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Multiplatform Metabolomics Reveals Novel Serum
Metabolite Biomarkers in Diabetic Retinopathy Subjects

Qiuhui Xuan, Yang Ouyang, Yanfeng Wang, Liang Wu, Huating Li, Yuanyuan Luo,
Xinjie Zhao, Disheng Feng, Wangshu Qin, Chunxiu Hu, Lina Zhou, Xinyu Liu,
Haidong Zou, Chun Cai, Jiarui Wu,* Weiping Jia,* and Guowang Xu*

Diabetic retinopathy (DR) is the main cause of vision loss or blindness in
working age adults worldwide. The lack of effective diagnostic biomarkers for
DR leads to unsatisfactory curative treatments. To define potential metabolite
biomarkers for DR diagnosis, a multiplatform-based metabolomics study is
performed. In this study, a total of 905 subjects with diabetes without DR
(NDR) and with DR at different clinical stages are recruited. Multiplatform
metabolomics methods are used to characterize the serum metabolic profiles
and to screen and validate the DR biomarkers. Based on the criteria p < 0.05
and false-discovery rate < 0.05, 348 and 290 metabolites are significantly
associated with the pathogenesis of DR and early-stage DR, respectively. The
biomarker panel consisting of 12-hydroxyeicosatetraenoic acid (12-HETE) and
2-piperidone exhibited better diagnostic performance than hemoglobin A1c
(HbA1c) in differentiating DR from diabetes, with AUCs of 0.946 versus 0.691
and 0.928 versus 0.648 in the discovery and validation sets, respectively. In
addition, this panel showed higher sensitivity in early-stage DR detection than
HbA1c. In conclusion, this multiplatform-based metabolomics study
comprehensively revealed the metabolic dysregulation associated with DR
onset and progression. The defined biomarker panel can be used for detection
of DR and early-stage DR.
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1. Introduction

Diabetic retinopathy (DR), as a main mi-
crovascular complication of diabetes mel-
litus (DM), remains a leading cause of
vision loss among working aged adults
worldwide. The International Diabetes Fed-
eration (2015) estimated that the occur-
rence of DR and vision-threatening DR
would increase to 191.0 and 56.3 mil-
lion, respectively, by 2030. In addition,
the presence of DR indicates an increased
risk of life-threatening systemic vascular
complications.[1]

Screening and early diagnosis of DR are
particularly important in the prevention
and treatment of this disease. Although reti-
nal imaging methods (such as standard or
wide-field retinal imaging, optical coher-
ence tomography) are commonly utilized
to screen and diagnose DR in the clinic
and have successfully reduced the rate of
vision loss,[2] current DR screening is chal-
lenged by issues related to availability of pri-
mary healthcare workers who are capable
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of assessing retinal images.[3] Therefore, effective method such
as reliable biomarkers for screening DR is required to prevent
the progression of disease.[4] Moreover, retinal vascular and neu-
ral damage may occur before evident clinical DR, accompanied
by the appearance of microaneurysms and exudates on retinal
edema. Hemoglobin A1c (HbA1c) is the only validated systemic
biomarker for DR progression;[5] good glycemic control could
significantly reduce the development of microvascular complica-
tions. However, only 6.6% of the variation in the risk of retinopa-
thy was explained by HbA1c.[5] Therefore, there is still an urgent
need to identify novel biomarkers for DR screening or detection.

Metabolomics is one of the “omics” techniques and is com-
plementary to genomics, transcriptomics, and proteomics. This
study aims to provide a method for comprehensive profiling of
low-molecular-weight metabolites in complex biological matri-
ces. Many studies[6] have shown obvious metabolic disorders
associated with DM and DM-related complications. Therefore,
metabolomics and lipidomics provide powerful platforms for dis-
covering novel markers and biochemical processes to improve
diagnostics, prognosis, and treatment.

Metabolomics studies of DR are still in the early stage. Paris
et al. and Wang et al. detected and identified metabolite mark-
ers using vitreous samples.[7] However, it is not easy to detect
DR with vitreous biomarkers due to the invasiveness of vitre-
ous sampling. Some studies[8] have also shown serum metabo-
lite biomarkers and dysfunctional pathways associated with DR;
nevertheless, further application of these biomarkers in the clinic
was restricted by a limited research cohort or lack of valida-
tion. Therefore, further study is required to discover and validate
biomarkers from large-scale samples.

Due to the complex genetic and microenvironmental back-
grounds of patients, discovering novel biomarkers requires com-
prehensive metabolomics studies. Nuclear magnetic resonance
(NMR) spectroscopy, liquid chromatography-mass spectrometry
(LC-MS) and gas chromatography-mass spectrometry(GC-MS)
are the most useful tools for metabolic or lipidomic profiling
analysis. NMR spectroscopy is popular because of simple pre-
treatment, non-destructive analysis, and high reproducibility, but
its disadvantages are low detection sensitivity and low cover-
age of metabolites.[9] Chromatography for its superior separa-
tion power and MS for its higher universality and sensitivity are
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playing an increasingly important role in metabolomics. LC-MS
lipidomics (LC-MSL) focuses on the measurement of lipids and
cannot provide data on other metabolites (e.g., amino acids, nu-
cleic acids, bile acids, and saccharides). GC-MS can be used to
analyze volatile and semivolatile metabolites, and reversed-phase
LC-MS is suitable for hydrophobic metabolites. The combina-
tion of multiple platforms, including GC-MS metabolomics (GC-
MSM), LC-MS metabolomics (LC-MSM), and LC-MSL, is better
for detecting as many metabolites as possible.

The goal of this study is to obtain metabolic profiling data
from multiple analytical platforms to comprehensively elucidate
the abnormal metabolism associated with DR onset and develop-
ment and to further identify reliable serum biomarkers for the
diagnosis of DR and early-stage DR in the population with dia-
betes. Thus, a total of 905 participants were enrolled to explore
metabolic profiles and abnormal metabolic pathways associated
with DR, and a two-step analysis strategy including discovery
and validation studies, was used to discover and validate a novel
biomarker panel and test its clinical practicability. Additionally,
patients with mild nonproliferative DR (NPDR) were specifically
recruited to evaluate the performance of the biomarker panel in
differentiating early-stage DR.

2. Results and Discussion

In this study, using nontargeted GC-MSM, LC-MSM, and LC-
MSL platforms, we comprehensively elucidated the metabolic
profiles of DR and early-stage DR and the related disor-
dered metabolism pathways underlying DR development. Subse-
quently, we identified and validated a novel biomarker panel for
differentiating DR and early DR and tested its clinical practicabil-
ity. A workflow of this study is shown in Figure 1. In the discovery
study, all 461 serum samples, including 111 NDR samples and
350 DR samples, were collected to explore abnormal metabolism
and dysfunctional pathways of DR compared with NDR and es-
tablish reliable biomarker models. Among these DR samples, 99,
90, 85, and 76 cases were diagnosed as NPDR, moderate NPDR
(MNPDR), severe NPDR (SNPDR), and proliferative DR (PDR),
respectively. In the validation set, a total of 444 serum samples in-
cluding 105 NDR, 103 NPDR, 103 MNPDR, 113 SNPDR, and 20
PDR samples, were used to test a defined biomarker panel and
evaluate its diagnostic performance for DR and early-stage DR.
Last, the influence of 2-piperidone on human retinal endothelial
cells (hRECs) was investigated to explore whether it is related to
DR onset and progression.

Nontargeted profiling was performed for the discovery set
on the three different platforms (GC-MSM, LC-MSM, and LC-
MSL) to obtain the serum metabolic characteristics as compre-
hensively as possible. The relative standard derivation (RSD) of
the distribution for the detected metabolites in the quality con-
trol (QC) serum samples inserted into the analysis batches is
shown in Figure S1, Supporting Information, and the data show
that the present analyses were reliable. Finally, 139 metabolites
were identified by a library search (NIST, FiehnLib and our in-
house database) and retention index verification by GC-MSM;
194 metabolites were identified based on our in-house database
containing more than 2000 metabolite standards[10] with LC-
MSM; and 484 lipid species were identified based on our in-
house lipid database, including the retention time (tR), exact m/z
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Figure 1. Design of the study.

and/or MS characteristic fragments,[11] with LC-MSL. The identi-
fied metabolites included organic acids (such as citrate, isocitrate,
succinate, fumarate, and malate), amino acids (e.g., lysine, beta-
alanine, alanine, threonine, aspartic acid, glutamine, glutamic
acid, citrulline, ornithine, tryptophan, tyrosine, phenylalanine,
valine, and leucine), nucleosides and their derivatives (e.g., hy-
poxanthine, xanthine, and uridine), saccharides and their deriva-
tives (such as fructose, mannitol, mannose, maltose, arabitol, and
lyxose), carnitines, glycerides, sphingolipids, phospholipids, and
fatty acids. The subsequent statistical analyses were performed
using the metabolites with less than 30% RSD.

2.1. Metabolic and Lipid Profiling of DR

First, partial least squares discriminant analysis (PLS-DA) score
plots were generated, and the permutation test showed that the
models were reliable without overfitting (R2 = (0.0, 0.12), Q2 =
(0.0, −0.12); R2 = (0.0, 0.12), Q2 = (0.0, −0.13); R2 = (0.0, 0.06),
and Q2 = (0.0, −0.06) for DR versus NDR) (Figure S2A–C, Sup-
porting Information) for GC-MSM (Figure 2A), LC-MSM (Fig-
ure 2B), and LC-MSL (Figure 2C) in the discovery set. The appar-
ent separation of DR subjects from NDR subjects implied that
abnormal metabolism occurred in DR, and a univariate analysis
(nonparametric test) was subsequently performed for the iden-
tified metabolites from the three platforms between the DR and
NDR groups. A total of 348 unique metabolites (93, 119, and 194
metabolites from GC-MSM, LC-MSM, and LC-MSL, respectively)
met the criteria of p < 0.05 and false-discovery rate (FDR) < 0.05,
showing significant changes between the DR and NDR groups
(Figure 2D). Additionally, the nonparametric test was also used
for lipids, and multiple lipid (sub)classes (e.g., fatty acids, phos-
pholipids, and sphingolipids) increased significantly in the DR
subjects compared to the NDR subjects (Figure 2E).

2.2. Metabolic and Lipid Profiling of Early-Stage DR (NPDR)

The detection of early-stage DR is very important for treatment.
Thus, samples of early-stage DR, namely NPDR, were enrolled

to investigate metabolic and lipid profiles. The PLS-DA score
plots without overfitting (Figure S2D–F, Supporting Informa-
tion) show that the NPDR group was also obviously detached
from the NDR group based on metabolomic data from GC-MSM
(Figure 2H), LC-MSM (Figure 2I), and LC-MSL (Figure 2J). In
addition, a total of 81, 103, and 156 metabolites from the GC-
MSM, LC-MSM, and LC-MSL platforms, were significantly dif-
ferent with p< 0.05 and FDR< 0.05 between the NPDR and NDR
groups (Figure 2K). Additionally, the total levels of multiple lipid
(sub)classes (e.g., fatty acids, phospholipids, and sphingolipids)
displayed a significant increase in the NPDR subjects relative to
the NDR subjects (Figure 2L).

2.3. Metabolic and Lipid Profiling of Different Clinical Grades of
DR

Finally, nonparametric tests were performed on the basis of the
identified metabolites with less than 30% RSD in the discovery
study to identify the differential metabolites between two clinical
grades of NDR, NPDR, MNPDR, SNPDR, and PDR. The num-
bers of significantly differential metabolites with p < 0.05 and/or
FDR < 0.05 are listed in Table S1, Supporting Information. A
large number of metabolites showed significant changes in the
PDR and non-PDR (including NPDR, MNPDR, and SNPDR)
groups compared with the NDR group on the three analytical
platforms. Some metabolites displayed a significant alteration
in the PDR group compared to the non-PDR group. However,
few metabolites showed a significant change in pairwise com-
parisons among NPDR, MNPDR, and SNPDR. Subsequently,
molecular trajectory plots were generated, and are shown in Fig-
ure S3, Supporting Information, based on metabolomic data
from GC-MSM, LC-MSM, and LC-MSL. Briefly, the NDR group
is apparently separated from the other groups (e.g., NPDR, MN-
PDR, SNPDR, and PDR) in Figure S3, Supporting Information.
Additionally, we also observed a tendency for the PDR group to
move closer to the NDR group, implying that the PDR group
shares more similar metabolic molecular characteristics to the
NDR group than the other groups (e.g., NPDR, MNPDR, and
SNPDR).
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Figure 2. Partial least squares discriminant analysis score plots for NDR and DR, including the NPDR, MNPDR, SNPDR, and PDR groups in the
discovery set from A) GC-MSM, B) LC-MSM, and C) LC-MSL. D) Venn diagram displaying the differential metabolites when the DR group was compared
with the NDR group in the discovery set based on GC-MSM, LC-MSM, and LC-MSL. E) Serum relative concentrations of significantly differential lipid
(sub)classes based on LC-MSL in the discovery set. F) Serum concentrations of 12-HETE and 2-piperidone based on the LC-MS platform in the discovery
and G) validation sets. PLS-DA score plots for NDR and NPDR groups in the discovery set from H) GC-MSM, I) LC-MSM, and J) LC-MSL. K) Venn
diagram displaying the differential metabolites when the NPDR group was compared with the NDR group in the discovery set based on GC-MSM,
LC-MSM, and LC-MSL. L) Relative serum concentrations of significantly differential lipid (sub)classes based on LC-MSL in the discovery set. M) Serum
concentrations of 12-HETE and 2-piperidone based on the LC-MS platform in the discovery and N) validation sets. The metabolite data were compared
using nonparametric tests in Wilcoxon, Mann–Whitney test and Benjamini–Hochberg-based FDR modes, *p < 0.05 and/or FDR < 0.05, compared with
NDR.

2.4. Differential Pathway Analyses

To systematically evaluate the perturbed metabolism underly-
ing DR development, we performed pathway analyses based
on metabolomics data from the discovery cohort. DR-induced
metabolic disturbances were mainly associated with glycolysis
metabolism, TCA metabolism, urea cycle metabolism, polyol
metabolism, amino acid metabolism (e.g., glycine, serine, and
threonine metabolism; taurine, and hypotaurine metabolism;
arginine–proline metabolism; valine–leucine–isoleucine biosyn-

thesis), and lipid metabolism (e.g., phospholipid metabolism,
sphingolipid metabolism, glyceride metabolism, and fatty acid
metabolism).

2.5. Metabolite Markers and Diagnostic Performance for DR in
the Discovery Set

Among the significantly altered metabolites in the discovery set,
the levels of 12-HETE and 2-piperidone were much higher in
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Table 1. Results of different metabolite markers and HbA1c for the diagnosis of DR.

Groups* Metabolite Panel Discovery Set (461) Validation set (444)

AUC Sensitivity Specificity AUC Sensitivity Specificity

[95% Cl] [%] [%] [95% Cl] [%] [%]

NDR versus DR 2-piperidone 0.882 0.760 0.937 0.762 0.764 0.695

(0.849–0.914) (0.709–0.815)

NDR versus NPDR 0.893 0.788 0.937 0.760 0.748 0.695

(0.846–0.941) (0.695–0.825)

NDR versus MNPDR 0.903 0.856 0.865 0.724 0.699 0.705

(0.856–0.949) (0.655–0.793)

NDR versus SNPDR 0.905 0.835 0.955 0.819 0.885 0.676

(0.854–0.956) (0.763–0.875)

NDR versus PDR 0.815 0.684 0.946 0.649 0.700 0.676

(0.746–0.884) (0.487–0.810)

NDR versus DR 12-HETE 0.924 0.869 0.883 0.897 0.785 0.914

(0.895–0.952) (0.866–0.929)

NDR versus NPDR 0.923 0.919 0.856 0.910 0.845 0.914

(0.886–0.961) (0.868–0.951)

NDR versus MNPDR 0.940 0.889 0.865 0.862 0.709 0.914

(0.908–0.971) (0.811–0.912)

NDR versus SNPDR 0.958 0.953 0.883 0.921 0.885 0.867

(0.930–0.985) (0.883–0.958)

NDR versus PDR 0.867 0.763 0.883 0.888 0.850 0.867

(0.812–0.922) (0.791–0.985)

NDR versus DR Panel 0.946 0.894 0.919 0.928 0.805 0.933

(0.921–0.970) (0.900–0.956)

NDR versus NPDR 0.958 0.929 0.901 0.925 0.816 0.933

(0.930-0.986) (0.888-0.962)

NDR versus MNPDR 0.948 0.911 0.901 0.862 0.835 0.857

(0.915–0.981) (0.811–0.912)

NDR versus SNPDR 0.980 0.929 0.964 0.952 0.867 0.905

(0.961–0.999) (0.926–0.977)

NDR versus PDR 0.876 0.750 0.946 0.914 0.950 0.905

(0.820–0.931) (0.818–1.000)

NDR versus DR HbA1c 0.691 0.657 0.686 0.555 0.392 0.760

(0.634–0.749) (0.494–0.615)

NDR versus NPDR 0.648 0.611 0.686 0.518 0.327 0.760

(0.572–0.725) (0.438–0.597)

NDR versus MNPDR 0.715 0.596 0.781 0.610 0.495 0.760

(0.643–0.787) (0.532–0.688)

NDR versus SNPDR 0.779 0.766 0.695 0.572 0.409 0.760

(0.707–0.850) (0.495–0.649)

NDR versus PDR 0.627 0.644 0.638 0.544 0.700 0.423

(0.538–0.717) (0.411–0.678)

*Panel: 12-HETE & 2-piperidone

the DR subjects than in the NDR subjects (Figure 2F). A bi-
nary logical regression analysis was carried out for the DR and
NDR groups based on 12-HETE and 2-piperidone to produce a
biomarker panel. The diagnostic performance of the biomarker
panel (AUC 0.946) was better than that of 12-HETE (AUC 0.924),
2-piperidone (AUC 0.882), and HbA1c (AUC 0.691) in discrimi-

nating DR from NDR (Table 1). Moreover, the biomarker panel
showed higher sensitivity and specificity (0.894 and 0.919) than
HbA1c (0.657 and 0.686) (Table 1).

It was also observed that the levels of 12-HETE and 2-
piperidone were higher in the NPDR group than in the NDR
group (Figure 2M). The diagnostic performance of the biomarker
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panel (AUC 0.958) was better than that of 12-HETE (AUC 0.923),
2-piperidone (AUC 0.893), and HbA1c (AUC 0.648) in the dis-
crimination of NPDR from NDR (Table 1). Furthermore, the
biomarker panel showed higher sensitivity and specificity (0.929
and 0.901) than HbA1c (0.611 and 0.686) in differentiating NPDR
from NDR (Table 1). These results highlight the early diagnostic
potential of this metabolite biomarker panel.

2.6. Metabolite Markers and Diagnostic Performance for DR in
the Validation Set

To validate the diagnostic performance of the biomarker panel in
distinguishing DR or early-stage DR from NDR, we studied an-
other independent cohort (validation set) with 444 samples (in-
cluding 105 NDR, 103 NPDR, 103 MNPDR, 113 SNPDR, and 20
PDR samples) (Table 2). 12-HETE and 2-piperidone were quanti-
fied in the multiple reaction monitoring (MRM) mode (Table S2,
Supporting Information) based on the LC-MS platform.

The serum concentrations of 12-HETE and 2-piperidone were
much higher in DR and early-stage DR than in NDR in the val-
idation set (Figure 2G,N). These compounds were used to build
a biomarker panel by means of a logistical regression model for
DR and NPDR detection, and the constructed equations are as
follows:

logit[P = DR] = 0.165x
[
2 − piperidone

]
+ 0.037

× [12 − HETE] − 2.634 (1)

logit [P = NPDR] = 0.124 x
[
2 − piperidone

]
+ 0.027

× [12 − HETE] − 3.094 (2)

where [P = DR] and [P = NPDR] are the prediction probabilities
of DR and NPDR with this panel, respectively, and [12-HETE]
and [2-piperidone] are the absolute serum concentrations of 12-
HETE and 2-piperidone, respectively. The units of absolute con-
centration are µg mL−1 for 2-piperidone and ng mL−1 for 12-
HETE. The cut-off values of [P = DR] and [P = NPDR] were 0.789
and 0.469, respectively. Similar to the results in the discovery set,
the biomarker panel showed higher diagnostic performance in
discriminating DR and NPDR from NDR than HBA1c. The cor-
responding parameters were (AUC 0.928, sensitivity 0.805, and
specificity 0.933) versus (AUC 0.555, sensitivity 0.392, and speci-
ficity 0.760) for DR and NDR, respectively, and (AUC 0.925, sen-
sitivity 0.816, and specificity 0.933) versus (AUC 0.518, sensi-
tivity 0.327, and specificity 0.760) for NPDR and NDR, respec-
tively (Table 1). We can see from Table 1 and above data that al-
though HbA1c is the only validated systemic biomarker for DR
progression,[5] it is not a good enough to distinguish DR from
NDR, in reverse, our newly defined metabolic marker panel can
achieve better AUC for both discovery and validation groups.

2.7. Disorders of Metabolic and Lipid Pathways

Metabolomics offers unique insights into disease pathways, as
metabolites are the products of all biological processes, and their

differential levels reflect the intricate interplay between environ-
mental and genetic factors. Our study provides a systematic eval-
uation of serum metabolite profile changes associated with DR
in individuals using multiple analytical platforms (GC-MSM,
LC-MSM, and LC-MSL) in order to cover as many metabolites
as possible. Among the 348 unique metabolites described, we
identified far more metabolites associated with the pathogene-
sis of DR than other studies, covering metabolites involved in
TCA and urea cycle metabolism, (branched-chain) amino acids,
polyhydric alcohols, nucleotides, and their derivatives, carnitines,
bile acids, and lipids, etc. (Table S3–S5, Supporting Informa-
tion). Moreover, complete metabolic pathway analysis using dis-
criminating metabolites was performed to explore pathway-based
metabolomic features, which are mainly associated with en-
ergy metabolism, amino acid metabolism, and lipid metabolism
(Figure 3).

Energy metabolism plays a key role in DR onset and devel-
opment. Glycolysis and the TCA cycle, as two major energy
metabolism pathways, caught our attention. We found that lac-
tate which is related to glucose metabolism showed a significant
increase in DR patients (Figure 3A). Additionally, the levels of
citrate, isocitrate, succinate, fumarate, and malate were also sig-
nificantly increased in DR compared to NDR (Figure 3A; Table
S3, Supporting Information), reflecting the possibility of an in-
crease in the TCA system. Many studies[12] have indicated that
mitochondrial dysfunction is closely related to DM and its com-
plications. We observed that the fold changes of metabolites on
the right side (fumarate and malic acid) were less than those on
the left side (citric acid, isocitric acid, and succinic acid) in the
TCA pathway in DR relative to NDR. We assumed that the inter-
mediates on the right side were used to enhance the urea cycle,
and the intermediates on the left side were replenished from as-
partic acid metabolism. The increase in aspartic acid metabolism
and the urea cycle in DR seem to confirm the above hypothe-
sis; however, the detailed mechanism should be further studied.
Overall, increased energy metabolism is associated with DR on-
set and progression.

We found that the levels of most amino acids were significantly
increased in DR compared with NDR (Figure 3A; Table S3–S4,
Supporting Information). The serine and glycine residues could
enrich the photoreceptor protein rhodopsin, which is closely as-
sociated with the phosphorylation of pyruvate kinase M2, and
consequently stabilize the Warburg-like effect.[13] The decrease in
rhodopsin is a result of the relative vitamin A deficiency in ocular
tissues in diabetes.[14] The high levels of arginine, ornithine, cit-
rulline, and proline in DR[15] reflect the upregulation of arginine
metabolism. Consistent with many other studies,[16] the increase
in arginine metabolism could be a mediator of DR, and the levels
of leucine, isoleucine, and valine in branched-chain amino acid
(BCAA) metabolism were also increased. The increasing levels
of circulating BCAAs are considered to be related to the intense
neurotoxicity of glutamate in the retina, which plays a major role
in DR neurodegeneration.[17] Fundamentally, BCAAs exert their
effect by activating the mammalian target of rapamycin (mTOR)
pathway, which functions in the regulation of cell growth, prolif-
eration, and survival and in upregulation of the VEGF pathway.
Activation of the VEGF pathway leads to increased expression of
Caspase-3, which consequently causes retinal damage.[18] Thus,
we think that more attention should be paid to the levels of amino
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Figure 3. Changes in metabolic pathways in DR. Black text represents the detected metabolites with no significant change, red text represents significantly
enriched metabolites (e.g., multiple amino acids), and green text represents significantly depleted metabolites (e.g., phosphatidylserine, PS) when the
DR group is compared with the NDR group, and gray text represents undetected metabolites. The metabolite data were compared using nonparametric
tests in Wilcoxon, Mann–Whitney test and Benjamini–Hochberg-based FDR modes.

acids in circulation, which would contribute to understanding the
pathogenesis of DR.

Moreover, the levels of most lipids displayed significant in-
creases in DR relative to NDR. Sphingolipids, as one of the es-
sential components of lipids, have gained increasing attention
in recent years due to their key roles in signal transduction,
cell proliferation, migration, apoptosis, and membrane structural
components.[19] According to recent evidence, ceramide, sphin-
gosine, and sphingosine-1-phosphate (S1P) have been identified
as bioactive sphingolipids,[20] and S1P influences vascular for-
mation, differentiation, and endothelial cell migration.[21] Alter-
ations in the sphingolipid profile, such as transformation of indi-
vidual molecules of ceramide and certain hexose-ceramides, have
been reported in diabetes and diabetes-induced DR.[22] There-
fore, a high level of sphingolipids derived from increased phos-
phatidylcholine and sphingolipid biosynthesis (Figure 3B) may
aggravate cell proliferation and blood vessel formation, playing a
very important role in DR onset and progression.

2.8. Identification and Validation of Biomarkers

Currently, it is still an important goal to identify novel poten-
tial serum biomarkers for detecting DR. After systematic screen-
ings utilizing univariate analyses, a biomarker panel including
2-piperidone and 12-HETE was identified and validated. Early
screening of DR remains a challenge. In this study, the early
diagnostic performance of the serum metabolite panel was also
tested in patients with NPDR. This panel showed very good per-
formance in separating DR and early-stage DR (NPDR) from a
high-risk population (NDR). The diagnostic accuracy ranges of

this panel for DR were 75.0–92.9% and 80.6–95.0% in the discov-
ery and validation sets, respectively (Figure S4, Supporting Infor-
mation).

12-HETE, an eicosanoid, is the main product of 12-
lipoxygenase (LOX) in humans and induces endoplasmic
reticulum (ER) stress in hRECs. Many studies have shown that
disordered eicosanoid metabolism plays a crucial role in disease
progression. We found that circulating 12-HETE levels increased
progressively in DR and were positively associated with the
onset and progression of DR. Many studies have suggested that
12-LOX participates in retinal microvascular dysregulation in
DR by activating ER stress, NADPH oxidase, and the VEGFR2
signaling network, and that destruction of Ca2+ homeostasis
may be a necessary step in promoting the signaling pathway
(Figure S5, Supporting Information).[23]

The other biomarker, 2-piperidone, also known as 𝛿-
valerolactam, is a monomer that is widely used in industry
to synthesize polymers (nylon-5). However, the presence of
2-piperidone in serum has not been reported to date. In our
study, circulating 2-piperidone levels increased greatly in DR and
early-stage DR. Some studies have reported that the increased
level of 2-piperidone may be caused by dietary intake and
conversion of cadaverine, which is a general semen and urine
metabolite produced by decarboxylation of lysine.[24] Cheng et al.
reported that 2-piperidone is a potential metabolite biomarker
of CYP2E1 activity because the conversion of cadaverine to
2-piperidone and that of 2-piperidone to 6-hydroxy-2-piperidone
were positively associated with CYP2E1.[25] However, we could
not find related pathways or biological functions of 2-piperidone
identified by cell biological investigation. Thus, we studied the
biological functions of 2-piperidone in hRECs to determine
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whether 2-piperidone had a biological function associated with
DR progression.

The viability of hRECs with 2-piperidone at a concentration
≥0.4 µg mL−1 was significantly increased compared with that of
the controls at 24 and 72 h (Figure S6 A,B, Supporting Informa-
tion). 2-Piperidone at over 0.4 µg mL−1 could promote hREC pro-
liferation. The relative mRNA expression levels of VEGFA and
VEGFR2 in hRECs treated with various concentrations (0.75, 1.5,
3 µg mL−1) of 2-piperidone were obviously increased compared to
the levels in the controls (Figure S6C, Supporting Information).
In addition, the relative concentration of VEGF in the culture
medium of hRECs treated with 2-piperidone was significantly el-
evated compared to that in medium treated with the vehicle (Fig-
ure S6D, Supporting Information). The expression of VEGFR2
in hRECs treated with 2-piperidone also increased significantly
(Figure S6E, Supporting Information). Importantly, we observed
obvious tube formation in hRECs treated with 2-piperidone (Fig-
ure S6F,G, Supporting Information). These results seem to im-
ply that 2-piperidone was able to promote angiogenesis. The rel-
ative mRNA expression levels of related genes (e.g., TNF-𝛼, IL-
6, ICAM1, and VCAM1) in hRECs treated with 2-piperidone at
concentrations of 0.75, 1.5, and 3 µg mL−1 were significantly in-
creased compared with those in the controls (Figure S6H, Sup-
porting Information). Based on immunoblots of ICAM1 and
VCAM1 (Figure S6I, Supporting Information) and the relative
concentrations of IL-6 and TNF-𝛼 (Figure S6J,K, Supporting
Information) in hRECs treated with 2-piperidone, significant
upregulation was observed, suggesting that 2-piperidone was
closely related to proinflammatory activity. The results showed
that a novel biomarker, 2-piperidone, independent of 12-HETE
(correlation coefficients 0.26 and 0.01 in the discovery and vali-
dation sets, respectively), could promote hREC proliferation, an-
giogenesis, and inflammation, which are closely related to DR
development.

3. Conclusions

In summary, our aforementioned data highlight the potential im-
portance of metabolomics studies for determining the pathogen-
esis of DR and suggest that metabolomics profiling could effec-
tively identify diagnostic markers of DR and early-stage DR from
high-risk Chinese populations. Moreover, our results showed that
a novel biomarker (2-piperidone) has biological functions in the
promotion of hREC proliferation, angiogenesis, and inflamma-
tion. To the best of our knowledge, this is the most compre-
hensive metabolomics study with a large population investigat-
ing the association between metabolic profiles and DR onset and
progression. This multiplatform-based metabolomics study pro-
vides a practical strategy for comprehensively exploring intricate
metabolic networks in DR and screening DR with a small amount
of serum. The results could be utilized as a reference for further
clinical examination.

4. Experimental Section
The clinical stages of DR were classified as NPDR, MNPDR, SNPDR,

and PDR according to the Early Treatment Diabetic Retinopathy Study (ET-
DRS) grading system.[26] The clinical grade of DR was diagnosed by pro-

fessional ophthalmologists according to the ETDRS. NDR subjects were
defined as a diabetic population without retinopathy, based on the World
Health Organization guidelines.

A total of 905 subjects, including NDR and DR subjects from the Shang-
hai Integrated Diabetic Prevention and Care System Study, were enrolled in
this project. The distributions of age and sex in the different clinical grades
were matched as much as possible in the discovery and validation sets,
and the detailed clinical characteristics of the subjects are provided in Ta-
ble 2. In the discovery set, all 461 sex and age-matched fasting serum sam-
ples, including 111 NDR, 99 NPDR, 90 MNPDR, 85 SNPDR, and 76 PDR
samples, were collected and analyzed by three platforms (GC-MSM and
LC-MSM and LC-MSL) to comprehensively elucidate abnormal metabo-
lites and intricate pathways of DR and identify serum biomarkers for the
diagnosis of DR. A novel biomarker panel was tested in the validation co-
hort of 444 participants, containing 105 NDR, 103 NPDR, 103 MNPDR,
113 SNPDR, and 20 PDR cases. Finally, the influence of a novel marker,
2-piperidone, on hRECs was investigated to understand the mechanism
(Figure 1). The study was approved by the Ethical Committee of Shanghai
Sixth People’s Hospital (2018-KY-066 (K)) and conducted in accordance
with the Declaration of Helsinki. Written informed consent was obtained
from all participants before inclusion in the project.

Metabolomics and Lipidomics Analyses: After overnight fasting, all of
the serum samples were collected and stored in a −80 °C freezer. Prior to
analysis, the samples were thawed on ice. Details regarding sample pre-
treatment and metabolomics and lipidomics analyses based on GC-MS
and LC-MS are provided in the Supporting Information.

Cell Biological Study of 2-Piperidone Function: The description of the
cell experiment with 2-piperidone is also provided in the Supporting Infor-
mation.

Statistical Analysis: First, the raw data from GC-MSM, LC-MSM, and
LC-MSL were normalized by corresponding internal standards to mini-
mize errors arising from the sample pretreatment and analysis procedures
as much as possible.

A supervised PLS-DA model with unit variance scaling was carried out
by SIMCA-P 13.0 (Umetrics, Umeå, Sweden) software for the data from
GC-MSM, LC-MSM, and LC-MSL. To assess the overfitting risk of the
model, a permutation test with 200 iterations was performed.

Univariate analysis was performed with the open-source Multiple Ex-
periment Viewer (MeV version 4.9.0 software) for the normalized metabo-
lite data from GC-MSM, LC-MSM, and LC-MSL. Nonparametric tests
in Wilcoxon, Mann–Whitney test, and Benjamini–Hochberg-based FDR
modes were performed, setting p < 0.05 and/or FDR < 0.05 as the sig-
nificant difference levels. Metabolite-associated pathways were analyzed
using MetaboAnalyst 4.0 (Xia Lab at McGill University, Montreal, Canada;
metaboanalyst.ca).

A binary logistic regression analysis was employed to establish the
model with differential metabolites to define biomarker candidates using
IBM SPSS 19 software (SPSS, Inc.). The receiver-operating characteristic
curve was utilized to evaluate the results of the regression analysis.

For the clinical data of patients, all values were expressed as means ±
standard deviations (SD).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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