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A cross-sectional study of cardiovascular disease
risk clustering at different socio-geographic levels
in India
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Till Bärnighausen1,5,6 & Pascal Geldsetzer 1,7

Despite its importance for the targeting of interventions, little is known about the degree to

which cardiovascular disease (CVD) risk factors cluster within different socio-geographic

levels in South Asia. Using two jointly nationally representative household surveys, which

sampled 1,082,100 adults across India, we compute the intra-cluster correlation coefficients

(ICCs) of five major CVD risk factors (raised blood glucose, raised blood pressure, smoking,

overweight, and obesity) at the household, community, district, and state level. Here we show

that except for smoking, the level of clustering is generally highest for households, followed

by communities, districts, and then states. On average, more economically developed dis-

tricts have a higher household ICC in rural areas. These findings provide critical information

for sample size calculations of cluster-randomized trials and household surveys, and inform

the targeting of policies and prevention programming aimed at reducing CVD in India.

https://doi.org/10.1038/s41467-020-19647-3 OPEN

1 Heidelberg Institute of Global Health, Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany. 2 Department of General
Pediatrics, Neonatology, and Pediatric Cardiology, University Children’s Hospital, Duesseldorf, Germany. 3 Public Health Foundation of India, New Delhi, India.
4Department of Economics & Centre for Modern Indian Studies, University of Goettingen, Göttingen, Germany. 5 Department of Global Health and Population,
Harvard T.H. Chan School of Public Health, Boston, MA, USA. 6Africa Health Research Institute, Somkhele, KwaZulu-Natal, South Africa. 7 Division of Primary
Care and Population Health, Department of Medicine, Stanford University, Stanford, CA, USA. ✉email: anne-christine.bischops@uni-heidelberg.de

NATURE COMMUNICATIONS |         (2020) 11:5891 | https://doi.org/10.1038/s41467-020-19647-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19647-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19647-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19647-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19647-3&domain=pdf
http://orcid.org/0000-0003-3472-0260
http://orcid.org/0000-0003-3472-0260
http://orcid.org/0000-0003-3472-0260
http://orcid.org/0000-0003-3472-0260
http://orcid.org/0000-0003-3472-0260
http://orcid.org/0000-0003-0090-8249
http://orcid.org/0000-0003-0090-8249
http://orcid.org/0000-0003-0090-8249
http://orcid.org/0000-0003-0090-8249
http://orcid.org/0000-0003-0090-8249
http://orcid.org/0000-0002-7863-0462
http://orcid.org/0000-0002-7863-0462
http://orcid.org/0000-0002-7863-0462
http://orcid.org/0000-0002-7863-0462
http://orcid.org/0000-0002-7863-0462
http://orcid.org/0000-0002-8878-5505
http://orcid.org/0000-0002-8878-5505
http://orcid.org/0000-0002-8878-5505
http://orcid.org/0000-0002-8878-5505
http://orcid.org/0000-0002-8878-5505
mailto:anne-christine.bischops@uni-heidelberg.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cardiovascular disease (CVD) is the leading cause of mor-
tality and disability-adjusted life years in India1,2. The
prevalence of important CVD risk factors in the country,

including diabetes, hypertension, and overweight, is high and
projected to rise rapidly over the coming decades3–7. We recently
estimated a national diabetes prevalence of 8% and a hyperten-
sion prevalence of 27% among adults in India in 2012-20148. In
addition, approximately every fifth person aged between 15 and
49 years in the country was estimated to be overweight in 20169.
Another preventable, yet highly prevalent, CVD risk factor in
India is tobacco use. In 2017, an estimated 11% of adults in India
aged 15 years or older were current smokers10.

Slowing the progress of the CVD epidemic in India will require
identifying and implementing cost-effective strategies for the pre-
vention and treatment of CVD risk factors. Many of the factors that
increase one’s probability of developing CVD risk factors—
including diet11, characteristics of the built environment12, social
networks13, and genetics14—tend to be shared to at least some
degree by individuals in the same households and communities. It
is, therefore, unsurprising that studies have shown that diabetes,
hypertension, obesity, and smoking tend to co-occur in households
and larger community structures, such as neighborhoods15,16.
However, although there is a considerable body of evidence on this
phenomenon from high-income settings, there is little evidence
from low- and middle-income countries (LMICs), including India,
on the degree of such clustering of CVD risk factors.

In this study, we use nationally representative household sur-
vey data from India to determine the intracluster correlation
coefficients (ICCs) of five major CVD risk factors at each of four
different socio-geographic levels (household, community, district,
and state). In addition, we aim to ascertain how the degree of
clustering of CVD risk factors varies between states and by
household wealth. The motivation for this study is not to inform
individual-level clinical management. Instead, our objective is to
provide critical information for sample size calculations of
cluster-randomized trials and household surveys. In addition,
understanding the degree to which important CVD risk factors
tend to co-occur within these socio-geographic levels is crucial to
inform the targeting of appropriate interventions. For instance,
policymakers need to decide whether to target a screening pro-
gram for diabetes and hypertension at specific communities or
types of households, or if they should instead disregard these
socio-geographic units, such as by screening everyone above a
certain age threshold.

Results
Sample characteristics. Out of 1,618,359 adults in our final
dataset, 1,103,476 (68.1%) participants had non-missing values
for all CVD risk factors (BG, BP, smoking status, height, and
weight) and were included in the analysis. Because socio-
demographic information in the DLHS-4 and AHS was collected
for all household members from the household head, participants
with missing outcome data included eligible household members
who were not present at the time of the study team visit. The
DLHS-4 and AHS jointly contained data on 515,689 households,
17,841 communities, and 561 districts. 52.5% of participants were
female and 42.0% were younger than 36 years (Table 1). 9.1% of
participants were obese (BMI ≥ 27.5 kgm−2), 7.7% had a raised
BG, and 26.9% had a raised BP. Smoking was far more common
among men (23.3%) than women (2.3%). In all, 39.0% of parti-
cipants had received no formal schooling, 32.6% lived in an urban
area, and 76.2% were currently married.

Cluster characteristics. The mean cluster size of the 515,689
included households was 3.4 participants; the median cluster size

was three participants (Table 2). In the 17,841 communities, a
cluster consisted on average of 109.4 participants, with the
median cluster size being 66 participants. On the district level, our
analysis included 561 districts with a mean and median size of
2415 and 2270 participants, respectively. A state consisted of a
mean and median of 57,427 and 59,792 participants, respectively.
Cluster characteristics computed separately for each state can be
found in the appendix (Supplementary Table 20).

Clustering at different socio-geographic levels. The ICCs ranged
from 0.023 (95% CI, 0.012–0.036) for raised BP at the state level
to 0.236 (95% CI, 0.234–0.239) for overweight at the household
level (Table 3). Among the CVD risk factors, the ICC was highest
for overweight at all socio-geographic levels except at the state
level where smoking had the highest ICC. With the exception of
smoking, the ICC increased as the socio-geographic units

Table 1 Sample characteristicsa,b.

Characteristic Total Male Female

n 1,103,476 524,525 (47.5) 578,951 (52.5)
Age group, n (%)
18–25 years 193,689 (17.6) 94,804 (18.1) 98,885 (17.1)
26–35 years 268,797 (24.4) 119,950 (22.9) 148,847 (25.7)
36–45 years 243,217 (22.0) 111,741 (21.3) 131,476 (22.7)
46–55 years 183,829 (16.7) 86,591 (16.5) 97,238 (16.8)
56–65 years 129,033 (11.7) 65,211 (12.4) 63,822 (11.0)
>65 years 84,896 (7.7) 46,220 (8.8) 38,676 (6.7)
Missing (%) 0.0 0.0 0.0
BMI group, n (%)
>16.0 kgm−2 42,473 (3.8) 16,029 (3.1) 26,444 (4.6)
16.0–18.4 kgm−2 164,509 (14.9) 75,411 (14.4) 89,098 (15.4)
18.5–22.9 kgm−2 521,591 (47.3) 257,281 (49.1) 264,310 (45.7)
23.0–24.9 kgm−2 165,114 (15.0) 84,085 (16.0) 81,029 (14.0)
25.0–27.4 kgm−2 109,266 (9.9) 51,914 (9.9) 57,352 (9.9)
27.5–29.9 kgm−2 52,797 (4.8) 22,335 (4.3) 30,462 (5.3)
≥30.0 kgm−2 47,726 (4.3) 17,470 (3.3) 30,256 (5.2)
Current smoker,
n (%)

135,736 (12.3) 122,459 (23.3) 13,277 (2.3)

Raised BG, n (%) 85,327 (7.7) 41,524 (7.9) 43,803 (7.6)
Raised BP, n (%) 296,634 (26.9) 154,952 (29.5) 141,682 (24.5)
Education, n (%)
<Primary school 428,392 (39.0) 152,690 (29.2) 275,702 (47.8)
Primary school 136,620 (12.4) 68,198 (13.1) 68,422 (11.9)
Middle school 165,682 (15.1) 88,388 (16.9) 77,294 (13.4)
Secondary school 151,941 (13.8) 85,326 (16.3) 66,615 (11.5)
High school 106,984 (9.7) 61,185 (11.7) 45,799 (7.9)
>High school 109,567 (10.0) 66,415 (12.7) 43,152 (7.5)
Missing (%) 0.4 0.4 0.3
Household wealth
quintile, n (%)
1 (least wealthy) 229,326 (20.8) 108,150 (20.6) 121,176 (20.9)
2 218,615 (19.8) 104,442 (19.9) 114,173 (19.7)
3 213,759 (19.4) 101,724 (19.4) 112,035 (19.4)
4 218,938 (19.8) 104,489 (19.9) 114,449 (19.8)
5 (most wealthy) 222,792 (20.2) 105,696 (20.2) 117,096 (20.2)
Missing (%) 0.0 0.0 0.0
Urban residency,
n (%)

360,250 (32.6) 170,339 (32.5) 189,911 (32.8)

Missing (%) 0.0 0.0 0.0
Currently
married, n (%)

839,697 (76.2) 394,269 (75.3) 445,428 (77.0)

Missing (%) 0.1 0.2 0.1

aData are not weighted to adjust for the survey design.
bSource data are provided as a Source Data file.
n number; % percentage
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decreased in size from the state to the household level. We did not
observe any clear patterns of variation in these ICCs when
computing ICCs separately for each household wealth quintile
(Supplementary Table 11).

Clustering at the household and community level by state.
There was a large degree of variation in the ICCs for each CVD
risk factor between states (Fig. 1 and Supplementary Tables 12
and 13), whereby we found the highest ICCs within states for
overweight at the household level and the lowest for smoking at
the household level. On an absolute scale, the variation in the ICC
between states was smallest for smoking. For a given CVD risk
factor, the pattern of variation in the ICC between states was
generally similar for households as for communities.

In rural areas, household-level ICCs within districts were
positively associated with a district’s median household wealth
index for all CVD risk factors except raised blood pressure
(Fig. 2). These associations were generally not present in urban
areas. Previous articles have shown a link between the
prevalence and the ICC for binary outcomes17–20. To examine
this tendency we performed a regression of the CVD risk factor
prevalence onto ICC in the appendix (Supplementary Fig. 1).
We generally found no correlation between CVD risk factor
prevalence and ICC, with the exception of a positive correlation
between state-wise obesity prevalence and household-level ICC
(Supplementary Fig. 1). We also did not observe any clear
correlations between household- and community-level ICCs
within states and states’ gross domestic product (GDP) per
capita (Supplementary Fig. 2).

Table 2 Cluster characteristicsa.

Household Community District State

Number of clusters 515,689 17,841 561 32
Mean cluster size (SD) 3.4 (1.65) 109.4 (97.7) 2415 (973.2) 57,427 (27961.7)
Median cluster size (IQR) 3 (2) 66 (89) 2270 (1302) 59,792 (54,836)

aSource data are provided as a Source Data file.
SD standard deviation, IQR interquartile range.

Table 3 Clustering of cardiovascular disease risk factors at the state, district, community, and household level in Indiaa.

Risk factor ICC state (95% CI) ICC district (95% CI) ICC community (95% CI) ICC household (95% CI)

Raised BG 0.031 (0.016–0.049) 0.034 (0.030–0.038) 0.089 (0.087–0.091) 0.142 (0.140–0.145)
Raised BP 0.023 (0.012–0.036) 0.034 (0.030–0.038) 0.065 (0.063–0.067) 0.104 (0.102–0.107)
Current smoker 0.090 (0.048–0.140) 0.063 (0.056–0.070) 0.131 (0.128–0.134) 0.095 (0.093–0.097)
Overweight 0.045 (0.023–0.072) 0.073 (0.065–0.081) 0.134 (0.132–0.137) 0.236 (0.234–0.239)
Obesity 0.029 (0.015–0.046) 0.039 (0.034–0.044) 0.099 (0.096–0.101) 0.165 (0.163–0.167)

aSource data are provided as a Source Data file.
ICC intracluster correlation coefficient, CI confidence interval, BG blood glucose, BP blood pressure
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Fig. 1 Intracluster correlation coefficients at the household and community level by state. AN Andaman and Nicobar Islands, AP Andhra Pradesh, AR
Arunachal Pradesh, AS Assam, BR Bihar, CG Chhattisgarh, CH Chandigarh, DD Daman and Diu, DL Delhi, DN Dadra and Nagar Haveli, GA Goa, GJ Gujarat,
HR Haryana, HP Himachal Pradesh, JH Jharkhand, JK Jammu and Kashmir, KA Karnataka, KL Kerala, LD Lakshadweep, MP Madhya Pradesh, MH
Maharashtra, MN Manipur, ML Meghalaya, MZ Mizoram, NL Nagaland, OD Odisha (Orissa), PB Punjab, PY Puducherry, RJ Rajasthan, SK Sikkim, TN Tamil
Nadu, TS Telangana State, TR Tripura, UP Uttar Pradesh, UK Uttarakhand (Uttaranchal), WB West Bengal. Source data are provided as a Source Data file.
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Discussion
Using population-based data on over one million adults across
India, this study identified a wide degree of variation of the level
of clustering of CVD risk factors between risk factors and type of
socio-geographic level (households, communities, districts, or

states). Except for smoking, the level of clustering was highest for
households, followed by communities, districts, and then states.
The ICCs were particularly high for the clustering of overweight
at the household level. We also identified a wide degree of var-
iation of clustering at the household and community level
between states. In addition, in rural areas, CVD risk factors
tended to cluster more strongly at the household level in wealthier
districts than in poorer ones. Although previous studies in India
have shown strong concordance of chronic conditions between
household members and by different family relationships21, this
is, to our knowledge, the first study to examine the variation of
clustering of CVD risk factors between socio-geographic levels
and states in India.

Our findings can inform design decisions in cluster-randomized
trials and household surveys. In cluster-randomized trials (e.g.,
those that randomize households or villages to different study
arms but observe and analyze the outcome at the individual level)
and household surveys the sample size is highly dependent on the
expected ICC of the outcome variable22. Unfortunately, ICC
estimates for a specific outcome variable for a chosen socio-
geographic level and a given study setting are usually not available,
such that researchers can only guess what a reasonable ICC range
might be. By providing ICC values for each of the CVD risk
factors for each state and each socio-geographic level in India, this
study, thus, provides urgently needed information for the design
of cluster-randomized trials and household surveys on CVD risk
factors in India. We have made our data set and code publicly
available such that researchers can modify our ICC calculations as
needed (e.g., for different age ranges and outcome definitions)23.

In addition to their usefulness for the design of trials and
household surveys, our findings can inform the targeting of
policies and programming for the reduction of CVD risk factors.
From a program implementation perspective, based on our
findings of a high degree of clustering of overweight at the
household level, health promotion interventions aimed at redu-
cing overweight might be especially effective when targeted at this
level instead of targeting higher levels or the general population.
Conversely, from a research perspective, the greater the ICC is in
a cluster-randomized trial, the more participants are required to
reach a given level of statistical power. The same is not true for
smoking, however, which displayed little clustering at the
household level. A likely reason is that smoking prevalence in
India seems to be strongly driven by gender- rather than family-
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Fig. 2 Intracluster correlation coefficients in relation to household wealth
index by district, stratified by residency. The black line is an ordinary least
squares regression of district-level household wealth index onto household-
level ICC with each district having the same weight. The p value (derived
from a t test) refers to the regression coefficient for this black line. Colors
designate the different zones in India as per the allocation of the Zonal
Councils of the Government of India: green circle = Central, orange triangle
= East, purple square = North, pink cross = Northeast, green square =
South, yellow star = West52. For the calculation of the ICCs we included
districts with ≥50 participants and ≥20 participants with the respective
CVD risk factor. All 561 districts except for one had ≥50 participants. For
rural areas, 53 districts had <20 individuals with raised blood glucose, all
had ≥ 20 participants with raised blood pressure, seven districts had <20
participants who were currently smoking, two districts had <20 participants
with overweight, and 74 had <20 participants with obesity. For urban areas,
44 districts had <20 individuals with raised blood glucose, all had ≥20
participants with raised blood pressure, five districts had <20 participants
who were currently smoking, one district had <20 participants with
overweight, and 68 had <20 participants with obesity. Source data are
provided as a Source Data file.
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related factors, given that men are far more likely to smoke than
woman. In addition, we have shown in which states targeting
particular socio-geographic levels would be most efficient. For
instance, the level of clustering of overweight at the household
level was especially high in Uttarakhand and Odisha, whereas it
was far lower in Bihar and Manipur. More generally, our results
show that the ICC tended to increase as the socio-geographic unit
decreased in size. This is consistent with previous research from
different surveys and settings24–29. One reason for this finding in
our study may be that diet- and lifestyle-related factors, which in
turn influence the CVD risk factors that we examined, tend to be
shared within communities and especially households (which
may, for example, share meals).

Our study has several limitations. First, the AHS did not report
fasting status of participants, which impacts the BG cutoff used to
define raised BG. Although we assumed all participants were
fasted in our primary analysis, we show all ICC results for raised
BG when assuming AHS participants to be unfasted in the
appendix (Supplementary Tables 14–16). Second, 31.9% of par-
ticipants had a missing value for at least one of the CVD risk
factors examined in this study. Participants with missing data
may have had a different prevalence of these risk factors than
those for whom we had complete data. This may have biased our
ICC estimates if individuals with a systematically different pre-
valence of these risk factors (but for whom we had missing
observations) were more or less likely to cluster within the socio-
geographic unit in question than those for whom we had com-
plete data. Third, for participants in the AHS, sociodemographic
information had to be matched to physical measurements, which
were contained in a separate data set provided by the Ministry of
Health & Family Welfare. Given the lack of a unique identifier in
both datasets, we used a matching technique described in Text S1.
Although the sociodemographic characteristics of those who were
matched were similar to those who were not matched, it is pos-
sible that those who could be matched are not a random subset of
all AHS participants. Fourth, owing to violent conflicts and
unavailable data in the public domain, the AHS and DLHS-4
contain no data on the states of Jammu and Kashmir and Gujarat,
as well as the UTs of Dadra and Nagar Haveli and Lakshadweep.
However, these states and UTs constituted only 6% of India’s
population at the time of the 2011 India census30. Fifth, our
findings cannot necessarily be extrapolated to the current year
because the degree to which CVD risk factors are affected by the
socio-geographic environment may have changed since the time
of data collection. Similarly, researchers and policymakers should
be cautious with extrapolating our findings to populations other
than India, as the nature of the socio-geographic units that we
examined and the degree to which they are associated with dif-
ferent CVD risk factors is likely to be context-specific and thus to
vary across countries.

The level of clustering of CVD risk factors varies widely
between risk factors, socio-geographic levels, and states in India.
By detailing this variation in a large population-based data set
and for each of five CVD risk factors, this analysis provides cri-
tical information both for the design of cluster-randomized trials
and household surveys, as well as targeting of relevant policies
and prevention programming in India.

Methods
Data sources. We used data from two population-based household surveys in
India: the fourth District-Level-Household Survey (DLHS-4) and the second
update of the Annual Health Survey (AHS). We pooled both datasets because they
were conducted at the same time, used a nearly identical questionnaire, and cov-
ered mutually exclusive areas of the country, jointly yielding a nationally repre-
sentative sample of adults in India.

The AHS was carried out from 2012 to 2013 and covered nine states (Assam,
Bihar, Chhattisgarh, Jharkhand, Madhya Pradesh, Odisha, Rajasthan, Uttar

Pradesh, and Uttarakhand), which were chosen because they had the highest rate of
child and infant mortality in 2010. The DLHS-4 was carried out between 2012 and
2014, and covered all remaining states (except Gujarat for which data was not
available in the public domain, and Jammu and Kashmir for which data was not
collected due to violent conflicts) and five of seven Union Territories (UTs) (all
except Dadra and Nagar Haveli, and Lakshadweep). Both surveys sampled non-
pregnant adults aged 18 years and older.

The DLHS-4 and AHS surveys employed two-stage cluster random sampling,
stratified by rural-urban location. The primary sampling units (PSUs)—villages in
rural areas and census enumeration blocks (AHS) or urban frame survey blocks
(DLHS-4) in urban areas—were selected with probability proportional to
population size. PSUs are henceforth referred to as communities in this
manuscript. The secondary sampling units were households, which were selected
via systematic random sampling (i.e., sampling the first household randomly and
then selecting every xth household). The household head completed a
questionnaire on sociodemographic information of all household members
(regardless of their presence at the interviewer’s visit) and all non-pregnant adult
household members (aged ≥ 18) received height, weight, blood glucose (BG), and
blood pressure (BP) measurements. Households were not revisited when eligible
adults were not present for the interviewer’s visit.

In an effort to ensure high data quality, both the DLHS-4 and AHS collected
every tenth blood sample in duplicate (to then compare measurements taken for
the same participants) and, in the AHS, 10% of households were revisited to
administer part of the questionnaire a second time in order to detect problems with
the questionnaire-based data collection31,32.

CVD risk factors. Both the AHS and DLHS-4 measured BG in a capillary blood
sample with a hand-held BG meter (SD CodeFree [SD Biosensor, Gyeonggi,
Republic of Korea]). The glucose meter converted capillary blood measurements to
a plasma-equivalent value by multiplying the reading by 1.1133. Both the AHS and
DLHS-4 survey requested overnight fasting until the BG measurement but only the
DLHS-4 recorded whether participants reported to have been adhering to this
recommendation. In all, 58.4% of participants in the DLHS-4 self-reported to have
been fasted at the time of the measurement. Although all estimates in this paper
assume AHS participants to have been fasted at the time of the BG measurement,
we also show results when assuming AHS participants to not have been fasted in
the appendix. Raised BG was defined as a plasma-equivalent glucose >126 mg/dl if
reporting (or assumed) to be fasted, or ≥200 mg/dl if reporting to be non-
fasted33,34.

In both surveys, BP was measured twice in the left upper arm with a minimum
of three minutes in between measurements using the Rossmax AW150 (Rossmax
Swiss GmbH, Bernick, Switzerland). We used the mean of these two
measurements. Raised BP was defined as a mean systolic BP ≥ 140 mmHg or mean
diastolic BP ≥ 90 mmHg35.

Weight was measured in both surveys with a digital scale, and height using a
wall-mounted statute meter. Body Mass Index (BMI) was calculated as weight in
kilograms divided by the square of height in meters (kg m−2). Using the World
Health Organization (WHO) classification for Asian populations36–38, we defined
overweight as a BMI > 23.0 kgm−2 and obesity as a BMI > 27.5 kgm−2.

Current tobacco smoking status was ascertained through self-report in the
questionnaires. Participants who reported to smoke at least once every day or to be
occasional smokers were classified as currently smoking.

For the use in future cluster-randomized trials, we have additionally run all
analyses for the continuous variables of BMI, BG, and BP (Supplementary
Tables 17–19, Supplementary Figs. 3 and 4).

Statistical analysis. Sociodemographic data in the AHS were matched to data on
individuals’ BG, BP, and height and weight measurements (contained in a separate
dataset) as described in Supplementary Methods. We computed ICCs as a measure
of clustering at different socio-geographic levels. The socio-geographic levels
considered were the household, community, district, and state. The ICC indicates
the proportion of the variation in the outcome that is due to variation between—
rather than within—clusters (e.g., households). An ICC value of zero thus indicates
that the socio-geographic clusters do not account for any of the variation in the
CVD risk factor among respondents. The ICCs were calculated using a linear
model with a random intercept for the socio-geographic level:

Yij ¼ β0 þ u0j þ εij; ð1Þ
where Yij is a binary variable indicating whether individual i in cluster j has the
CVD risk factor in question, β0 is the overall intercept, and u0j is the random
intercept for each cluster. The variance (σ) of u0j is, thus, the between-cluster
variance, and σ(εij) is the within-cluster variance39. Hence, the ICC can be calcu-
lated as the between-cluster variance divided by the total variance39–41:

ICC ¼ σðuojÞ
σðuojÞ þ σðεijÞ

ð2Þ

95% confidence intervals (CIs) for the ICC were calculated using parametric
bootstrapping for mixed models with 500 repetitions42,43. We did not adjust the
regressions for individual-level characteristics because we were interested in
determining the degree to which CVD risk factors cluster at a certain socio-
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geographic level—which in turn determines the efficiency of targeting that level
with relevant interventions—regardless of the degree to which the between-cluster
variance can be explained by differences between individuals across clusters.
Calculating unadjusted ICCs is also of most relevance to informing power
calculations for cluster-randomized trials, which typically use unadjusted analyses
as their primary approach.

We have chosen to present an ICC from a linear rather than a logistic regression
model because the aim of this study is to inform the design effect in future cluster-
randomized trials or surveys that use cluster sampling, and to examine the
correlation in the outcomes between participants44. When calculating ICCs, we
only included a random effect for the socio-geographic level that we examined (e.g.,
we did not additionally include random effects for household or community when
determining the district-level ICC). When calculating ICCs for different states, by
wealth status, and by rural-urban residency, we fitted the regression model to only
the subgroup of interest.

To examine how the degree of clustering at each socio-geographic level varied
within India, we disaggregated the ICC values by state and wealth quintile. A given
cluster was assigned to a wealth quintile based on a continuous household wealth
index. To compute the household wealth index, we ran a principal component
analysis on the answers to household ownership of 12 assets (radio, TV, computer,
phone, refrigerator, bike, scooter, car, washing machine, sewing machine, house,
and land) and five housing characteristics (water supply, type of toilet and whether
it is shared, cooking fuel, housing material, and source of lighting) from which we
then extracted the first component as per the methodology developed by Filmer
and Pritchett45,46. The household wealth index was calculated separately for rural
and urban areas. Households were then divided—again separately for rural and
urban areas—into five quintiles based on the distribution of the continuous
household wealth index in the combined DLHS-4/AHS data set. We calculated the
median of the continuous household wealth index in a community or district based
on which we then assigned communities and districts to a wealth quintile.

In addition, we plotted the district-level median of the continuous household
wealth index variable (separately for rural and urban areas) against household-level
ICC values to ascertain whether the wealth of a district explained some of the
variation we observed in the household-level ICC values between districts.
Similarly, we plotted the state-level prevalence of each CVD risk factor and GDP
per capita against the household and community-level ICC values for each CVD
risk factor to examine to what degree these variables explained the variation in the
ICC values for community and household between states.

This was a complete case analysis. Statistical analyses were performed in R
version 3.4.347. Fig. 1 and Supplementary Fig. 3 have been created using Adobe
Illustrator CC 2019, using a template of an Indian map from Wikimedia
Commons48,49.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The conclusions of this article are based on publicly available data sets. The source data
are provided with this paper, the cleaned and merged dataset is available at https://doi.
org/10.7910/DVN/NLU7HI50,51. Source data are provided with this paper.

Code availability
The analysis code and the merged data set is available on the Harvard Dataverse (https://
doi.org/10.7910/DVN/NLU7HI)23.
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