
I. Introduction

In 1817, in his document “An Essay on the Shaking Palsy”, 
James Parkinson was the first to describe Parkinson’s disease 
(PD) as a neurological syndrome, characterized by a shak-
ing palsy [1,2]. Later in 1872, the French neurologist Jean-
Martin Charcot, described this disease more precisely and 
distinguished bradykinesia from other tremendous disorders 
by examining a large number of patients and suggested the 
use of the term “Parkinson’s disease” for the first time [3,4]. 
Further studies were made until Brissaud and Meige [5] 
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identified damage of the substantia nigra as the main cause 
of PD. This damage leads to a range of symptoms including 
rigidity, balance impairment, rest tremor, and slowness of 
movement [6].  
	 In addition to these motor symptoms, the voice is also af-
fected. Voice and speech impairment is a typical symptom of 
PD that occurs in most patients [7]. Gradual deterioration of 
communication skills in patients with PD is considered to be 
a significant cause of disability [7]. Ho et al. [8] found that 
147 PD patients out of 200 had speech impairment, and par-
ticipants showed a gradual deterioration of speech charac-
teristics. Traditional diagnosis of PD is costly, and it can take 
from hours to a few days to be performed. Consequently, 
evaluating the consistency of the voice and recognizing the 
triggers of its deterioration in the sense of PD based on pho-
nological and acoustic signals is essential to improving PD 
diagnosis. Furthermore, developing a smart system based on 
machine-learning (ML) techniques able to detect this disease 
in an early stage will reduce the number of clinical visits for 
examinations and the workload of clinicians [9].
	 For example, Little et al. [10] presented a system that de-
tects dysphonia by discriminating between healthy controls 
(HC) and PD participants using a dataset of 195 records 
collected from 31 patients, of which 23 were diagnosed with 
PD. They extracted both time domain and frequency domain 
features from the records and achieved a classification accu-
racy of 91.4% using 10 highly uncorrelated measures and the 
support vector machine (SVM) technique. Benba et al. [11] 
used a dataset consisting of voice samples of 17 PD patients 
and 17 HCs recorded using a computer’s microphone. They 
extracted 20 Mel-frequency cepstral coefficients (MFCC) 
and achieved a classification accuracy of 91.17% using linear 
SVM with 12 coefficients. Hemmerling et al. [12] used an 
original dataset consisting of 198 records of 33 PD patients 
and 33 HCs. They extracted several acoustic features, and 
applied principal component analysis (PCA) for feature se-
lection and used a linear SVM classifier, which achieved an 
accuracy of 93.43%. 
	 In this paper, we describe our methodology that analyzes 
raw audio recordings collected using smartphones to create 
accurate predictive models. As previously mentions, several 
studies have been conducted on this subject, but our meth-
odology differs in many ways. First, we used a large dataset, 
which consisted of 18,210 recordings, where 9,105 were ob-
tained from 453 patients with PD and 9,105 were obtained 
from 1,037 HCs. To the best of our knowledge, this is the 
largest cohort data used in a clinical application. Second, in-
stead of extracting only time, frequency, or cepstral domain 

features from the recordings, we used a combination of the 
three domains to create highly accurate predictive models. 
Our final dataset consisted of 80,594 instances and 138 fea-
tures as well as a class variable. We applied two feature selec-
tion methods, analysis of variance (ANOVA) and least abso-
lute shrinkage and selection operator (LASSO), to select the 
best subset of features. Then we compared our method with 
various state-of-the-art and newer ML techniques, namely, 
linear SVM, K-nearest neighbor (KNN), random forest (RF), 
and extreme gradient boosting (XGBoost). A maximum ac-
curacy of 95.78% was achieved using XGBoost on unseen 
data. 
	 The remainder of the paper is organized as follows. We de-
scribe our method in detail in Section II, Section III presents 
the results, and Section IV discusses the findings.

II. Methods

1. Data Acquisition

1) The mPower study 
The raw audio recordings used in this study were collected 
from the mPower Public Researcher Portal [13], the data 
repository of the mPower mobile Parkinson disease study 
[14] in Synapse, an open-source data analysis platform, led 
by Sage Bionetworks. The mPower project is a clinical study 
of PD done only through an iPhone application interface 
(ResearchKit), an open-source software framework devel-
oped by Apple that facilitates the creation of medical appli-
cations for research. Participation was open to individuals 
from the United States diagnosed with PD as well as HCs 
with knowledge of the disease and interested in the study. 
The mPower study has seven principal tasks, three survey 
questionnaires that must be filled out by the participants—
Demographic Survey, Parkinson’s Disease-Questionnaire-8 
[PDQ8], Unified-Parkinson’s Disease Rating Scale (UPDRS), 
and four tasks (memory task, tapping task, voice task, and 
walking task). In this paper, we are only interested in the de-
mographic survey and the voice task.

2) Cohort selection
The Demographic Survey is an important questionnaire, by 
which we distinguished PD patients from HCs. Of the 6,805 
participants who answered this questionnaire, 1,087 identi-
fied themselves as having a professional diagnosis of PD, 
while 5,581 did not (137 chose not to answer the question). 
Each participant had his or her own ID (healthCode) that 
was used in this phase; more details are given in [13,14].
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	 Of the whole group of subjects, 5,826 participated in the 
voice task, resulting in a total of 65,022 recordings. Each 
person was asked to record his or her voice using the smart-
phone’s microphone saying “aaaah” for 10 seconds at a steady 
pace three times a day.  In case of PD patients, they were in-
structed to record their voices immediately before taking PD 
medication, just after taking PD medication (feeling at their 
best), and another time of the day. In the case of the HCs, 
they could record their voices at any time of the day. 
	 To avoid optimism in predicting PD, we conducted a seri-
ous cohort filtering process, which is illustrated in Figure 1 
(steps 1 and 2).
	 Step 1: Using the demographic survey 
	 - �PD group selection: If the participant is professionally di-

agnosed by a doctor AND he or she has a valid date of di-
agnosis, AND is actually a Parkinsonian, not a caretaker, 
AND has never had surgery to treat PD nor deep brain 
stimulation, AND his or her age is valid.

	 - �HC group selection: If the participant is not professionally 
diagnosed by a doctor, AND he or she has no valid date 
of diagnosis, AND has no movement symptoms, AND his 
or her age is valid.

	 - �Unknown group selection: A participant is said to be un-
known if their professional diagnosis is unknown.

	 Step 2: Using the medical time point of the recordings
	 The recordings were downloaded from [13] using the syn-
apse Python client and SQL query commands, with a size 
of 80 GB. In this step, two important variables were used to 
filter the participants (healthCode from step 1 and medtime-
point from this step); see Table 1 for details.
	 - �PD group selection: Selected PD participants from step 

1 AND (recordings of participants immediately before 
taking PD medication OR recordings of participants who 
didn’t take PD medication).

	 - �HC group selection: The same participants from step 2.
	 - �Unknown group selection: Unknown group from step 1 

OR (records with undefined medication time point OR 
recordings of participants after taking PD medication OR 
recordings of participants at another time of the day).

	 Note AND represents the logical conjunction, OR repre-
sents the logical disjunction.
	 The final cohort dataset statistics are shown in Table 2.

2. Audio Signal Feature Extraction
Feature extraction is a primary step in ML and pattern rec-
ognition systems, particularly at the audio analysis stage. 
Audio signals are constantly changing, i.e., non-stationary, 
which is why, in most applications, audio signals are divided 
into short-term frames [15], and the analysis is done on a 

Cohort selection steps
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time point of the records
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Figure 1. Cohort selection steps using the demographic survey and the medical timepoint of the records.



277Vol. 26  •  No. 4  •  October 2020 www.e-hir.org

Classification Using Voice Recordings

frame basis. Using the pyAudioAnalysis [16] library, we ex-
tracted important audio features that represented the prop-
erties of the selected recordings using two common tech-
niques: the short-term and mid-term processing techniques.
	 Short-term processing was done by following a window-

ing procedure. The window is generally between 20 ms and 
40 ms [16]. Each recording was sampled at 44.1 kHz and 
divided into short windows of 30 ms with a step of 15 ms. 
The audio signal was multiplied with a shifted version of this 
window. This phase resulted in a sequence of feature vectors 
that led to 34 extracted features from the time, frequency, 
and cepstral domains [15,16] (Supplementary Table S1). The 
cepstral domain or the cepstrum is defined as the inverse 
discreet Fourier transform (DFT) of the log magnitude of 
the DFT of a signal.
	 The mid-term processing was done by dividing each re-
cording into mid-term windows of 5 seconds (generally 
between 1 and 10 seconds [16]), with a step of 2.5 seconds. 
Then for each window, short-term processing was applied to 

Figure 2. ‌�Feature extraction process and the machine-learning process. PD: Parkinson's disease, SVM: support vector machine, KNN: 
k-nearest neighbor, XGBoost: extreme gradient boosting.
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Table 1. Voice record variables

Variable Description

recordid This is a unique id for each record.
healthCode This is a unique id for each partici-

pant.
audio_countdown.m4a Recording of the environment for 5 

seconds to verify that the micro-
phone works.

audio_audio.m4a Voice recording of "aaaah" by the par-
ticipant for 10 seconds.

medtimepoint This is a very important variable, 
which indicates when a participant 
records his voice: 
Immediately before Parkinson medi-
cation OR 
Just after Parkinson medication (at 
your best) OR 
I don't take Parkinson medications 
OR 
AnotherTime

Table 2. Final cohort dataset statistics

PD group Control group

Number of selected recordings 9,105 9,105
Number of participants 453 1,037
Sex
   Male 280 836
   Female 173 201
Age (yr) 64.50 ± 8.16 

(18–85)
53.62 ± 10.99 

(18–85)
Values are presented number or mean±standard deviation 
(min–max).
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calculate the feature statistics (feature_mean, delta_feature_
mean, feature_std, delta_feature_std) for each of the 34 fea-
tures. This resulted in 136 extracted audio features, plus the 
age and gender of each participant as well as the class vari-
able (1 for PD participants, 0 for HC participants) (see work-
flow 1 in Figure 2). The final dataset had 80,594 instances, 
138 features, and a class variable in total (Supplementary 
Table S2). 

3. Baseline Models
Different techniques are better suited for different prob-
lems, and for different types of data (in our case predicting 
a category, with labeled data, under 100k samples). For this, 
we used the scikit-learn algorithm cheat-sheet [17] to select 
multiple classifiers that suited our problem, namely, linear-
SVM, KNN, RF, and XGBoost. 
	 The first step was to create a baseline ML model for each 
technique, using the default hyperparameters, and to com-
pare their performance. To avoid overfitting, we used strati-
fied 5-fold cross-validation because of our large dataset (+80k 
samples) although it was computationally intensive. Four 
measures were used to assess the performance of the clas-
sifiers, namely, accuracy, sensitivity, specificity, and the F1-
score.
	 Before training our classifiers, we applied and compared 
various data preprocessing techniques. Data preprocessing 
is an important step in every ML process, including cleaning 
and standardization.

1) Dataset cleaning: handling missing values
It is quite common to have missing values in a dataset (NaNs). 
This was true in our case which resulted from the audio 
analysis feature extraction phase of some recordings. Han-
dling missing values can improve an ML model’s accuracy. 
For this, we tested the following methods: 
	 - Removing instances with missing values; 
	 - Replacing missing values with zero;
	 - �Imputing missing values with the mean, median, and 

most frequent value in each column. 

2) Dataset normalization
Our dataset included features with different ranges, for 
example age between 18 and 85, gender either 0 or 1, zero 
crossing rate feature (zcr_mean) between 0 and 0.7, en-
ergy feature (energy_mean) between 6.205814e-09 and 
5.019101e-01, and so on (Supplementary Table S1) for fea-
tures description. 
	 For this, dataset normalization was required to change the 

column values into a common range; hence, we implement-
ed the following techniques: 
	 - Dataset rescaling between 0 and 1 and between -1 and 1;
	 - Dataset normalization; 
	 - Dataset standardization. 
	 Then we compared the performance of those data process-
ing techniques to choose the best combination to finally 
create the baseline models. We divided our dataset into a 
training set (80%) and held-out test set (20%). The test set 
was used to assess the performance of the final models on 
unseen data as seen in Figure 2 (workflow 2).  

4. Feature Selection
Feature selection is one of the main concepts in ML. Having 
a large dataset increases the complexity of the models and 
may decrease their performance because it is computation-
ally intensive. Various feature selection methods are widely 
used in the literature [18]. In this work, we adopted a filter 
method, and an embedded method. Wrapper methods were 
excluded due to their exhaustive search to find the optimal 
set of features that is computationally intensive, while using 
large datasets.

1) Filter method: ANOVA
ANOVA provides a statistical test to determine whether the 
means of several groups are equal. It computes the ANOVA 
F-value between each feature and the class variable. This F-
value is used to select the subset of K features that have the 
strongest relationship with the class. 

2) Embedded method: LASSO
LASSO is a regression analysis that performs L1 regulariza-
tion which also performs an indirect feature selection. It has 
a parameter C that controls the sparsity; the smaller C, the 
fewer features are selected.
	 We decided to choose the maximum number of features 
in the 30th range to reduce the complexity of our models. 
In our case, adding less-important features (more than 30) 
made the classifiers more complex and did not add any sig-
nificant or noticeable improvement in terms of performance. 
Thus, we tested various values of K(10, 20, 30) and C(0.01, 
0.02, 0.03) to assess the performance of our classifiers, and 
decided on the best one (Table 3, Supplementary Table S3).

III. Results

1. Baseline Models Results
After preprocessing our dataset, using a combination of 
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techniques that handle missing values and normalize the 
columns into a common range, deleting rows with missing 
values and rescaling the dataset between 0 and 1 gave the 
best performing baseline results. Table 4 presents the clas-
sification results obtained using all of the features. XGBoost 
was the most accurate, sensitive, and specific technique with 
90.97%, 90.80%, and 91.14%, respectively, with an F1-score 

of 90.92%. Linear SVM was the least accurate, sensitive, and 
specific technique with 76.47%, 78.60%, and 74.36%, respec-
tively, with an F1-score of 76.88%.

2. Feature Selection Results
Table 3 presents the classification results obtained after fea-
ture selection. We selected various subsets of ranked features 

Table 3. Performance of the four techniques using ANOVA and LASSO with various subsets of features

Method Parameter value Number of features Model Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

ANOVA K = 10 10 Linear SVM 74.79 77.78 71.83 75.43 

KNN 88.67 88.63 88.71 88.62 

RF 92.09 91.77 92.42 92.03 

XGBoost 89.33 88.94 89.72 89.24 

K = 20 20 Linear SVM 74.53 77.72 71.37 75.23 

KNN 89.49 89.16 89.82 89.41 

RF 91.13 90.83 91.43 91.07 

XGBoost 89.94 89.59 90.29 89.86 

K = 30 30 Linear SVM 74.55 77.53 71.59 75.20 

KNN 90.95 90.61 91.28 90.88 

RF 91.42 91.07 91.77 91.35 

XGBoost 90.59 90.49 90.92 90.54 
LASSO C = 0.01 11 Linear SVM 74.38 77.29 71.50 75.02 

KNN 89.54 89.54 89.55 89.50 

RF 92.30 92.20 92.40 92.26 

XGBoost 89.45 89.37 89.53 89.40 

C = 0.02 21 Linear SVM 75.60 78.71 72.53 76.25 

KNN 91.23 91.16 91.29 91.19 

RF 92.29 92.15 92.43 92.25 

XGBoost 90.38 90.13 90.64 90.38 

C = 0.03 33 Linear SVM 76.02 78.80 73.26 76.58 

KNN 92.69 92.38 92.99 91.59 

RF 92.09 91.83 92.35 92.04 

XGBoost 90.83 90.69 90.96 90.77 

ANOVA: analysis of variance, LASSO: least absolute shrinkage and selection operator, SVM: support vector machine, KNN: k-
nearest neighbor, RF: random forest, XGBoost: extreme gradient boosting.

Table 4. Performance of baseline models

Model Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

Linear SVM 76.47 78.60 74.36 76.88 
KNN 90.22 89.74 90.70 90.13 
RF 89.88 88.77 90.98 89.72 
XGBoost 90.97 90.80 91.14 90.92 

SVM: support vector machine, KNN: k-nearest neighbor, RF: random forest, XGBoost: extreme gradient boosting.
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using ANOVA’s K best parameter (K = 10, 20, and 30) and 
LASSO’s C parameter (C = 0.01, 0.02, and 0.03) and tested 
their performance for each ML technique. 
	 RF was the most accurate, sensitive, and specific tech-
nique using ANOVA’s best 10, 20, and 30 features and using 
LASSO’s C = 0.01 and C = 0.02. KNN was the most accu-
rate, sensitive, and specific technique using Lasso’s C = 0.03. 
Linear SVM was the least accurate, sensitive, and specific 
technique in all cases. Supplementary Table S3 presents the 
subset of features for each feature selection method using the 
various parameters K and C. 

3. Hyperparameter Tuning Results
From Table 3, we concluded that the combination of features 
using LASSO outperformed ANOVA with almost the same 
number of features (K = 10 vs. C = 0.01, K = 20 vs. C = 0.02, 

K = 30 vs. C = 0.03). Thus, to perform hyperparameter tun-
ing, we used the best subset of features that maximized the 
performance of each ML technique, knowing that the results 
shown in Table 4 were measured using the default hyperpa-
rameters with 138 features.
	 Linear SVM, KNN, and XGBoost were mostly accurate us-
ing LASSO and C = 0.03 with 76.02%, 92.69%, and 90.83%, 
respectively, using only 33 features. However, RF was mostly 
accurate using LASSO and C = 0.01 with 92.30% using only 
11 features.
	 Table 5 presents the hyperparameter tuning results ob-
tained using random search. XGBoost was the most accu-
rate, sensitive, and specific technique with 95.31%, 95.19%, 
and 95.43%, respectively, with an F1-score of 95.28%, while 
predicting new cases on unseen data with an accuracy, 
sensitivity, and specificity of 95.78%, 95.32%, and 96.23%, 

Table 5. Optimal hyperparameters of models using random search

Machine learning 

technique

Best feature selection 

method

Optimal  

hyperparameters values
Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

Linear SVM Feature selection using 
LASSO with C = 0.03

penalty = l2
c = 92.82
verbose = false
dual = false

76.03 78.81 73.27 76.59 

KNN Feature selection using 
LASSO with C = 0.03

n_neighbors = 1
weights = uniform
algorithm = kd_tree
leaf_size = 180

94.88 95.08 94.68 94.87 

RF Feature selection using 
LASSO with C = 0.01

n_estimators = 1000
bootstrap = true
criterion = entropy
max_features = none
verbose = false

93.92 93.80 94.03 93.88 

XGBoost Feature selection using 
LASSO with C = 0.03

n_estimators = 1000
max_depth = 15
learning_rate = 0.2
objective = binary:logistic
booster = gbtree
gamma = 0.5
min_child_weight = 3.0
subsample = 0.8
colsample_bytree = 0.9
colsample_bylevel = 0.9
reg_alpha = 0.1
silent = false

95.31 95.19 95.43 95.28 

SVM: support vector machine, KNN: k-nearest neighbor, RF: random forest, XGBoost: extreme gradient boosting, LASSO: 
least absolute shrinkage and selection operator.
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respectively (Table 6) and with an F1-score of 95.74%. KNN, 
RF, and linear SVM were the least accurate, sensitive, and 
specific techniques. 

IV. Discussion

This paper presented our method which we used to classify 
PD patients and distinguish them from HCs using 18,210 
smartphone recordings by creating a dataset of 80,594 

Table 6. Performance of the models on unseen data

Rank Model Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

1 XGBoost 95.78 95.32 96.23 95.74 
2 KNN 95.62 95.57 95.67 95.60 
3 RF 94.52 94.19 94.84 94.47 
4 Linear SVM 75.47 77.75 73.21 75.93 

SVM: support vector machine, KNN: k-nearest neighbor, RF: random forest, XGBoost: extreme gradient boosting.

Table 7. Comparison of our methodology with other studies

Study Dataset Methodology Results

Little et al. [10] They used an original dataset 
consisting of 195 recordings col-
lected from 31 patients where 23 
were diagnosed with PD

They detected dysphonia by 
discriminating HCs from PD 
participants, by extracting time 
domain and frequency domain 
features 

They achieved an accuracy of 
91.4% using SVM classifier with 
10 highly uncorrelated measures.

Benba et al. [11] They used a dataset consisting of 
17 PD patients and 17 HCs 

They classified PD participants 
from HCs using a set of record-
ings recorded using a computer’s 
microphone, and by extracting 
20 MFCC coefficients 

They achieved an accuracy of 
91.17% using linear SVM with 
12 MFCC coefficients. 

Hemmerling et al. [12] They used an original dataset 
consisting of 198 recordings col-
lected from 66 patients where 33 
were diagnosed with PD

They extracted several acoustic 
features, and applied Principal 
Component Analysis (PCA) for 
feature selection

They achieved and accuracy of 
93.43% using linear SVM 

Singh and Xu [19] They selected randomly 1,000 
recordings from the mPower 
database

They extracted MFCC coeffi-
cients using the python_speech_
features library and compared 
different feature selection 
techniques 

They achieved an accuracy of 99% 
using SVM with an RBF kernel 
and by selecting important fea-
tures using L1 feature selection 
technique

This study We have used a set of 18,210 
smartphone recordings from the 
mPower database where 9,105 
recordings are of PD partici-
pants and 9,105 recordings are 
of healthy controls

We have extracted several fea-
tures, from time frequency 
and cepstral domains, we have 
applied different preprocessing 
techniques and used two feature 
selection methods ANOVA and 
LASSO to compare Four differ-
ent classifiers using 5-fold cross-
validation

We have achieved on unseen data 
a high accuracy, sensitivity, and 
specificity of 95.78%, 95.32%, and 
96.23% respectively, and an F1-
score of 95.74% using XGBoost 
with 33 features out of 138 that 
were chosen using LASSO with C 
= 0.03 

HC: health control group, PD: Parkinson’s disease, SVM: support vector machine, MFCC: mel-frequency cepstral coefficients, RBF: 
radial basis function, LASSO: least absolute shrinkage and selection operator.
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samples with 138 features and a class variable. The LASSO 
feature selection method outperformed ANOVA with almost 
the same number of features. From Supplementary Table 
S3, we conclude that age and gender features are highly 
ranked using both methods; it is known that PD is seen in 
people aged over 50, and it affects males more than females. 
Furthermore, energy entropy, spectral spread, and MFCC 
coefficients are highly ranked using both methods, which 
indicates the importance of extracting time, frequency, and 
cepstral domain features, in addition to the age and the gen-
der of participants in classifying this disease. 
	 From the same table, we can notice that there is a differ-
ence in the ranking of features between ANOVA and LASSO 
because each technique implements a different approach. 
ANOVA analyses the relationship between each feature 
and the class variable separately and assigns a test score to 
each feature. Then all the test scores are compared, and the 
features with top scores are selected (K = 10, 20, 30). On 
the other hand, LASSO regularization adds a penalty to the 
different parameters of the model to avoid overfitting. This 
penalty is applied over the coefficients that multiply each of 
the features. Thus, the L1 technique analyses all the features 
at once. In addition, LASSO has an important property of 
shrinking down to zero unimportant features, which de-
pends on the chosen C parameter. For this reason, in Sup-
plementary Table S3, there are different features for each C 
value in LASSO and the same ranked features using ANOVA 
with regards to the chosen K value. With this combination 
of features, XGBoost outperformed the remaining classifiers 
with an accuracy of 95.31% using 80% of the data (Table 5) 
while predicting new cases on unseen data with an accuracy 
of 95.78% (Table 6). 
	 Several studies [10–12] have reported high classification 
accuracy using SVM in the range of 91% to 93%, as seen in 
Table 7. However, in Tables 3–6, we note that SVM was the 
least accurate, with a maximum accuracy of 76.47% using 
138 features. This is attributed to the fact that these studies 
used a small number of recordings, and small datasets. Fur-
thermore, we found that a regular SVM takes time to fit the 
data (approximately 40 minutes). For this reason, we used 
linear SVM, which is optimized for large datasets, which 
limited our chances to test various other kernels (RBF, poly, 
and sigmoid). 
	 Singh and Xu [19] used the same dataset that we used and 
achieved an accuracy of 99% using MFCC coefficients, L1-
based feature selection, and an SVM classifier with an RBF 
kernel using 1,000 samples. The problem is that those 1,000 
recordings were chosen randomly from an unbalanced da-

tabase of 65,022 recordings, where 14% of participants were 
diagnosed with PD and 86% were healthy controls (claimed 
in their paper). Randomly choosing 1,000 recordings from 
an unbalanced set of recordings may have introduced an un-
balanced set of 1,000 recordings. Moreover, those recordings 
were chosen without taking into account the medication 
time point; therefore, their dataset may have included some 
recordings of patients after they had taken PD medication. 
We avoided this in our cohort selection phase, as seen Figure 
1, compared to our dataset where we made a 50/50% split of 
the recordings, where 9,105 were obtained from PD patients, 
and 9,105 were obtained from HCs. Furthermore, relying 
only on accuracy as a metric to assess the performance of 
the classifiers is not sufficient in medical diagnostic. Adding 
other metrics, such as sensitivity (which measures the pro-
portion of PD patients that were correctly classified as hav-
ing PD), and specificity (which measures the proportion of 
HCs that were correctly classified as not having PD) will give 
a better estimate of the performance of the classifiers. In our 
case, our highest classifier achieved an accuracy of 95.78%, a 
sensitivity of 95.32%, and a specificity of 96.23% with an F1-
score of 95.74%. In the case of an unbalanced dataset (which 
is not clear in their case), relying only on accuracy may re-
sults in a high accuracy if one class is outnumbered; thus, in-
troducing other metrics is important. Hence, we believe that 
our approach is more accurate and precise for classifying PD 
even if Singh et al. [19] achieved a higher accuracy which 
could be affected by their methodology choices.  
	 In conclusion, we proposed a method to classify PD us-
ing a large sample of smartphone recordings as a sustained 
phonation of /a/ for 10 seconds. These recordings were then 
processed to extract multiple domain features in addition to 
demographic parameters to create an original dataset that 
was subjected to various ML techniques after data cleaning, 
normalization, and feature selection. We have demonstrated 
the importance of using these features to precisely classify 
PD with an accuracy of 95.78% using XGBoost. The main 
objective of this work was to build a smart framework based 
on ML techniques capable of distinguishing between PD 
patients and HCs using voice as a disease biomarker. As a 
future work, we aim to develop an mHealth system capable 
of implementing these ML techniques to speed up diagnosis 
time and to integrate it with conventional clinical methods.
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