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Artificially Intelligent Tactile Ferroelectric Skin

Kyuho Lee, Seonghoon Jang, Kang Lib Kim, Min Koo, Chanho Park, Seokyeong Lee,
Junseok Lee, Gunuk Wang,* and Cheolmin Park*

Lightweight and flexible tactile learning machines can simultaneously detect,
synaptically memorize, and subsequently learn from external stimuli acquired
from the skin. This type of technology holds great interest due to its potential
applications in emerging wearable and human-interactive artificially intelligent
neuromorphic electronics. In this study, an integrated artificially intelligent
tactile learning electronic skin (e-skin) based on arrays of ferroelectric-gate
field-effect transistors with dome-shape tactile top-gates, which can
simultaneously sense and learn from a variety of tactile information, is
introduced. To test the e-skin, tactile pressure is applied to a dome-shaped
top-gate that measures ferroelectric remnant polarization in a gate insulator.
This results in analog conductance modulation that is dependent upon both
the number and magnitude of input pressure-spikes, thus mimicking diverse
tactile and essential synaptic functions. Specifically, the device exhibits
excellent cycling stability between long-term potentiation and depression over
the course of 10 000 continuous input pulses. Additionally, it has a low
variability of only 3.18%, resulting in high-performance and robust tactile
perception learning. The 4 × 4 device array is also able to recognize different
handwritten patterns using 2-dimensional spatial learning and recognition,
and this is successfully demonstrated with a high degree accuracy of 99.66%,
even after considering 10% noise.

Tactile sensing artificially mimics the sensory receptors of hu-
man skin that respond to minute changes in pressure,[1–4]

temperature,[5–7] and humidity.[8–10] This technology has attracted
considerable interest due to its emerging potential use as wear-
able, patchable, and embedded electronic skin (e-skin), which
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gives rise to numerous human-interactive
electronic materials and devices.[11] Ar-
tificially intelligent e-skin is capable of
simultaneously sensing and learning from
a diverse set of tactile stimuli. Thus, it is es-
sential to develop and design an integrated
sensory neural network system that can em-
ploy a nonvolatile synaptic array that is con-
nected to tactile sensors. Considering this,
a variety of integrated forms that employ
synaptic devices, such as memristors[12–14]

and field-effect transistor memories,[15–17]

combined with independent tactile sensors
have been suggested and demonstrated.

However, e-skin or sensory neural net-
work systems, which create physical con-
nections between sensors and memory de-
vices, are rarely suitable for wearable and
patchable devices due to their inevitably
complex, interconnected, and costly fabri-
cation steps (Table S1, Supporting Infor-
mation). Additionally, these systems have a
high degree of circuit resistance and require
additional power-consumption due to the
number of metal wires used for system in-
tegration. This significantly deteriorates the
sensitivity of tactile sensors and limits their

available battery life. An e-skin platform that is capable of concur-
rently learning and sensing tactile stimuli without any sensitivity
degradation or physical connections has not been demonstrated
thus far. Therefore, there is a need to develop a single device-
based tactile, artificial learning skin that can detect and synapti-
cally learn about various tactile stimuli simultaneously. This type
of intelligent skin would, therefore, allow for tactile stimuli to be
efficiently perceived.[18]

In this study, we demonstrate an artificial tactile learning e-
skin platform integrated into a single device that allows for the
sensing, storing, and learning of a variety of tactile informa-
tion. A ferroelectric field-effect transistor that employs pressure-
sensitive gate electrodes with nonvolatile remnant polarization
was programmed with various tactile input pressures, allow-
ing for analog conductance. Our artificial tactile learning ferro-
electric skin (ATFES) has a high tactile reception sensitivity of
>88 kPa−1, which can successfully emulate diverse tactile and es-
sential synaptic functions, such as reliable long-term plasticity
under 10 000 input electrical spikes, as well as exhibit pressure-
spike number- and magnitude-dependent plasticity. These prop-
erties allow for precise and robust tactile perception learning.
Furthermore, we demonstrated that an integrated 4 × 4 ATFES
array allows for 2D tactile learning and subsequent recognition
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Figure 1. Structure of ATFES device. a) Schematic of the biological tactile perception system: (i) the tactile sensory receptor, (iii) synapse, (v) primary
somatosensory cortex in brain, and the corresponding artificial tactile learning e-skin based on Fe-FET device: (ii) artificial tactile reception system with
dome-shaped elastomeric gate electrode and ferroelectric layer below it, (iv) the artificial synapse has excess carriers corresponding to neurotransmit-
ters that arise from ferroelectric dipoles, (vi) an array of artificial tactile learning devices on the skin which is equivalent to the cortex neural network.
b) Photograph of 4 × 4 array of ATFES device with a pressure-sensitive PEDOT:PSS gate electrodes. The inset is an optical microscope image of
Au/P3HT/P(VDF-TrFE) of an ATFES device. c) Cross-sectional TEM image of an ATFES device, and d) PFM image of P(VDF-TrFE) layer at the contact
area boundary.

of diverse handwriting patterns with an outstanding error toler-
ance. As a result, this method offers a novel route for designing
artificially intelligent e-skins.

Our ATFES can imitate a signal that is transmitted from a
tactile sensory receptor to a primary somatosensory cortex neu-
ral network that is connected through a biological synapse be-
tween the pre- and postneurons, as schematically shown in
Figure 1a. In the ATFES, a sensory receptor is recognized
by a pressure-sensitive top-gate electrode. The contact area
with the lower ferroelectric layer can be controlled accord-
ing to the magnitude of the external stimuli, as shown in
Figure 1a(i),(ii). A ferroelectric dipole zone accumulates ex-
cess carriers in the semiconductor layer, which corresponds to
the neurotransmitters in a biological synapse.[19] This can be
switched and varied according to the history of applied electri-
cal stimuli, as well as the contact area of the gate electrode, as
shown in Figure 1a(iii),(iv). The variable contact area depends on
the tactile pressure, which is subsequently determined by the de-
gree of change in channel conductance (G) between source (S)
and drain (D) electrodes, thus allowing for changes in the drain
current (IDS). In this sense, because the G in the ATFES is a
continuously variable function that determines tactile pressure,
and appropriately retains pressure-dependent remnant ferroelec-
tric polarization (Figure S1, Supporting Information), it can po-

tentially mimic diverse tactile and essential synaptic functions.
Consequently, these characteristics allow for a single integrated
ATFES device to simultaneously learn and detect tactile inputs,
which may be suitable for a variety of wearable and patchable
neuromorphic applications, as shown in Figure 1a(vi).

The ATFES device has a top-gate bottom contact field-effect
transistor (FET) structure that consists of an interdigitated Au
source/drain electrode, a poly(3-hexylthiophene-2,5-diyl) (P3HT)
semiconductor, a poly(vinylidenefluoride-co-trifluoroethylene)
[P(VDF-TrFE)] ferroelectric polymer, and a dome-shaped poly-
dimethylsiloxane (PDMS) gate electrode coated with poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)
(Figure S2, Supporting Information). PEDOT:PSS was cho-
sen due to its pressure tolerance and its excellent mechanical
flexibility.[20] Although PEDOT:PSS electrode coated on the
surface of a dome-shaped PDMS was deformed upon tactile
pressure, the resistance variation of an electrode was rarely
observed during the deformation.[21] Figure 1b depicts a pho-
tograph of the 4 × 4 ATFES array with a dome-shaped tactile
top-gate. Source and Drain (S/D) electrodes were fabricated
with the channel length and area of 40 µm and 1.2 mm2 on
each cell, respectively, as shown in the inset of Figure 1b.
Cross-sectional transmission electron microscope (TEM) and
energy dispersive X-ray (EDX) images of the constituent atomic
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Figure 2. Switching and mechanical characterization of the ATFES. a) IDS–VG transfer curve showing current hysteresis stemmed from nonvolatile
ferroelectric polarization of the P(VDF-TrFE) layer. Pressure = 30 kPa. b) The retention characteristic of ON and OFF states at VG = 0 V and VDS =
−5 V. Inset: program/erase endurance up to 100 cycles. c) IDS–VG transfer curves at seven different pressures ranged from 0 to 30 kPa, and d) the
retention of each state at VG = 0 V and VDS = −5 V. The programming pressures and voltage (VG = −60 V) were applied for 1 s. e) Repetitive multiple
program/erase switching endurance test with seven different pressures. The inset shows a real-time response, pressures sequence, and gate voltages
sequence, respectively, for one cycle. After programmed or erased, IDS was read at VG = 0 V and VDS = −5 V. f) Photograph of a flexible ATFES array
on the PI substrate, g) four distinct levels at VG = 0 programmed by VG = −60 V as a function of RB, and h) bending endurance for the cycle test up to
1000 cycles under RB = 6 mm. The inset photograph shows a flexible ATFES array in bent and unbent states.

elements of the ATFES junction structure were taken, which
clearly show discrete layers of the Au electrode, Cr adhesive
layer, P3HT, and P(VDF-TrFE), as depicted in Figure 1c; and
Figure S3 (Supporting Information). When a top-gate electrode
was pressurized on the ATFES and voltage was applied between
the gate and the drain electrode, a polarization switch in the
ferroelectric domain occurred in the contact region, as shown in
Figure 1d; and Figure S4 (Supporting Information).

Figure 2 shows the switching characteristics of the ATFES de-
vice, depending on the gate voltage (VG) and pressure inputs. A
p-type hysteresis transfer curve of IDS was observed when the VG
was swept from +60 to −60 V in DC mode at a fixed pressure
of 30 kPa, as shown in Figure 2a (Figures S5 and S6, Support-
ing Information). Two distinct ON and OFF states with ON/OFF
ratio of ≈103 at VG = 0 V were observed, which occurred due to
the fully saturated up and down remnant polarization domains
in the P(VDF-TrFE) layer, respectively (the inset schematics of
Figure 2a). Specifically, the ATFES device exhibited an excellent
ability to retain each state over a period of 20 000 s. Additionally,
stable cycling endurance was observed for more than 100 times
with no significant variations, as shown in Figure 2b; and Figure
S7 (Supporting Information). It should be noted that the IDS in-
stantly switched to the ON position even when a pressure-spike

of 40 kPa for ≈50 ms was applied at a fixed VG of −60 V (Figure
S8, Supporting Information).

Because the ferroelectric polarization depends upon the con-
tact area of the dome-shaped gate electrode on the P(VDF-TrFE)
layer, which varies according to the pressure (Figure S9, Support-
ing Information), our ATFES device can detect and store various
pressure levels ranging from 5 × 10−2 to 30 kPa. As shown in Fig-
ure 2c, the hysteresis windows for the IDS–VG transfer curves in-
creased as the applied tactile pressure increased from 0 to 30 kPa,
thus resulting in seven distinct states at VG = 0 V (Figure S10,
Supporting Information). Furthermore, the on and off voltages
(Vturn-on and Vturn-off) for the ON and OFF states were observed to
be shifting to lower voltages.

We speculate that a reduction in the programming voltages
might be associated with an increase in the effective voltage due
to the reduction of the air-gap at the interface that occurs due to
an increase in pressure. In this case, higher pressure can lead
to a significant change in the ferroelectric polarization at a lower
electric field (Figure S11, Supporting Information). These seven
states were well maintained for longer than 20 000 s without
any significant degradation, as shown in Figure 2d (Figure S12,
Supporting Information). It should be noted that the slight
variation of IDS at initial stage of measurement arose from the
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depolarization of ferroelectric layer.[22,23] It should be also noted
that the pressure sensitivity of our ATFES is much higher at low
pressure (≈88.45 kPa−1 at the pressure ≤10 kPa and 25.44 kPa−1

at the pressure >10 kPa) (Figure S13, Supporting Information),
and its minimum sensing pressure is comparable to the human
skin.[24] These results show the stable cycling endurance of the
states programmed by different tactile pressures at VG = ± 60 V
(Figure 2e). Each multilevel tactile input cycle consisted of
a sequential increase in pressure, from 0.1 to 30 kPa with
VG = −60 V for 1 s. This was followed by a pressure of 30 kPa at
VG =+60 V for expulsion, as shown in the right inset of Figure 2e.
All nondestructive switching states maintained their modified
positions after 50 cycles (Figure S14, Supporting Information).

The ATFES device array was also successfully fabricated on a
polyimide (PI) substrate and exhibited excellent mechanical sta-
bility during each switching state (Figure 2f–h). Multilevel hys-
teresis of the IDS–VG transfer curves was observed as a function of
the tactile input pressure, similar to those on the SiO2 substrates
(Figure S15, Supporting Information). As shown in Figure 2g,h,
these multistates were driven by different pressure inputs, which
were well maintained regardless of the bending radius (RB) up to
6 mm as well as the number of bending cycles (1000 times) at a
fixed RB = 6 mm (Figures S16 and S17, Supporting Information).
It should be noted that the curvature strains only the active layer
and channel layer since our ATFES utilizes a dome-shaped gate
electrode separated from the rest of a platform. Device respon-
siveness by bending itself was negligible by confirming that the
IDS was rarely varied upon the curvature without input pressure.
These results, therefore, demonstrate the potential suitability of
this technology for wearable and/or patchable human-interactive
electronic device platforms.

The ATFES is capable of sensing and memorizing tactile in-
formation, and can be potentially employed as a single type of
neuromorphic device platform with both tactile reception and
synaptic functions, as is schematically shown in Figure 3a. A
connected synapse is stimulated by the presynaptic spike that
stems from the axon of the preneuron, which occurs due to the
secretion of a neurotransmitter from the synaptic vesicle. The
output signal (i.e., postsynaptic current (PSC)), so long as it ex-
ceeds a certain threshold, can then be fired at the dendrite of the
postneuron.[25] The generated PSC can thus be determined by the
synaptic weight (w, synaptic strength) between the pre- and post-
neurons, which can excite or inhibit the synapse, depending on
the incoming charged ions (i.e., Na+ and Cl−) through the den-
drite’s plasma membrane. In general, structural changes on the
dendrite can be provoked through presynaptic spikes, which al-
lows for the gradual modification of the w. This modification in
the w is called “synaptic plasticity,” which has been widely recog-
nized as the foundation for memory and learning principles in
the human brain.[26]

In the ATFES architecture (the bottom schematic of Figure 3a),
the dome-shaped top-gate made by PEDOT:PSS plays simultane-
ous roles as both the tactile receptor and the axon of the preneu-
ron. This can change the ferroelectric remnant polarization in
P(VDF-TrFE) in response to pressure and VG. The channel G
of the P3HT semiconductor represents the w, determining the
PSC at the postneuron flowed between the S and D electrodes.
ATFES can mimic various tactile synaptic functions by adjusting
the number/magnitude of pressure-spikes, and polarity of the VG

pulses. Figure 3b shows the gradual long-term potentiation (LTP)
and depression (LTD) of the PSC at a fixed pressure (= 63 kPa),
depending on the continuous potentiating and depressing input
of VG pulses (± 30 V for 500 ms) trains at a time interval (Δt) of
1 s. Noticeably, excellent stability during the cycle transition (100
cycles) under the same input programming between the LTP and
LTD during 10 000 continuous input pulses (Figure 3c) was also
observed. It should be noted that one cycle is defined by 100 in-
put pulses for the LTP and LTD functions. Additionally, as shown
in the top graphs in Figure 3c, the first (1–1000 pulses) and last
(9000–10 000 pulses) 10 cycles are almost identical, which confers
to a very low cycling variability (3.18%) (Figure S18, Supporting
Information). These stable LTP and LTD characteristics allow for
a steady change in weight during the repeated learning process,
which also makes this technology applicable as a robust tactile
learning machine.

Figure 3d shows the PSC response at VDS = −5V over time,
which was triggered by a total of 50 continuous pressure-spikes of
4.5 kPa with VG =−30 V. The width and interval of each spike was
≈500 ms and 9 s, respectively. The PSC level increases linearly
as the number of pressure-spikes increases and then plateaues
even after the pressure-spike is turned off, thus mimicking the
tactile-LTP function. Such PSC characteristics are common even
when the number of pressure-spikes changes from 5 to 40, as
shown in Figure 3e. Because the change in PSC level appeared to
be proportional to the number of pressure-spikes, the degree of
weight change could be accurately controlled (inset of Figure 3d).
The linear relationship between the PSC level and the applied
pressure-spikes may, therefore, be due to a reversal in the gradual
polarization in the P(VDF-TrFE) layer with the domain wall mo-
tion along the mesh-shaped channel interface.[27–29] Figure 3f,g
shows the magnitude effects of tactile pressure on LTP and LTD
functions. To investigate this effect, we continuously increased
the magnitude of pressure from 5 × 10−2 to 10 kPa through
the dome-shape PEDOT: PSS of the ATFES, while at fixed VG =
± 20, ± 30, and ± 40 V. Because higher pressure and VG in-
puts can continue to alter the direction of the ferroelectric do-
main and widen the domain area, the change in the PSC level
will further increase at 10 kPa and VG ± 40 V. It should be noted
here that the Modified National Institute of Standards and Tech-
nology database (MNIST) pattern-recognition accuracy was esti-
mated to be ≈88.38%. This was based on a single neural network
with a backpropagation learning algorithm that used the best fit
of the LTP and LTD functions (Figure 3f,g) (Figure S19, Support-
ing Information).[30,31] This value is close to the simulated max-
imum accuracy in a single-layer neural network, as previously
reported.[32,33]

Considering the aforementioned discussion, the ATFES ar-
chitecture holds great potential as a single artificially intelligent
tactile skin that is capable of simultaneously sensing, learning,
and recognizing tactile information. To demonstrate the potential
for 2D spatial tactile mapping and pattern recognition, we fabri-
cated a 4 × 4 pixelated array based upon the ATFES device with
high uniformity (Figure S20, Supporting Information). A dome-
shaped PDMS array was coated with a PEDOT:PSS, as shown in
the photograph in Figure 4a (Figure S21, Supporting Informa-
tion). Because some ATFES devices can be programmed using a
commercial touch pen, we were able to write the alphabet in the
array. For example, “N” was encoded by utilizing the difference
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in the magnitude of pressure-spike (from 5 × 10−2 to 40 kPa) at
a fixed VG = −30 V, as schematically shown in Figure 4b. As a
result, the Δw/wo for each node in the 4 × 4 array which corre-
sponded to “N” would have a different value, as shown in Fig-
ure 4c. It should be noted that wo is defined as the initial w for
each node and each PSC response was measured at VDS = −5 V
and VG = 0 V. However, when different users write the “N” on
the array using a touch pen, each “N” pattern will be encoded dif-
ferently depending on their handwriting styles. In other words,
these encoded PSC levels in the array were different according
to the unique pen pressures for the “N” patterns. For example,
as shown in Figure 4d, there are three different N patterns (N1,
N2, and N3), encoded by three different users, which can have
different PSC levels for each pixel on the array.

A single-layer neural network with a sigmoid function was em-
ployed as a classifier for the three different handwriting patterns
that were encoded on the 4 × 4 ATFES array, as shown in Fig-
ure 4e. The 16 pixels of each N pattern in the array were individ-
ually connected to the pre-neurons (X1, X2, …, and X16) in order.
The postneurons (Y1, Y2, and Y3) were assigned to three differ-
ent handwriting patterns, such as N1, N2, and N3. The learning
algorithm and fitting parameters were the same as those used in
above MNIST pattern recognition simulation (Figure S19, Sup-
porting Information). As shown in Figure 4f, four alphabetical
characters (“D,” “P,” “N,” and “Z”) were experimentally encoded
according to three different handwriting styles (i.e., N1, N2, and
N3) in the ATFES array, for a total of 12 different classes (D1, D2,
D3, P1, P2, P3, N1, N2, N3, Z1, Z2, and Z3).

It should be noted that the histogram of Δw/wo for the corre-
sponding patterns exhibited a PSC response that was measured
at each node in the array (Figure S22, Supporting Information).
Following this, we applied a noise signal to each class by multi-
plying a random number within the noise factor (NF), ranging
from 0.1 (10%) to 0.6 (60%). We then created 100 individual aug-
mented data per class to train and test the datasets (top schematic
in Figure 4g). Figure 4g depicts an example of the changed N3
class according to the different NF values (10%, 25%, 40%, and
60%). Additional examples are also shown in Figures S23–S26.
As the NF continuously increased, the original pattern (NF= 0%)
largely varied and was difficult to classify. Figure 4h shows the
recognition accuracy results for the four handwritten alphabeti-
cal letters as functions of the learning epochs and NF values.

Based on this network, we achieved a surprising 99.66% accu-
racy at 10 epochs, even for NF = 10%. This results in an almost
perfectly diagonal pattern in the confusion matrices between the
target and output patterns (inset of Figure 4h). This supports the
potential of the 2D tactile mapping and pattern recognition of
the ATFES array, which can be utilized for security coding and
personal identifying systems. Even at NF = 60%, the accuracy
was still high enough (≈82.33%) to decipher the handwritten in-
formation. This indicates that a neural network that consists of
ATFES devices is tolerant of tactile error-signals. And, the details

of learning results including confusion matrices are described in
Figure S27 (Supporting Information).

This work demonstrated that a ferroelectric polymer-gated
organic FET can be used as a single, integrated e-skin plat-
form. This technology can simultaneously sense and learn a
variety of tactile information in a synaptic manner, especially
when combined with a dome-shaped elastomeric tactile gate elec-
trode. Based on our ATFES, a reliable and diverse set of es-
sential synaptic functions were successfully demonstrated, in-
cluding the stable transition of LTP/LTD during 10 000 electri-
cal input pulses, low variability of 3.18%, and pressure-spike
number/magnitude-dependent plasticity. Furthermore, based on
the 4 × 4 ATFES array, three different handwriting styles pat-
terns were recognized for four alphabetical letters (“D,” “P,” “N,”
and “Z”). This test achieved over 99% accuracy, even at a 10%
NF. Thus, considering our results, this ATFES offers a novel
route for designing artificial intelligent e-skins with a high degree
of precision that are capable of error-tolerant tactile perception
learning.

Experimental Section
Materials: P(VDF-TrFE) (Mw = 400 000 g mol−1) with a 25% mol

fraction of TrFE was purchased from Solvay. PDMS (Sylgard
184) and crosslinkers were purchased from Dow Corning. P3HT
(Mw = 180 000 g mol−1) with 98.5% head-to-tail regioregularity,
poly(methyl methaacrylate) (PMMA) (Mw = 120 000 g mol−1) was
purchased from Sigma-Aldrich, Korea. The PEDOT:PSS (Clevios PH
1000) was modified through mixing with 5 wt% DMSO and 1 wt%
Zonyl surfactant (FS-300 fluoro-surfactant from Aldrich) with respect to
PEDOT:PSS. All the organic solvents, including 2-butanone (methyl ethyl
ketone (MEK)), dimethyl sulfoxide (DMSO), and toluene were purchased
from Sigma-Aldrich, Korea.

Device Fabrication: An SiO2 substrate was cleaned in an ultrasonic
bath with acetone and 2-propanol for 1 h each, while a PI substrate that
was used to make a flexible device was cleaned for 2 h. First, the Cr/Au
(1 nm/30 nm thick) source/drain (S/D) electrodes were thermally evap-
orated on a substrate that was patterned with photolithography. Sub-
sequently, a P3HT solution in Toluene (1 wt%) was spin-coated on the
source/drain electrodes at 2000 rpm for 60 s, followed by PMMA solu-
tion in acetone (5 wt%) at 2000 rpm for 60 s. After thermal treatment at
60 °C for 30 min to remove any residual solvent, a 100 nm thick layer
of Cu was deposited using thermal evaporation with a patterned shadow
mask. The device was treated using reactive ion etching (RIE), while the
Cu film served as an RIE blocking mask. After RIE etching, the device was
immersed in acetone for 30 min to remove the PMMA sacrificial layer and
Cu film. Then P(VDF-TrFE) in MEK (7 wt%) was spin-coated on patterned
P3HT layer at 2000 rpm for 60 s in a ferroelectric insulator. After ther-
mal treatment at 60 °C for 30 min to remove any residual solvent, the
device was heat-treated again at 135 °C for 2 h to enhance the proper-
ties of P3HT (mobility)[34] and P(VDF-TrFE) (crystallinity).[35] In order to
create the pressure-sensitive gate electrode, the PDMS (prepolymer and
curing agent ratio of 10:1) was poured onto a dome-shaped Si mold and
subsequently annealed at 80 °C for 12 h to harden it. This was followed
by UV treatment for 20 min. A PEDOT:PSS film was then dip-coated onto

Figure 3. Synaptic characteristics of the ATFES. a) Schematic of the signal transmission process between pre- and postneurons through the ATFES.
The top insets show schematics of the tactile sensory receptor/synapse and corresponding circuit diagrams for the ATFES. b) LTP and LTD of the PSC
as a function of the number of VG pulses of ±30 V for 500 ms at ≈63 kPa. c) Cycling transition between the LTP and LTD for the ATFES during
continuous 10 000 VG pulses. d) Plot of the PSC response at VDS = −5V with respect to the 50 pressure-spikes. Pressure = 4.5 kPa and VG = −30 V
for ≈500 ms. The inset shows the PSC level as a function of the number of pressure-spikes. e) Plots of the PSC responses with respect to the different
number of pressure-spikes (ranging from 5 to 40). The reading and programming voltages and their sequences are the same as in (d). f) LTP and g)
LTD of the PSC of the ATFES as functions of the magnitude of pressure (from 5 × 10−2 to 10 kPa) and the VG (= ±20, ±30, and ±40 V) .
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Figure 4. 2-dimensional spatial tactile mapping and handwriting pattern recognition of a 4 × 4 ATFES array. a) Photograph of 4 × 4 pixelated ATFES
array combined with dome-shaped PEDOT:PSS gate electrodes on the flat PDMS. The inset shows a cross-sectional photograph of the ATFES array. b)
Schematic illustration of the alphabet “N” pattern written by a commercial touch pen on the 4 × 4 ATFES array. Inset shows the “N” pattern encoded by
the different magnitude of pressure-spike (from 5×10 −2 to 40kPa) at VG = −30V. c) The histogram of Δw/wo in the 4 × 4 ATFES array. d) Schematic
illustrations of three different handwriting styles for the “N” patterns (N1, N2, and N3). The bottom inset shows the contour plot of corresponded PSC
levels as examples. e) Constituents of a single-layer neural network for the handwriting pattern recognition. f) The contour plots of the measured PSC
levels for four alphabet characters (“D,” “P,” “N,” “Z”) encoded by three different handwriting styles (1, 2, 3). g) Examples of four “N3” pattern dataset
were generated by different NF values (10%, 25%, 40%, and 60%). h) Recognition accuracy for the handwriting patterns during 10 learning epochs with
different NF values. Inset shows the confusion matrices between the output and target patterns for a classification test of 12 alphabetical character sets
for NF = 10%.

the UV-treated surface on the PDMS hemisphere. The film was annealed
at 100 °C for 15 min in under ambient conditions.

Device Characterization: Transistor properties and synaptic character-
istics measurements were determined using a Keithley 4200 semicon-
ductor characterization system and a semiconductor parameter analyzer
(4155C, Keysight) equipped with a pulse generator (81104A, Keysight).
Pressure was applied and measured using z-axis pressure equipment com-
bined with force gauges. The thickness of the P(VDF-TrFE) and P3HT films

was measured using a Surface Profiler (DektakXT) (Bruker Co.). The cross-
sectional view and EDX mapping were examined using a TEM (JEM-F200).
The polarization switching behavior of P(VDF-TrFE) films was investigated
using a commercial atomic force microscopy (Multimode SPM) (Bruker
Co.) with piezoresponse force microscopy (PFM) mode. The polarization-
electric field hysteresis loops were obtained using a virtual ground circuit
(Radiant Technologies Precision LC unit) in a dark box at room tempera-
ture (298 K).
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