisms in comparison with Homo sapiens, Escherichia coli, and G.
stearothermophilus. The sequence alignment of subunit � of the following organisms: H. sapiens (UniProt ID P25705-2), E. coli (UniProt ID P0ABB0), G.
stearothermophilus (UniProt ID P42005), M. tuberculosis (UniProt ID P9WPU7), M. smegmatis (UniProt ID A0R202), and Mycobacterium bovis (UniProt ID A1KI96)
were obtained from the UniProt database (30) and imported into Jalview (31). Alignment of the sequences was performed using ClustalWS (32). Thereafter, the
calculation of the percentage of identity was performed and presented in darker to lighter shades of blue, representing the most homologous to the least
homologous. As highlighted in red, the C-terminal extension was observed specifically in mycobacteria and not in other species. As previously studied, the
�-helix is present from V525 to V538 (according to M. tuberculosis amino acid numbering). For reference, the �-helix present in the C terminus is presented
by a green cylinder, and the region showing no secondary structure is denoted by a single black line.
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in the supplemental material. The linearized pYUB1049 vector was amplified (19), and
the two DNA fragments were incorporated as previously published (16). To ease
purification, a His6 tag was added to the N terminus of the � subunit (18). Protein
purification was performed as mentioned previously published (16), with an MsF1-
�Δ514-549��� in proper stoichiometry and an �Δ514-549 band running faster than its
wild-type (WT) counterpart, revealing the successful deletion (Fig. 2A and B). Subse-
quently, continuous ATP hydrolysis assay was performed according to previously
published methods (16, 20, 21). ATPase activity of 0.05 � 0.001 �mol min�1 (mg of
protein)�1 was calculated for WT MsF1-ATPase (Fig. 2C, Table 1) and 3.31 � 0.2 �mol
min�1 (mg of protein)�1 for mutant MsF1-�Δ514-549���, reflecting a �60-fold increase
in ATP hydrolysis. The 60-fold increase compared to the 1.7-fold increase of the
chromosomal deletion Δ�(514 –548) mutant in IMVs (13) underlines the need for a
defined enzyme to be presented, since endogenous MsF1Fo ATP synthase and ATP-driven
translocators within IMVs effect accurate measures. Interestingly, the ATP hydrolysis rate of

FIG 2 Characterization of the recombinant MsF1-�ΔCTD mutants. (A) Fractions from ion exchange were pooled and subjected to
size-exclusion chromatography. The recombinant proteins showed consistency in elution at �11.6 ml, and their integrity and
constituents were confirmed on a 12% SDS-PAGE gel (inset). The subunits are labeled, where �* refers to subunit � and its mutants
�, �, and �, which correspond to �60, 54 , 35, and 10 kDa, respectively. The corresponding proteins are as labeled: lane 1, MsF1-ATPase;
lane 2, MsF1-�Δ514-549���; lane 3, MsF1-�Δ523-549���; and lane 4, MsF1-�Δ538-549���. The purification protocol and 12% SDS-PAGE gel
were replicated at least three times, and results represented in the elution diagram and gel remained consistent. (B) Densitometric
analysis of the � to � ratio of MsF1-�Δ514-549��� revealed a 1:0.3 ratio, identical to that of the WT enzyme (16) and demonstrating the
correct stoichiometric subunit ratio. (C) Recombinant mutants were tested for their ATP hydrolysis rate. The decrease in NADH
absorption at 340 nm is plotted against the progressing time. MsF1-�Δ514-549��� showed a significant increase in ATP hydrolysis (red
triangle). On the other hand, MsF1-�Δ523-549��� (purple diamond) and MsF1-�Δ538-549��� (green asterisk) showed lesser ATP hydrolysis
than MsF1-�Δ514-549���. To calculate the specific activity, the initial rate was used (solid lines), and their calculated specific activities
and standard error of regression slope (Sb1) were 3.31 � 0.18, 1.54 � 0.03, and 1.33 � 0.01 �mol min�1 (mg of protein)�1.
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MsF1-�Δ514-549��� was significantly higher than that of the �-free complex
[0.63 � 0.003 �mol min�1 (mg of protein)�1] (16) but comparable to that of the nonlatent
G. stearothermophilus F1-ATPase [4.9 � 0.04 �mol min�1 (mg of protein)�1] (13). The results
suggest that subunit � is a major contributing factor in latent ATP hydrolysis of mycobac-
terial F1-ATPase.

MsF1-�Δ523-549��� and MsF1-�Δ538-549��� were designed to identify whether
the random coil regions 514 to 522 and 538 to 549 (18) or the �-helix region 523 to
537 (13) are/is critical for latent ATP hydrolysis (Table S1). Protein purification and ATP
hydrolysis assay were performed as described previously. MsF1-�Δ523-549��� and

FIG 3 A proposed mechanism of ATP hydrolysis inhibition. (A) Part of the T. brucei F1-ATPase crystal
structure (PDB ID 6F5D) (22) and a further zoom to highlight the proximity of its extended subunit � C
terminus and ADP. The T. brucei C-terminal residues 536 to 539 (red) form an �-helical turn, followed by
a random region (540 to 544) and an �-helix (546 to 558) that come close to the ADP. A conformational
alteration could bring R558 closer to ADP to generate a hydrogen bond with ADP, or one of the
C-terminal residues, not resolved in the structure, could come in proximity to the nucleotide. We predict
that the C-terminal residues 538 to 549 of mycobacterial subunit � may come in close proximity to the
ADP to stabilize the inhibited state. Subunits �, �, and � and the T. brucei-specific p18 are shown in green,
orange, yellow, and cyan, respectively. The figure was generated via PyMOL (33).

TABLE 1 Summary of specific enzyme activities of the MsF1-ATPase and its mutants

ATPase
ATP hydrolysis rate
[�mol min�1 (mg of protein)�1] Reference

MsF1-ATPase 0.05 � 0.001 This study
MsF1-ATPase trypsin treated 1.75 � 0.018 (16)
MsF1-��� 0.63 � 0.003 (16)
MsF1-�Δ514–549��� 3.31 � 0.18 This study
MsF1-�Δ538–549��� 1.33 � 0.01 This study
MsF1-�Δ523–549��� 1.54 � 0.03 This study
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MsF1-�Δ538-549��� (Fig. 2A) showed a similar �30-fold increase to that of the WT
enzyme (Fig. 2C, Table 1). Compared to the �60-fold ATP hydrolysis increase of
MsF1-�Δ514-549���, the 30-fold increase in ATP hydrolysis of MsF1-�Δ538-549��� sug-
gests that the �CTD residues 538 to 549 and the 514-to-522 region contribute to the
suppression of ATPase activity. In contrast, the comparable enzymatic increase in
MsF1-�Δ523-549��� reflects that the 523-to-537 region has no major impact on latency.
The two-step increase (30- to 60-fold) of MsF1-�Δ538-549��� and MsF1-�Δ514-549���

suggests that both regions may interact with two different mechanistic epitopes of the
enzyme. The F1-ATPase structure of the pathogen Trypanosoma brucei (22), also con-
sisting of an extended subunit of the � C terminus, might illustrate these aspects. As
shown in Fig. 3, residues 536 to 539 of this extension form one �-helical turn, followed
by a random region (540 to 544) and an �-helix (546 to 558) that come within 7.1 Å of
the ADP within the nucleotide binding site. Either a small conformational change may
bring R558 in close proximity to ADP or one of the remaining C-terminal residues not
resolved in the structure may interact with the nucleotide, thereby stabilizing the
ADP-inhibiting state (23). In analogy, we propose that the very C-terminal residues 538
to 549 of mycobacterial subunit �, whose deletion led to a 30-fold ATPase activity
increase, come close to the ADP and trap the nucleotide.

Concerning the second epitope interaction leading to the final 60-fold ATPase
activity increase, residue 522 of the mycobacterial stretch 514 to 522 was described to
come in proximity with polar residues of � of the hybrid �chi

3:�3:� complex, thereby
decreasing the angular velocity of the power stroke after ATP binding (13).

In conclusion, during evolution, F-ATP synthases have evolved various mechanisms
regulating ATP hydrolysis inhibition, including additional features, such as the inhibi-
tory protein (24), subunit � (25), the extended C terminus of subunit � (26–28), or the
species-specific extra loop in � (12, 29). Recent studies proposed cumulative effects of
mycobacterial subunits �, �, and � to be responsible for suppressed ATP hydrolysis (12,
13, 15). Using defined enzyme complexes, the data presented demonstrate that the
mycobacterial �CTD of subunit � is the major regulator of latent ATP hydrolysis activity,
preventing wastage of ATP. Together with the inhibitory mechanisms proposed, the
data may contribute to the design of molecules disrupting the interactions of subunit
�’s unique C terminus to activate ATPase hydrolysis.
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