Skip to main content
. 2020 Oct 31;26(4):274–283. doi: 10.4258/hir.2020.26.4.274

Table 3.

Performance of the four techniques using ANOVA and LASSO with various subsets of features

Method Parameter value Number of features Model Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)
ANOVA K = 10 10 Linear SVM 74.79 77.78 71.83 75.43
KNN 88.67 88.63 88.71 88.62
RF 92.09 91.77 92.42 92.03
XGBoost 89.33 88.94 89.72 89.24

K = 20 20 Linear SVM 74.53 77.72 71.37 75.23
KNN 89.49 89.16 89.82 89.41
RF 91.13 90.83 91.43 91.07
XGBoost 89.94 89.59 90.29 89.86

K = 30 30 Linear SVM 74.55 77.53 71.59 75.20
KNN 90.95 90.61 91.28 90.88
RF 91.42 91.07 91.77 91.35
XGBoost 90.59 90.49 90.92 90.54

LASSO C = 0.01 11 Linear SVM 74.38 77.29 71.50 75.02
KNN 89.54 89.54 89.55 89.50
RF 92.30 92.20 92.40 92.26
XGBoost 89.45 89.37 89.53 89.40

C = 0.02 21 Linear SVM 75.60 78.71 72.53 76.25
KNN 91.23 91.16 91.29 91.19
RF 92.29 92.15 92.43 92.25
XGBoost 90.38 90.13 90.64 90.38

C = 0.03 33 Linear SVM 76.02 78.80 73.26 76.58
KNN 92.69 92.38 92.99 91.59
RF 92.09 91.83 92.35 92.04
XGBoost 90.83 90.69 90.96 90.77

ANOVA: analysis of variance, LASSO: least absolute shrinkage and selection operator, SVM: support vector machine, KNN: knearest neighbor, RF: random forest, XGBoost: extreme gradient boosting.