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Abstract

Thrombotic complications are frequent in COVID-19 and contribute significantly to mortality and 

morbidity. We review several mechanisms of hypercoagulability in sepsis that may be upregulated 

in COVID-19. These include immune-mediated thrombotic mechanisms, complement activation, 

macrophage activation syndrome, antiphospholipid antibody syndrome, hyperferritinemia, and 

renin-angiotensin system dysregulation. We highlight biomarkers within each pathway with 

potential prognostic value in COVID-19. Lastly, recent observational studies have evaluated a role 

for the expanded use of therapeutic anticoagulation in COVID-19. We review strengths and 

weaknesses of these studies, and we also discuss the hypothetical benefit and anticipated 

challenges of fibrinolytic therapy in COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19) frequently results in a hypercoagulable state that is 

strongly associated with mortality.1 Widespread micro- or macrovascular thrombosis could 

explain several disparate phenomena observed in COVID-19, and an exhaustive search for 

underlying mechanisms is now underway. Emerging reports have suggested a possible role 

for lupus anticoagulant as part of the antiphospholipid syndrome,2 which could plausibly 

link a highly pro-inflammatory state with thrombus formation. However, numerous 

pathogenic mechanisms exist that may be at play in COVID-19, and a great deal may be 

learned from current observations in COVID-19 and from related disease states such as 
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acute respiratory distress syndrome or other viral infections. Recent reviews have 

highlighted important procoagulant mechanisms that may be upregulated in COVID-19.3,4 

In this review, we aim to build on these concepts by 1) summarizing more recent evidence 

that micro- and macrovascular thrombosis is indeed prevalent in COVID-19, 2) reviewing 

data supporting and refuting the role of thrombosis as a contributor to COVID-19 multiorgan 

dysfunction, 3) summarizing pathogenic mechanisms of thrombosis seen in related disease 

states that may occur in COVID-19, 4) suggesting biomarker-based strategies that could 

identify elevated thrombotic risk and differentiate potentially heterogenous mechanisms of 

thrombosis in COVID-19, 5) highlighting observational data and upcoming randomized 

trials for the role of anticoagulation in COVID-19 that should inform best practice, and 6) 

discussing the rationale and anticipated challenges with fibrinolytic therapy in COVID-19.

Overview of COVID-19 Associated Hypercoagulopathy

COVID-19 induces a prothrombotic state, and a high frequency of reported major 

thrombotic events raises concern for unique prothrombotic pathophysiology.3 Micro- and 

macrovascular thromboembolic or in situ thrombotic complications have been observed in 

COVID-19 in the vasculature of the lungs, spleen, brain, gut, and periphery.5–8 There are 

reports of frequent thrombus formation in hemodialysis circuits, strokes as a presenting 

feature in young patients who were previously healthy, and arterial and venous 

thromboembolism formation in spite of prophylactic or fully therapeutic anticoagulation.8,9 

Incident thrombotic events have been described in patients who were otherwise 

asymptomatic. Moreover, thromboses have been identified both in the acute setting and in 

the weeks following critical illness, suggesting that the pro-thrombotic state could last 

several weeks or even longer post-hospitalization. Similar thrombotic complications were 

observed in severe acute respiratory syndrome (SARS) and Middle East Respiratory 

Syndrome (MERS).10,11

While many laboratory findings suggest overlap between inflammation and 

hypercoagulability, a principal unresolved question is whether the two are linked by causal 

mechanisms or simply indicative of severe illness activating parallel biologic pathways. If 

the former is true, anti-inflammatory interventions could plausibly mitigate thrombotic 

complications. If the latter is true, no such benefit is likely to be observed. Additionally, it is 

unknown whether conventional methods of anticoagulation are efficacious in COVID-19 or 

if COVID-19 coagulopathy bypasses mechanisms targeted by existing therapies.

Pulmonary Involvement

Pulmonary embolism (PE) and deep vein thrombosis are the most frequently noted 

thrombotic events in COVID-19, with initial reports noting an incidence of 20 to 30% in 

critically ill patients (Figure 1).12 In a Dutch cohort of 184 subjects with COVID-19 in the 

intensive care unit (ICU), the cumulative incidence of large-vessel thrombotic events was 

49%, the majority of which were pulmonary emboli seen on computed tomography in 

segmental and subsegmental pulmonary arteries.8 This occurred in spite of universal 

thromboprophylaxis with Nadroparin at 2800 or 5700 IU once or twice daily, and the risk of 

all-cause death in that cohort was 5-fold higher among patients with a thrombotic event (HR 
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5.4; 95% CI 2.4 to 12). An Italian cohort of 388 patients observed a smaller but nevertheless 

sizable cumulative incidence of thromboembolic events at a rate of 21% (27.6% in the ICU, 

6.6% on the general ward), half of which were diagnosed within 24 hours of hospital 

admission.13 A French cohort observed a similar cumulative incidence of thrombotic events 

and compared these to event rates from two different historical control populations: 1) ICU 

patients without COVID-19 admitted to the ICU in the Winter of 2019 and 2) patients with 

influenza admitted to the same ICU in 2019.14 Among COVID-19 ICU patients, 20.6% 

exhibited evidence of pulmonary embolism (diagnosed a median of 6 days from ICU 

admission), which was >2-fold higher compared to either historical control group. 

Therefore, it appears that COVID-19 may be uniquely prothrombotic compared to other 

severe viral respiratory pneumonias.

While published autopsy studies have been relatively rare in the setting of the pandemic, 

small case series have noted frequent macrovascular and microvascular fibrinous thrombi in 

the lungs and occasionally within multiple other organs (Figure 2). In a German autopsy 

series of 12 consecutive COVID-19 deaths, 7 patients had venous thromboembolism and PE 

was considered the direct cause of death in 4.5 Swiss pathologists reviewing 21 autopsies of 

COVID-19 patients found microthrombi in alveolar capillaries in 5 out of 11 patients in 

whom fibrin immunohistochemistry was performed, potentially consistent with 

complement-mediated microvascular injury.15,16 Evidence of small pulmonary vein and 

capillary vasculitis was also seen in one patient, though systemic vasculitis was absent. A 

series of 21 autopsies from multiple sites in the United States (US) confirmed a similarly 

high frequency of pulmonary microthrombi, and major pulmonary thromboembolism was a 

common fatal complication.17 Disseminated pulmonary microthrombi have been suggested 

as a contributor to unique COVID-19 ARDS physiology that has relatively normal lung 

compliance, potentially requiring ventilation strategies different from those typically 

employed in ARDS due to other etiologies.18,19 However, the initial interest in novel 

ventilation strategies was misguided, as the pathologic correlate of ARDS—diffuse alveolar 

damage—has indeed been seen in most COVID-19 autopsies (Figure 2).17 Lastly, a final 

study compared lung autopsies from 7 patients who died from COVID-19 with 7 patients 

who died from ARDS from H1N1 influenza.20 In patients with COVID-19, alveolar 

capillary microthrombi were 9 times as prevalent as in patients with influenza (p<0.001), 

consistent with the increased incidence of thrombosis seen clinically in COVID-19 

compared to other viral pneumonias. Severe endothelial injury and intracellular virus were 

also noted in patients with COVID-19 in areas associated with microthrombosis, suggesting 

that endothelial damage and inflammation may directly underlie thrombus formation.

It is highly likely that acute right ventricular dysfunction and cor pulmonale in COVID-19 

stem, at least in part, from an abundance of central or segmental pulmonary emboli or a high 

burden of small vessel pulmonary microthrombi. These would be exacerbated by hypoxic 

vasoconstriction and increased intrathoracic pressure from mechanical ventilation, all of 

which would induce a sudden increase in right ventricular afterload leading to right 

ventricular-pulmonary artery uncoupling. Indeed, in a cohort of 120 patients with 

COVID-19, evidence of impaired right ventricular longitudinal strain and right ventricular 

dilatation was strongly associated with mortality,21 although these echocardiographic 

changes have not yet been directly linked to the presence of PE. Lastly, PE and right 
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ventricular strain could also significantly contribute to troponin elevation, cardiogenic shock, 

and sudden death, which can develop suddenly even in patients with COVID-19 who were 

previously asymptomatic or otherwise recovering from respiratory failure.22,23

Extrapulmonary and Cardiac Involvement

Although thrombus has been identified most frequently in the lungs in patients with 

COVID-19, there is an increasing recognition of extrapulmonary thrombosis that may be a 

manifestation of de novo thrombus or exacerbation of previous atherosclerotic disease and 

endothelial dysfunction. Many patients with COVID-19 have presented with acute ischemic 

stroke or suffered a stroke while hospitalized, including young patients less than 50 years old 

with relatively few pre-existing risk factors.9 The incidence of stroke in ICU patients has 

been approximately 2.5% in several COVID-19 cohorts.8,13 Mesenteric ischemia, peripheral 

artery obstruction, and large vessel arteriosclerosis obliterans have also been reported,6,24–26 

as has cerebral venous sinus thrombosis.27 Hemodialysis circuits have been observed to clot 

at very high rates (in one cohort, this occurred in 28 out of 29 patients receiving continuous 

renal replacement therapy, 96.6%).26 Lastly, phenomena such as acro-ischemia (i.e., 

“COVID Toe”) are concerning for digital microvascular thromboembolism,28,29 although it 

is possible that these represent microvascular inflammatory damage without 

microthrombosis per se.30

Some cardiac involvement in COVID-19 may be related to thrombotic complications. This 

includes myocardial infarction, in-stent thrombosis, and sudden left ventricular dysfunction, 

although the incidence of these are unclear and there are a number of non-thrombotic 

mechanisms that could also underlie cardiac pathophysiology. In a study of 416 patients 

hospitalized with COVID-19, the presence of cardiac injury detected by high sensitivity 

troponin I (TnI) was associated with a much higher risk of death (51.2% mortality with 

cardiac injury vs 4.5% without, p < 0.001).31 Moreover, the association with mortality was 

proportional to the magnitude of TnI elevation, and patients with cardiac injury also tended 

to have laboratory evidence of hypercoagulation (7.3% with cardiac injury vs 1.8% without, 

p = 0.02). One possibility is that there is a causal link between hypercoagulation, 

inflammation, and thrombus or plaque rupture, similar to that seen in influenza or perhaps 

related to novel mechanisms of hypercoagulation.32–34 However, it may also be the case that 

biomarkers of cardiac injury and hypercoagulation are simply confounded by the severity of 

illness and not directly linked. Several other pathogenic mechanisms for cardiac injury may 

also exist, including myocarditis, direct viral cardiomyocyte or endothelial damage, stress 

cardiomyopathy, type 2 myocardial infarction, or microvascular dysfunction, so the 

presentation of cardiac damage in COVID-19 is likely to be heterogeneous and potentially 

multifactorial.35,36 Moreover, there has been a paradoxical decrease in the volume of 

catheterization lab activation for acute coronary syndrome as patients delay care or systems 

navigate infectious control issues, so the actual impact of COVID-19 on myocardial 

infarction incidence and epicardial plaque rupture or thrombus has been challenging to 

assess.37

By autopsy, microthrombi have been identified in several extrapulmonary organs, but at a 

much lower frequency than pulmonary involvement and less consistently across studies. In 

Hanff et al. Page 4

Am J Hematol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the kidney, glomerular capillary microthrombi were seen in 3 of the 21 patients from the 

Swiss series but in zero patients from the US or German series.5,15,17 In the spleen, two out 

of 10 patients in another early autopsy series identified small artery thromboses,7 but this 

finding has been inconsistent across studies. Indirectly, however, the spleen has shown 

consistent expansion of the red pulp, which could be an indicator of increased splenic 

vascular congestion. Prostate and testicular vein microthrombi have also been seen, though 

only rarely.5 Lastly, cardiac and liver microthrombi were reported in early unpublished 

autopsy findings, but the presence of microthrombi in these organs has not been confirmed 

in larger recent studies. On the other hand, individual cardiomyocyte damage has been 

identified, and the differential etiology for this includes endothelial or paravascular cell 

dysfunction versus direct viral cardiomyocyte damage.17,36 Varga and colleagues identified 

viral inclusion bodies within endothelial cells and sequestered mononuclear and 

polymorphonuclear cellular infiltration of the endothelium, along with evidence of 

endothelial apoptosis.38 This suggests the presence of endotheliitis, which could lead to 

microvascular dysfunction resulting in multiorgan dysfunction, including the heart, kidney, 

and liver. Anti-viral agents could directly mitigate viral inclusions in the endothelium, which 

may manifest as decreased thrombotic events in treatment arms of randomized trials for 

agents like remdesivir or lopinavir-ritonavir—although rates of thrombosis have not yet been 

reported from these trials.39 In the heart, the concern for microvascular dysfunction is 

corroborated by a relative paucity of evidence for myocarditis: although myocarditis has 

been observed by autopsy or endomyocardial biopsy, its incidence is much lower than 

suggested by elevated serum troponin levels.17,40

Mechanisms of Thrombosis in COVID-19

Disseminated Intravascular Coagulation

Disseminated intravascular coagulation (DIC) is common in critical illness. Typically, it 

represents activation of the tissue factor pathway of the coagulation cascade and deposition 

of platelet-fibrin thrombi in the microvasculature. This eventually leads to the consumption 

of platelets and procoagulant factors, resulting in an associated bleeding diathesis.41,42 

Hypercoagulability in DIC can be exacerbated by features of critical illness itself, including 

hypoxia, dehydration, and relative immobility. In severe cases, DIC can lead to damage of 

the microvasculature and subsequent organ dysfunction. While DIC has no specific marker 

for its diagnosis, it is often characterized by the presence of markedly elevated fibrin 

degradation products, as is seen in COVID-19. On the other hand, DIC classically has an 

associated bleeding diathesis that follows from the secondary activation of fibrinolysis, a 

feature that is not common with other thrombotic microangiopathies (TMA) such as 

thrombotic thrombocytopenic purpura or catastrophic antiphospholipid antibody syndrome.
43 The rate of life-threatening bleeding events in COVID-19 is not well established, but thus 

far it appears that major bleeding occurs much less frequently than thrombotic events. It 

could be that hemorrhagic events are less easily identified: for instance, filling defects on CT 

are more readily detected than alveolar hemorrhage, which requires bronchoscopic 

confirmation. Conversely, if bleeding truly occurs less frequently than thrombotic events, 

this suggests that COVID-19 coagulopathy may represent a type of TMA distinct from DIC 

(Figure 3).
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COVID-19 biomarkers generally suggest idiosyncratic thrombotic pathophysiology that is 

distinct from DIC, whereas only a small number of laboratory findings in COVID-19 

coagulopathy meet DIC criteria.44,45 Initial suspicion of DIC was based on marked 

elevations in D-dimer and fibrin degradation products (FDP). This can be seen in DIC, and 

in COVID-19 these biomarkers are strongly associated with morbidity and mortality.1 An 

elevated D-dimer at admission (≥ 1.0 mcg/mL) is associated with an increased mortality 

with a remarkably high odds ratio of 18.42 (95% CI 2.64–128.55), and D-dimer continues to 

rise throughout the course of hospitalization in non-surviving patients.46 This suggests an 

ongoing coagulopathic state that tracks with disease severity. On the other hand, elevations 

in the prothrombin time (PT) and activated partial thromboplastin time (aPTT) are only 

modest, and fibrinogen and factor VIII are increased,47 which is more typical of an acute 

phase response than DIC. Thrombocytopenia is another feature of COVID-19 that is linearly 

associated with the risk of death, but the degree of thrombocytopenia observed in late stages 

of COVID-19 is lower than that which is typically seen in DIC.48,49

Detailed hypercoagulability assays in COVID-19 indicate the existence of clot-predominant 

coagulopathy that peaks within one week of ICU admission without undergoing a transition 

to secondary hyperfibrinolysis. In one series, hypercoagulability measured by 

thromboelastometry was increased on ICU admission, continued to increase up to day 5, and 

then partially (but not completely) improved by day 10.50 Fibrinogen levels were highest 

upon admission to the ICU (895.7 mg/dL ± 110) and decreased thereafter to a nadir of 332.5 

mg/dL ± 50 by day 10. These elevated fibrinogen levels may represent an acute phase 

response,51 or they may themselves have a more complex role in the hypercoagulable state 

seen in COVID-19. One major caveat of this study is that measurements on day 10 could 

only include surviving patients (n=33 of 40). If the 7 patients who died would otherwise 

have developed hyperfibrinolysis had they survived, this is unknown. Thus, one possibility is 

that a high mortality rate early in the natural history of COVID-19 precludes observation of 

the later fibrinolytic features of DIC. Conversely, COVID-19 coagulopathy may remain 

hypercoagulable, indicating the presence of a non-DIC TMA.

Several pathogenic mechanisms exist that may contribute to the hypercoagulability seen in 

COVID-19. We will review several possibilities, drawing insight from SARS and MERS, 

immunobiology, and activity of the renin-angiotensin system (Figure 3).

Cytokine Storm and Thrombosis

It is plausible that COVID-19 associated coagulopathy is a downstream consequence of the 

host inflammatory response to SARS-CoV-2 and innate immune activation (Central Figure). 

Activation of coagulation and subsequent fibrin deposition is presumably adaptive in the 

early phase of some other infections, but continued inflammation can quickly lead to a 

deleterious hyperinflammatory response mediated by cytokine storm and macrophage 

activation syndrome. Cytokine storm is an auto-amplifying syndrome of proinflammatory 

cytokine release that is a major contributor to ARDS and multiorgan dysfunction syndrome 

in several settings, including CAR T-cell therapy and Castleman disease.52–54 Macrophage 

activation syndrome is a related proinflammatory cascade that is associated with a high rate 
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of thrombosis and death in sepsis.55,56 However, the exact progression from initial infection 

in COVID-19 to inflammatory response and hypercoagulable state is unknown.

Several nonspecific inflammatory biomarkers are greatly increased in hospitalized 

COVID-19 patients, including C-reactive protein, erythrocyte sedimentation rate, and 

ferritin, as are several procoagulant factors such as von Willebrand factor and Factor VIII 

(Table 1).47,57 In addition, numerous proinflammatory cytokines are increased including 

tumor necrosis factor alpha (TNF-α) and interleukin (IL)-2R, IL-6, IL-8, and IL-10.58,59 

TNF-α and IL-6, in particular, are elevated to a degree not typically seen in bacterial sepsis 

or influenza.60 Many of these cytokines demonstrate a prothrombotic effect in other settings, 

alone or in combination, though a causal link in COVID-19 has not yet been established. 

Nevertheless, an association between elevated IL-6 and increased fibrinogen has been 

observed at the time of ICU admission.61 If IL-6 is mechanistically linked to a 

hypercoagulable state, tocilizumab and sarilumab, specific IL-6 antagonists, may reduce 

thrombotic risk. This should be explored in ongoing trials of these agents. Lastly, COVID-19 

patients with prolonged aPTT were found to have lupus anticoagulant present at a high rate 

(91% of tested patients) compared to a historical control of patients with elevated aPTT 

without COVID-19 (26%).2 The clinical significance of lupus anticoagulant in COVID-19 is 

unclear, but this raises the possibility of the antiphospholipid antibody syndrome as a 

potential contributor to thrombogenesis in some patients.

Causal mechanisms for immune-mediated thrombosis could potentially be inferred from 

other severe infections. In SARS-CoV human in vitro models, infected mononuclear cells 

expressed a high level of procoagulant genes including fibrinogen, SERPINS, Tissue Factor, 

and factors II and X.11,62 These factors would induce hypercoagulability. The cells also 

expressed genes for Toll-like receptor 9 and thromboxane synthase, which promote platelet 

activation and aggregation, endothelial dysfunction, and vasoconstriction. This could tie into 

evidence of endothelial damage that was observed in the aforementioned COVID-19 autopsy 

series, which could underlie aspects of multiorgan dysfunction. Other mechanisms of 

platelet activation were independently associated with worse prognosis in a proteomic 

analysis of SARS-CoV, including decreased serum platelet factor 4 and increased beta-

thromboglobulin (Central Figure).63 It is possible that overlapping prothrombotic 

mechanisms exist in COVID-19, mediated by procoagulant factors and platelet dysfunction.

At the same time, viral infections and sepsis in general have several mechanisms by which 

innate immune system activity triggers coagulation, including activation of tissue factor, 

complement system C3a and C5a, and von Willebrand factor.64–66 In particular, viruses can 

trigger the extrinsic coagulation pathway mediated by Tissue factor and factor VIIa. 

Normally, tissue factor/VIIa complexes form at the site of endothelial damage.67 However, 

monocytes and macrophages can be induced to express tissue factor in the setting of viral 

infection, largely via activity of TNF-α and nuclear factor kappa B.64 Thus, increased TNF-

α levels measured in COVID-19 could implicate tissue-factor dependent thromboses, 

although this is relatively non-specific—TNF-α is a pleiotropic proinflammatory cytokine 

with multiple potentially prothrombotic downstream effects. Moreover, it is notable that 

TNF-α blockade has been attempted as a therapy in sepsis on numerous occasions without 
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ever establishing a mortality benefit in any single trial, although a modest but significant 

mortality benefit across studies has been observed by meta-analysis.68

Complement Activation

Complement cascade activation may also recruit and activates leukocytes, leading to greatly 

amplified local release of the pro-inflammatory cytokines IL-1, IL-6, IL-8, and interferon-γ 
and subsequent microvascular damage. Complement activation is robust in sepsis, and 

inhibition of the complement system can ameliorate coagulopathy and endothelial 

dysfunction in animal models of sepsis.65 In lung tissue from patients with severe 

COVID-19 pneumonia and skin biopsies from COVID-19 patients with purpuric rash, there 

was evidence of catastrophic microvascular injury accompanied by terminal components of 

complement activation: C5b-9, C4d, and mannose binding lectin-associated serine protease 

(Central Figure).16 Anti-compliment C5 therapy with eculizumab has been considered for 

COVID-19. In a single-arm, open label study, four patients with COVID-19 given 

eculizumab experienced decreased C-reactive protein and all patients successfully recovered 

from COVID-19.69,70 Further randomized study of this therapy is warranted to compare this 

effect to placebo.

Macrophage Activation Syndrome and Hyperferritinemia

Macrophage activation syndrome (MAS) may be contributing to aspects of the cytokine 

storm and hypercoagulable state seen in COVID-19. MAS is thought to occur when 

activated antigen presenting cells cannot be lysed by CD8 T cells or natural killer (NK) 

cells.56 Following an initial inflammatory trigger, elevated IL-6 has been shown to decrease 

NK cell cytolytic function (Central Figure). As a consequence, there is prolonged interaction 

between innate and adaptive immune cells that further promotes cytokine storm, 

hemophagocytosis, and multi-organ dysfunction. Two biomarkers in COVID-19 suggest the 

potential presence of MAS. The first, as previously mentioned, is elevated IL-6 that is seen 

in COVID-19 at levels higher than are typical in other viral pneumonias. Second, ferritin 

elevation is a hallmark sign of MAS, and sustained fever and liver dysfunction are frequently 

seen in MAS though these are nonspecific. In a combined analysis of 653 COVID-19 

patients across two studies, patients with severe vs non-severe COVID-19 had higher serum 

ferritin by 408 ng/mL (95% CI 311 to 505), and non-surviving versus surviving patients had 

a ferritin level that was 760 ng/mL higher (95% CI 561 to 959).59 Thus, key MAS 

biomarkers have been identified in severe COVID-19, potentially implicating MAS in a pro-

inflammatory, prothrombotic, hyperferritinemic syndrome.71

Renin Angiotensin System Overactivation

In comparison to other bacterial and viral pneumonias, inflammation and hypercoagulability 

in COVID-19 may be uniquely related to its interaction with the renin-angiotensin system 

(RAS). Infection with SARS-CoV-2 is triggered when the virus binds to angiotensin-

converting enzyme 2 (ACE2),72 similar to what was seen with SARS-CoV.73 ACE2 is a 

membrane bound protein found in many areas of the body including the lungs, small 

intestine, heart, brain, adipose tissue, and endothelium.74 Its distribution is particularly high 

in the lungs, heart, arteries, and veins.75 In the RAS, angiotensinogen is converted to 

angiotensin (Ang) I by renin, Ang I is converted to Ang II by angiotensin-converting enzyme 
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(ACE), and Ang II promotes pleiotropic vasoconstrictive, proinflammatory, and 

prothrombotic downstream effects via the Angiotensin II receptor type I (AT1R) and 

Angiotensin II receptor type IV (AT4R).76–78 ACE2 opposes the activity of the RAS via two 

mechanisms. First, ACE2 leads to degradation of Ang I and Ang II, depleting the substrate 

available for activation of AT1R via the classical RAS cascade. Secondly, Ang II is directly 

degraded into Ang(1–7), which is a vasoactive peptide that has vasodilatory and anti-

inflammatory effects via the Mas receptor.

SARS-CoV-2 exploits ACE2 for cellular entry after using the serine protease TMPRSS2 to 

prime the viral spike protein.79 Through this process, it is possible that the pulmonary 

expression of membrane-bound ACE2 is downregulated. Virus-mediated downregulation of 

ACE2 would then shift the normal balance towards proinflammatory and prothrombotic 

effects mediated by Ang II and AT1R (Central Figure). This would potentially be reflected 

by an increased local or circulating ratio of Ang II to Ang(1–7) or absolute level of Ang II. 

Indeed, increased plasma Ang II was observed by Liu and colleagues in a sample of 

COVID-19 patients compared to healthy controls, although the sample size of this study was 

only 12 patients and the range of Ang II was wide.80

Ang II has several proinflammatory and prothrombotic effects that could be amplified in 

COVID-19. Accelerated microvascular thrombosis has been demonstrated in mouse models 

infused with Ang II.81 Ang II plays a role in vascular and endothelial cell dysfunction, 

hypertrophy, and oxidative stress,82–84 all of which may be prothrombotic. AT1R activation 

by Ang II enhances platelet activation and impairs fibrinolysis, resulting in 

hypercoagulability.82,85 In several models, Ang II has also been shown to increase 

expression of tissue factor, which would activate the extrinsic coagulation pathway, in 

addition to plasminogen-activator inhibitor 1 (PAI-1), which is the principal endogenous 

inhibitor of tissue plasminogen activator and urokinase (Central Figure).86 Increased tissue 

factor and PAI-1 downstream of Ang II could both lead to a prothrombotic and 

hypofibrinolytic state. In ARDS, PAI-1 levels are elevated, but the pathophysiologic 

implication of this has not been firmly established.87 Some experimental evidence indicates 

that tissue factor and PAI-1 are neither necessary nor sufficient for accelerated microvascular 

thrombosis from chronic hypertension,81 but their role in the acute setting of COVID-19 

downstream of Ang II activation is unknown.

Attenuated fibrinolysis has been observed in a high proportion of patients admitted to the 

ICU with COVID-19, and this is strongly correlated with thrombotic events.88 PAI-1, as the 

principal inhibitor of plasminogen activation, could lead to such a state of impaired 

fibrinolysis if overactivated in COVID-19. PAI-1 has primarily been implicated in chronic 

thrombus deposition or atherosclerosis, as seen in mendelian-randomization studies 

confirming a causal relationship between PAI-1 and coronary artery disease. However, in 

models of other viral infections such as influenza and cytomegalovirus, increased IL-6 is 

acutely associated with increased PAI-1,89 and PAI-1 increases coagulation and decreases 

fibrinolysis in mouse models of influenza.90 In mouse models of SARS-CoV, PAI-1 

expression led to increased pulmonary fibrosis mediated by transforming growth factor-β.91 

Moreover, PAI-1 is expressed by multiple cell types, including adipose tissue,92 which offers 

a possible connection between obesity and death in COVID-19—particularly in younger 
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patients without any other preexisting comorbidities. However, the presence of elevated 

fibrin degradation products in COVID-19 could potentially contradict a potential role of 

PAI-1, which would be expected to induce a state of hypofibrinolysis with low levels of 

fibrin degradation. On the other hand, this same feature in later stages of DIC could also 

explain the absence of a shift to secondary fibrinolysis, perhaps explaining the lack of 

reported bleeding complications typical of DIC.

Therapeutic Anticoagulation in COVID-19

At present, compelling evidence for an expanded role of therapeutic anticoagulation in 

COVID-19 does not exist, although the high burden of thrombotic events and relationship of 

thrombotic events to COVID-19 mortality raise the urgency of this question and the need for 

randomized trial data (Table 2). Equipoise regarding universal therapeutic anticoagulation 

currently exists, and caution is warranted with this strategy as it would invariably lead to 

increased bleeding events that must be weighed against uncertain benefit. Current guidelines 

support venous thromboembolism prophylaxis for all admitted patients absent specific 

contraindications for bleeding risk. Likewise, all patients with direct evidence of venous or 

arterial thrombus, atrial fibrillation, mechanical cardiac valves, or need for secondary venous 

thromboembolism prophylaxis should be initiated on or maintained on therapeutic 

anticoagulation unless specific contraindications arise. The mode of therapeutic 

anticoagulation is worth considering at the time of hospital admission, including concerns 

for the burden of therapeutic monitoring and the potential role for therapies with a shorter 

half-life or reversal potential in case bleeding events arise.

Two observational studies have retrospectively assessed the mortality rate of patients 

hospitalized for COVID-19 who received therapeutic anticoagulation versus those who did 

not. Both reported a significantly lower mortality rate in the group receiving therapeutic 

anticoagulation, but these findings may be impacted by bias and confounding given their 

observational nature. In a study by Tang and colleagues, 449 adult patients hospitalized for 

COVID-19 longer than 7 days were evaluated, of whom 99 received heparin (unfractionated 

or low molecular weight) for greater than 7 days.93 No association with mortality was seen 

in the overall cohort in patients, although a significant mortality difference was measured in 

a post-hoc subgroup analysis of patients with evidence of sepsis-induced coagulopathy. 

More recently, Paranjpe and colleagues evaluated 2,773 patients hospitalized with 

COVID-19, among whom 28% received therapeutic anticoagulation at some point during 

admission.94 In a subset of anticoagulated patients who required mechanical ventilation, in-

hospital mortality was 29.1% compared to mortality of 62.7% of ventilated patients who 

never received therapeutic anticoagulation. After multivariable adjustment controlling for 

important baseline differences, a significant mortality difference was still observed (hazard 

ratio 0.86 per day, 95% CI 0.82 to 0.89).

These analyses have key limitations that weaken the strength of the reported results. In the 

study by Tang and colleagues, heparin exposure was defined as administration of a 

minimum of 7 days of heparin. Thus, patients who received heparin had to survive for a 

minimum of 7 days, whereas this restriction did not apply equally to the non-heparin group. 

This introduces an immortal time bias that could explain all or some of the apparent survival 
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benefit. Moreover, the assignment of heparin was non-random, allowing for significant 

between-group confounding, yet no adjustment for baseline differences occurred. Paranjpe 

and colleagues had a more robust analysis that controlled for baseline differences, although 

residual confounding by indication for anticoagulation could remain. However, the results of 

the study were still subject to significant immortal time bias. Specifically, all patients who 

received anticoagulation, by definition, had to survive long enough to receive this therapy, 

introducing immortal time bias as mentioned above. This type of bias can lead to potentially 

erroneous results or results that exaggerate the apparent protective effect from 

anticoagulation therapy. The impact of this bias can be large, so these results should be 

considered hypothesis-generating rather than conclusive.

Several randomized trials are currently enrolling patients in order to clarify the role of 

therapeutic anticoagulation in COVID-19 (Table 2). Within these and future trials, an 

important strategy would be a pre-specified analysis of therapeutic anticoagulation within a 

substratum of patients with biomarker-based evidence of hypercoagulability or excess 

inflammation. D-dimer cutoffs have been applied in the inclusion criteria for most of these 

studies, but several other biomarkers may help select patients at particularly high risk of 

thrombotic events. The biomarkers listed in Table 1 are noted to be deranged in severe 

COVID-19 and mechanistically related to hypercoagulability. We would hypothesize that the 

patients with alterations in one or several of these biomarkers would be at the greatest risk 

for venous or arterial thrombotic events, which may lead to a favorable risk/benefit balance 

with therapeutic anticoagulation.

Fibrinolytics in COVID-19

There is some interest in the use of fibrinolytic therapy as a potential treatment for systemic 

thrombotic events in COVID-19 as well as severe ARDS. Historically, porcine models of 

ARDS treated with systemic urokinase or tissue plasminogen activator demonstrated 

improved respiratory mechanics, oxygen exchange, and survival.95 The mechanism may be 

related to the lysis of fibrin-rich hyaline membranes that form in the lungs in ARDS, which 

have been similarly observed in COVID-19. To this end, tissue plasminogen activator was 

used off-label in three patients with COVID-19 and ARDS requiring invasive-mechanical 

ventilation, given as a 25mg bolus over 2 hours followed by an additional 25mg infusion 

over the following 22 hours.96 In each patient, some initial improvement in oxygenation was 

observed, but this was transient in 2 of the 3 patients. Thus, it is not clear if there was any 

meaningful benefit overall, though no robust conclusions can be drawn from this small non-

randomized series.

Fibrinolytic therapy in severe COVID-19 may confer a significant risk of major hemorrhagic 

events, including intracranial hemorrhage and diffuse alveolar hemorrhage. In general, the 

risk of major bleeding with systemic fibrinolytic therapy is consistently 1–3% across a wide 

range of indications, including ST elevation myocardial infarction, acute ischemic stroke, 

and severe PE.97,98 The risk of major bleeding in COVID-19 may be further exacerbated by 

underlying coagulopathy, and the potential for hemorrhagic conversion of unrecognized 

subacute stroke should be considered. Given the high risk of bleeding events with 

fibrinolytic therapy, its universal application in severe COVID-19 is not presently justified, 
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even with biomarkers suggesting a hypercoagulable state. However, select use of 

fibrinolytics in carefully selected patients in a research setting may be warranted.

Conclusion

Thrombotic complications are frequent in COVID-19 and significantly contribute to 

mortality and morbidity. PE have been commonly observed in several autopsy series, and the 

occurrence of acute PE may explain some cases of sudden right ventricular dysfunction, 

cardiogenic shock, and sudden death in addition to troponin elevation. Whether long term 

complications such as pulmonary hypertension may complicate post-COVID recovery 

remains to be seen. Several thrombogenic mechanisms are potentially implicated in 

COVID-19 thrombosis, including thrombosis triggered by cytokine storm, antiphospholipid 

antibody syndrome, macrophage activation syndrome, the complement cascade, and RAS 

dysregulation.

At present, it is not clear which set of mechanisms are predominant in COVID-19, although 

cytokine storm and IL-6 in particular are particularly elevated in COVID-19 compared to 

other septic etiologies, and these are mechanistically upstream of multiple thrombogenic 

pathways. The incidence of thrombotic events in trials of anti-inflammatory and antiviral 

therapies will be of particular important from a therapeutic and mechanistic standpoint, and 

several novel therapies such as eculizumab, tocilizumab, and sarilumab may directly target 

upstream mediators of COVID-19 hypercoagulability. In the meantime, longitudinal studies 

are needed to clarify the role of these mechanisms and their suitability as therapeutic targets. 

An expanded role for therapeutic anticoagulation has also been considered based on recent 

observational studies, but the interpretation of these data is impeded by immortal time bias 

and confounding. Randomized trials of therapeutic anticoagulation are urgently needed to 

determine optimal antithrombotic regimens in COVID-19.
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Acronyms:

ACE angiotensin converting enzyme

Ang Angiotensin

aPTT activated partial-thromboplastin time

AT1R angiotensin II receptor type I
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AT4R angiotensin II receptor type IV

ARDS acute respiratory distress syndrome

COVID-19 coronavirus disease 2019

DIC disseminated intravascular coagulation

FDP fibrin degradation products

ICU intensive care unit

IL interleukin

MAS macrophage activation syndrome

MERS Middle East respiratory syndrome (MERS)

PAI-1 plasminogen activator inhibitor 1

PT prothrombin time

SARS severe acute respiratory syndrome

SARS-CoV severe acute respiratory syndrome coronavirus

SIC sepsis-induced coagulopathy

TMA thrombotic microangiopathy

TNF-α tumor necrosis factor alpha

TnI troponin I
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FIGURE 1: 
Pulmonary emboli in the main pulmonary arteries of patients with COVID-19 (A and B). 

Characteristic “lines of Zahn” demonstrating alternating fibrin and erythrocyte deposition in 

pulmonary emboli from two patients (C and D). Reprinted from Grimes et al.99 with 
permission from the journal of Cardiovascular Pathology.
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FIGURE 2: 
Microscopic lung findings from patients with COVID-19. A) Diffuse alveolar damage, 

characteristic of acute respiratory distress syndrome, with insert showing 

immunohistochemistry (IHC) for fibrinogen; B) Syncitial cells, with insert showing IHC 

staining for thyroid transcription factor-1 that confirms pneumocyte II origin; C) Capillary 

congestion without diffuse alveolar damage; D) Microthrombi in alveolar capillaries, with 

IHC for fibrin. Reprinted from Menter et al.15 with permission from the journal of 
Histopathology.
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FIGURE 3: Components of COVID-19 Coagulopathy
Several components of the innate immune system, platelet activation, coagulation system, 

complement system, renin-angiotensin system, and coagulation cascade have been observed 

in COVID-19 or SARS.

Acronyms: MASP-1, mannose binding lectin-associated serine protease; NF-Kappa-B, 

nuclear factor kappa B; PAI-1, plasminogen activator inhibitor 1; RAS, renin-angiotensin 

system; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
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CENTRAL FIGURE: Thrombotic Pathways Implicated in COVID-19
SARS-CoV-2 infection may lead to thrombus formation via cytokine storm, macrophage 

activation syndrome, complement activation, platelet activation, and renin-angiotensin 

system dysregulation. Several of these pathways are inter-related and auto-amplifying.

Acronyms: ACE2, angiotensin-converting enzyme 2; Ang II, angiotensin II, β-TG, beta 

thromboglobulin; IL, interleukin; MAS, macrophage activation syndrome; MASP-1, 

mannose binding lectin-associated serine protease; NK-cell, natural killer cell; NF-κB, 

nuclear factor kappa B; PAI-1, plasminogen activator inhibitor 1; PF4, platelet factor 4; 

ROS, reactive oxygen species; SARS-CoV-2, severe acute respiratory syndrome coronavirus 

2; TNF-α, tumor necrosis factor alpha
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Table 1:

Biomarkers of Inflammation, Coagulopathy, and Renin-Angiotensin System Activity of Interest in COVID-19

Inflammation Coagulopathy Renin Angiotensin System Activity

IL-2R Prothrombin time Angiotensin II

IL-6 Activated partial-thromboplastin time Angiotensin converting enzyme 2

IL-8 D-dimer

IL-10 Plasminogen activator inhibitor 1

TNF-α Platelet count

Ferritin Fibrinogen (↑ or ↓)*

Transforming growth factor-β Fibrin degradation products

Erythrocyte Sedimentation Rate von Willebrand factor

C-reactive Protein Factor VIII

*
Biomarkers expected to be increased in severe COVID-19 except where otherwise noted.
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Table 2:

Existing Anticoagulation Clinical Trials in Adults

Clinical Trial 
Number

Country 
of Sponsor

Target 
Sample

Biomarker 
Inclusion 
Criteria Experimental Arm Control Arm Primary Outcome

NCT04362085 Canada 462 D-dimer ≥2 × 
ULN

Full dose LMWH or 
UFH

Prophylactic Dose 
Anticoagulation

Composite of ICU 
admission, vent, all-

cause mortality

NCT04359277 United 
States 1000 D-dimer > 2 & < 

10 μg/mL
Full dose LMWH or 

UFH
Prophylactic Dose 
Anticoagulation

All-cause mortality up 
to 1 year, Incidence of 

major thrombotic 
events

NCT04377997 United 
States 300 D-dimer > 1.5 

μg/mL
Full dose LMWH or 

UFH
Prophylactic Dose 
Anticoagulation

Composite of all-cause 
mortality, cardiac arrest, 

and major thrombotic 
events

NCT04367831 United 
States 100 - Intermediate dose 

LMWH or UFH
Prophylactic Dose 
Anticoagulation

Alive and discharged 
from ICU without 
major thrombotic 

event

NCT04345848 Geneva 200 D-dimer > 1 
μg/mL

Full dose LMWH or 
UFH

Prophylactic Dose 
Anticoagulation

Composite of major 
thrombotic events, DIC, 
and all-cause mortality

NCT04344756 France 808 - Full Dose LMWH 
or UFH

Prophylactic Dose 
Anticoagulation

Ventilation-free 
survival

NCT04394377 Brazil 600 D-dimer > 3 × 
ULN

Full dose LMWH or 
rivaroxiban 20mg 

daily

Prophylactic Dose 
Anticoagulation

Hierarchical composite 
endpoint of mortality, 
days alive, days in the 
hospital, and days on 

oxygen

NCT04360824

United 
States 170

Modified ISTH 
Overt DIC score 

≥ 3

Intermediate dose 
LMWH

Prophylactic Dose 
Anticoagulation All-cause mortality

NCT04372589 Canada 3000 - Full dose LMWH or 
UFH

Prophylactic Dose 
Anticoagulation

Intubation and 
mortality
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