Table 3.
Method | Parameter value | Number of features | Model | Accuracy (%) | Sensitivity (%) | Specificity (%) | F1-score (%) |
---|---|---|---|---|---|---|---|
ANOVA | K = 10 | 10 | Linear SVM | 74.79 | 77.78 | 71.83 | 75.43 |
KNN | 88.67 | 88.63 | 88.71 | 88.62 | |||
RF | 92.09 | 91.77 | 92.42 | 92.03 | |||
XGBoost | 89.33 | 88.94 | 89.72 | 89.24 | |||
| |||||||
K = 20 | 20 | Linear SVM | 74.53 | 77.72 | 71.37 | 75.23 | |
KNN | 89.49 | 89.16 | 89.82 | 89.41 | |||
RF | 91.13 | 90.83 | 91.43 | 91.07 | |||
XGBoost | 89.94 | 89.59 | 90.29 | 89.86 | |||
| |||||||
K = 30 | 30 | Linear SVM | 74.55 | 77.53 | 71.59 | 75.20 | |
KNN | 90.95 | 90.61 | 91.28 | 90.88 | |||
RF | 91.42 | 91.07 | 91.77 | 91.35 | |||
XGBoost | 90.59 | 90.49 | 90.92 | 90.54 | |||
| |||||||
LASSO | C = 0.01 | 11 | Linear SVM | 74.38 | 77.29 | 71.50 | 75.02 |
KNN | 89.54 | 89.54 | 89.55 | 89.50 | |||
RF | 92.30 | 92.20 | 92.40 | 92.26 | |||
XGBoost | 89.45 | 89.37 | 89.53 | 89.40 | |||
| |||||||
C = 0.02 | 21 | Linear SVM | 75.60 | 78.71 | 72.53 | 76.25 | |
KNN | 91.23 | 91.16 | 91.29 | 91.19 | |||
RF | 92.29 | 92.15 | 92.43 | 92.25 | |||
XGBoost | 90.38 | 90.13 | 90.64 | 90.38 | |||
| |||||||
C = 0.03 | 33 | Linear SVM | 76.02 | 78.80 | 73.26 | 76.58 | |
KNN | 92.69 | 92.38 | 92.99 | 91.59 | |||
RF | 92.09 | 91.83 | 92.35 | 92.04 | |||
XGBoost | 90.83 | 90.69 | 90.96 | 90.77 |
ANOVA: analysis of variance, LASSO: least absolute shrinkage and selection operator, SVM: support vector machine, KNN: knearest neighbor, RF: random forest, XGBoost: extreme gradient boosting.