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A recent paper published by Le and colleagues in Antimicrobial Agents and Che-
motherapy describes the use of remdesivir (GS-5734) in a patient with a double

lung transplant and afflicted with COVID-19 (1). The patient experienced a progressive
decline in renal function 3 days after initiating remdesivir treatment, which prompted
hemodialysis. Due to acute kidney impairment (AKI), remdesivir therapy was discon-
tinued 1 week after initiation despite a lack of clinical improvement. The authors
suggest that accumulation of the main remdesivir metabolite, GS-441524, and the
remdesivir excipient, sulfobutylether-�-cyclodextrin (SBED; Captisol) may lead to AKI
and offer hemodialysis as a possible solution to remove both GS-441524 and Captisol
and maintain remdesivir treatment. While we agree with the authors’ well-supported
assertion that renal clearance of Captisol (2, 3) likely contributes to the nephrotoxicity
associated with remdesivir treatment (4), we refute the assumption that GS-441524 is a
major driver of AKI. We further contend that removal of GS-441524 likely hampers the
overall efficacy of remdesivir, given its documented ability to exert anti-SARS-CoV-2
activity (5, 6).

A central issue with the authors’ analysis lies in their incomplete description of the
remdesivir bioactivation scheme. While it is true that GS-441524 is the major persistent
metabolite following intravenous administration of remdesivir (7–11), the authors fail to
consider the role of the intermediate L-alanine metabolite (GS-704277) in their discus-
sion of renal toxicity, omitting GS-704277 from their bioactivation schematics. GS-
704277 is a low-molecular-weight (MW � 441 g/mol) anionic molecule. Administration
of remdesivir results in transient appearance of GS-704277 before further hydrolysis to
GS-441524 (12). Studies conducted by Gilead Sciences in rats have demonstrated that
GS-704277, but not GS-441524 or remdesivir, is an effective substrate of OAT3 and
likely contributes to renal adverse events in rats (13). Though the interaction between
GS-704277 and human OATs has not yet been characterized, pharmacokinetic (PK)
studies in humans point to the extensive renal clearance of GS-704277 rather than
GS-441524. A study by Tempestilli and colleagues documented the PK of remdesivir
and GS-441524 in a patient with normal kidney function and in a patient with renal
impairment (14). While the patient with renal impairment retained higher levels of
GS-441524 throughout the 24-h experiment (Fig. 2 in reference 14), the identical decay
kinetics (slope) of GS-441524 for both patients implies that the higher levels of
GS-441524 result from reduced clearance of the intermediate GS-704277. If renal
impairment resulted in reduced clearance of GS-441524, then the half-life of GS-441524
in the renally compromised patient would be much longer than that observed for
the uncompromised patient. However, this is not the case. The rate of clearance and
half-life of GS-441524 is essentially identical for both patients, implicating the ability for
GS-704277 to be extensively cleared by the kidneys.

In addition to overlooking the significance of GS-704277, the authors erroneously
claim that the 50% effective concentration (EC50) of GS-441524 against SARS-CoV-2 has

Citation Yan VC, Muller FL. 2020. Captisol and
GS-704277, but not GS-441524, are credible
mediators of remdesivir’s nephrotoxicity.
Antimicrob Agents Chemother 64:e01920-20.
https://doi.org/10.1128/AAC.01920-20.

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Victoria C. Yan,
victoriacyanide@gmail.com.

For the author reply, see https://doi.org/10
.1128/AAC.01937-20.

Accepted manuscript posted online 28
September 2020
Published

LETTER TO THE EDITOR

crossm

December 2020 Volume 64 Issue 12 e01920-20 aac.asm.org 1Antimicrobial Agents and Chemotherapy

17 November 2020

https://orcid.org/0000-0003-0837-5184
https://doi.org/10.1128/AAC.01920-20
https://doi.org/10.1128/ASMCopyrightv2
mailto:victoriacyanide@gmail.com
https://doi.org/10.1128/AAC.01937-20
https://doi.org/10.1128/AAC.01937-20
https://crossmark.crossref.org/dialog/?doi=10.1128/AAC.01920-20&domain=pdf&date_stamp=2020-9-28
https://aac.asm.org


not been reported. Pruijssers and colleagues have demonstrated that GS-441524
exhibits similar or superior efficacy to remdesivir in Calu3 and VeroE6 cells infected with
SARS-CoV-2 (5). The authors’ recommendation for hemodialysis assumes that remde-
sivir is the main contributor to antiviral activity despite the fact that its half-life pales in
comparison to that of GS-441524 (11). We acknowledge that hemodialysis may alleviate
remdesivir-related AKI by removing Captisol and GS-704277. However, we assert that
GS-441524 is an unlikely culprit behind AKI. We thus caution the authors of potential
reductions in treatment efficacy that could be associated with removing GS-441524,
given its low micromolar anti-SARS-CoV-2 activity (5, 6). Hemodialytic removal of
GS-441524 may further diminish the therapeutic effects of remdesivir treatment.
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