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Abstract: Wilms tumor gene 1 (WT1) is an important gene which is involved in growth and development of many
organs. It is identified as a tumor suppressor gene in nephroblastoma. However, its role as a tumor oncogene has
been highlighted by many studies in haematological as well as non haematological malignant neoplasm. The ex-
pression of WT1 on leukemic blast cells sensitised us to explore its impact on neoplastic phenomenon. WT1 is has
been found both mutated as well as over expressed in different subsets of acute myeloid leukemia (AML). WT1l is a
gene has been used as a biomarker for diagnosis, monitoring of minimal residual disease (MRD) and detection of
relapse for molecular remission in AML. It also has potential of being a predictive molecular predictive biomarker for
the treatment of leukemic cases after allogeneic transplantation. The WT1 specific expression on blast cells and its
interaction with cytotoxic T cell has also been explored for its potential usage WT1 based immunotherapy. Here, we
are reviewing molecular updates of WT1 gene and discuss its potential clinical applications as a predictive molecu-
lar biomarker for diagnosis, as MRD detection and as immunotherapy in AML.
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Introduction

Acute myeloid leukemia (AML) has been a het-
erogeneous group of disease with various com-
binations of clinical symptoms, aggressiveness
and complications [1]. AML is the second most
prevalent type of leukemia diagnosed in adults
and children [2]. However, incidence of AML is
directly proportional to the increasing age [3].
Several chromosomal rearrangements and mu-
tations have been detected in AML and linked
with the diagnosis, pathogenesis, and progno-
sis of AML [4, 5]. The overall survival is also
dependent on genomic profile of mutational
burden [6]. In addition to mutations, significant
modification at post transcriptional and post-
translational level may produce malignant cell
changes [7]. WT1 gene is a tumor suppr-
essor gene has been primarily linked with ne-
phroblastoma and now being considered as a
tumor oncogene, which plays a critical substan-
tial role in neoplastic process related to hema-
topoietic malignancies [8].

WT1 gene has dual functioning of acting as
tumor suppressor as well oncogenic gene and
controls transcription, translation, RNA metab-
olism at cellular level [9, 10]. WT1 mediated
pathway of transcriptional regulation plays an
impactful role in normal and malignant hemato-
poiesis [11]. Overexpression of WT1 specific
iso-forms in myeloblast cells of AML with mini-
mal maturation results in the induction of apop-
tosis and G1 arrest as well [12]. WT1 is a potent
transcriptional regulatory molecule that plays a
crucial role in the regulation of apoptosis, cell
survival, promotes cell proliferation, cell growth,
metastasis, differentiation, and normal cellular
development [13, 14].

Structure of WT1

The WT1 gene is located on chromosome
11p13 and is 50 kb in length. It consists of 3.2
kb of mRNA produced from total 10 exons. It
regulates the expression and encodes a zinc
finger transcription factor, which controls cellu-
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lar growth and metabolism, including growth
factors, extracellular matrix components th-
rough binding to GC-rich homologous sequence,
and regulates transcription activator or repress-
es expression of specific target genes (ECM)
[15, 16]. Mutations of the WT1 gene lead to dis-
orders such as Wilms’ tumors or Denys-Drash
syndrome [17, 18]. It is implicated in the devel-
opment of organ systems such as the kidney,
retina, spleen, and heart through various sig-
nalling pathways [19, 20]. It also promotes epi-
thelial-to-mesenchymal transition (EMT) [21].
WT1 mRNA shows two important splicing re-
gions [22, 23]. These include splicing of exon 5,
which encodes 17 amino acids (AA) and anoth-
er segment of nine nucleotides which code for
3 amino acids such as lysine, threonine, and
serine (KTS) on exon 9 [24]. Alternative splice 2
inserts three amino acids-lysine [K], threonine
[T], and serine [S] between exons 9 and 10,
alter the conserved spacing between zinc fin-
gers 3 and 4, leads to the significant reduction
of the DNA binding ability but enhances RNA
binding [23, 25]. The alternative splicing of the-
se two positions gives rise to four different
protein isoforms: WT1 A (17AA-/KTS-), WT1 B
(17AA-/KTS+), WT1 C (17AA+/KTS-), and WT1 D
(17AA+/KTS+). KTS-positive isoforms consti-
tute 80% of cellular WT1 [16, 26, 27]. The full-
length product encoded by WT1 is a 57 kD
protein.

Function of WT1

The N-terminal terminal transactivation domain
of WT1 is composed of proline, glutamic acid,
serine, and glycine-rich sequences [28, 29].
This N-terminal domain is relevant for transcrip-
tional regulatory function of WT1, such as tran-
scriptional repression [30]. The C-terminal of
WT1 is composed of four zinc-fingers moieties,
each of which has two cysteine and two histi-
dine [31]. This zinc finger permits binding of tar-
get DNA sequences, regulating gene transcrip-
tion such as RNA and protein interactions. Thus
truncated WT1 might exhibit oncogenic proper-
ties [32].

WT1 in normal haematopoiesis

Differential expression of WT1 isoforms may
support isoform-specific differentiation in he-
matopoiesis and leukemogenesis [33]. The
KTS insert significantly increases the flexibility
of protein [34] by limiting related binding sites

152

at the major groove in DNA. KTS2 isoforms may
repress or activate transcription in normal
hematopoietic cells [35]. KTS2 isoforms is
arrests cells in G1 phase and induces myelo-
monocytic differentiation of CD34 positive he-
matopoietic progenitor cells [36]. The KTS for-
ms also co-localize preferentially with already
available ubiquitous transcription factors. In
contrast, most of KTS(+) isoforms are found in
a speckled pattern and co-localize with small
nuclear ribonucleoprotein particles (snRNPs),
suggesting a role in site specific splicing [37].
WT1 KTS(+) does not influences p21 expres-
sion however it promotes EMT, specially within
solid neoplastic diseases [38]. However, WT1
KTS(-) increases p21 expression and cell prolif-
eration with diminishing reproductive potency
and G2 arrest [39]. The WT1 KTS(-) isoform
more strongly enhances CD95L mediated cell
death in T-cell acute lymphoblastic leukemia
(T-ALL) [40]. The major WT1 subtypes have in-
hibitory functions, e.g., WT1 KTS [+], WT1 KTS(-)
can inhibit the expression of the apoptotic
genes such as p53, Bak, Bax or caspase-9, al-
so induces expression of transcription factor
BCL2; thus promoting an anti-apoptotic effect.
One study on targeted transgenic murine model
reported that WT1 was not found in long term-
hematopoietic stem cells. Deletion of WT1 am-
ong young and adult mice resulted in death of
animals in time frame of approximately 10 days
with following causes such as glomerulosclero-
sis, atrophy of pancreas, and diminished extra-
medullary hematopoiesis [41].

WT1in AML

The impact of WT1 gene mutation on AML was
first identified in 1994 by King-Underwood and
his colleagues on its possible role of drug res-
istance [42]. Recurrent somatic mutations in
WT1 appear to occur in approximately 6-15%
of newly diagnosed cases of AML [41]. These
include deletions, insertions, and base substi-
tutions mutations, primarily targeting exon 7
and 9 [43-48]. However, the vast majority of
mutations resulting in loss-of-function, and ex-
pression of truncated proteins perform in a
dominant-negative manner, which may contri-
bute to a myeloid differentiation block present
in AML blasts [46].

WT1 mutations are usually denoted by loss-of-
normal function. Mutational analysis of a large
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Table 1. WT1 gene Immunotherapy studies

Trial no

Year Research clinicaltrials. Inc.|u3|.on Clinical Outcome Ref

Group criteria no

gov/show/

2018 Maslak et al. NCT01266083 AML in CR Stimulated specific immune response [57]
2018 Nakataetal. UMINO0O0015870 AML in CR Molecular CR maintained for 3.5 years [58]
2018 Liu et al. NCT01842139 AML in CR WT1 vaccine with Montanide induced CD8 response [59]
2017 Anguille et al. NCT00965224 AML in CR Delay in relapse was seen in vaccine group [60]
2017 Kobayashi et al. NCT2001440920 AML in CR Reduction in WT mRNA transcripts [61]
2015 Brayer et al. NCT00665002 AML in CR Vaccinations well tolerated. Relapse-free survival >1 year [62]
2011 Rezvanietal. NCT00488592 AML in CR & MDS CD8 response detected in all evaluable patients [63]
2010 Maslak et al. NCT00398138 AML in CR Promising disease-free and overall survival [64]
2008 Rezvanietal. NCT00433745 AML in CR & MDS Reduced in WT1 mRNA expression [65]
2004 Mailander etal. NCT00153582 Recurrent AML  Vaccine induced CR in recurrent AML absence of toxicity [66]

CR, complete remission; AML, acute myeloid leukemia; MDS, Myelodysplastic Syndrome.

cohort of AML cases demonstrated that muta-
tions of WT1 are mutually exclusive with ten-
eleven translocation methylcytosine dioxygen-
ase 2 (TET2), isocitrate dehydrogenase 1
(IDH1), isocitrate dehydrogenase 2 (IDH2), or
CCAAT enhancer-binding protein alpha [CEBPA]
mutations [47, 48]. Rampal et al. revealed that
TET2 catalyzes the conversion of 5-methylcyto-
sine (5-mC) to 5-hydroxymethylcytosine (5-
hmC) [49]. TET2 loss-of-function mutations and
IDH1/2 mutations result in inhibition of the
DNA demethylation pathways with an accumu-
lation of 5-mC and a decrease of 5-hmC. WT1
mutations attenuate the TET2 function; a
reduction in WT1 would potentially reduce TET2
activity in AML. Several studies confirmed that
similar epigenetic alterations characterize WT1-
mutant AMLs, as found in TET2 and IDH1/2
mutant AML. WT1-mutant AMLs presented a
global reduction in 5-hydroxymethylcytosine
(5-hmC) levels and interruption of gene-regula-
tory interfaces required for normal hematopoi-
esis. WT1 with TET2 as a cofactor, transcrip-
tionally regulates maternally expressed gene
3 (MEG3) expression. MEG3 induces GO/
Gl-phase & apoptosis and decreases cell pro-
liferation by regulating p53 expression. In WT1
or TET2 mutated AML cell lines, the INncCRNA of
maternally expressed gene 3 (MEG3) is signifi-
cantly downregulated [50].

Subsequently, numerous studies emphasized
possible impact of WT1 gene expression irre-
spective of their mutational status as an inde-
pendent factor. Various researches have es-
tablished relationship between WT1 gene ex-
pression and AML. There has been a most re-
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cent study by Liu et al. [51] from china where
WT expression was studied on 195 odd cases
of AML and established as marker of MRD.
Rautenberg et al. [52] studied WT gene expres-
sion on post allogeneic transplant cases of
AML & MDS to utilize it as marker for prediction
of relapse. Nomedede et al. [53] proved it as
marker of prognostic marker among 585 cases
of AML in European region. A study from china
[54] proved WT1 gene expression as an inde-
pendent prognostic marker in cases of acute
leukemia. There have been two independent
studies [55, 56] from Italy where WT1 gene
expression has been evaluated as mar-
ker for risk stratification and long term progres-
sion respectively.

Therapeutic implications of WT1 in AML

There has been a trial to attempt to use pepti-
de based vaccines against WT1 especially in
cases where given overexpression has been
documented. Numerous studies on WT immu-
notherapy have been carried till date using a
variety of different vaccination strategies, for
example (HLA-restricted versus non HLA-restri-
cted peptides). Clinically meaningful respons-
es have been reported in several trials in both
AML and MDS cases, with associated increas-
es in WT1-specific T-cell frequencies (Table 1)
[57-66]. The expression of WT1 on normal tis-
sues and its role in normal haematopoiesis has
been an issue of probable possibility of autoim-
mune phenomenon. However, there have been
no reports till date [49]. This approach has,
thus demonstrated clinical efficacy but still re-
quires further large-scale evaluation. Another
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alternative approach has been development
of monoclonal antibodies that may recognizes
a peptide fragment of WT1 complexed with
HLA-AO201. This antibody demonstrated effi-
cacy in a NOD/SCID mouse xenotransplanted
with human leukemias [49].

Prognostic implications of WT1 in AML

The undetectable leukemic stem cells (LSC) on
morphology are strong independent factor for
future relapse [67]. The monitoring of MRD is of
utmost importance to prevent future relapse
and improve overall survival. Detectable levels
of WT1 expression during follow-up in AML
cases are a potential marker for assessment
of residual blast populations or even to predict
future relapse of AML [68]. However, there are
indicators for the involvement of WT1 in malig-
nant events of AML blasts, such as the interac-
tions of WT1 with the proto-oncogene bcl-2 and
tumor suppressor gene p53 [69]. Despite ad-
vancement in development of new treatments
protocols, many cases are refractory to ongo-
ing therapeutic strategies. They have a higher
relapse rate, with overall long-term survival of
patients signifying below 40% and more than
60% among cases over 65 years of age suc-
cumbing to disease within one year of diagno-
sis [70]. It is assumed that relapses originate
from undetectable populations of LSC, which
are characterized by a pronounced self-renewal
capacity that evade traditional chemotherapy
[74]. In vitro killing of tumor cells by WT1-
specific CD81 cytotoxic T lymphocytes facilitat-
ed the development of a WT1 based vaccine.
WT1-specific immunotherapy might be useful
to optimize multimodal therapy of haematolo-
gical malignancies [72, 73]. There are various
studies which have correlated the expression
of WT1 and data of AML cases. Lovvik et al.
observed that in AML cases at primary diagno-
sis, 66% had more than 20-fold WT1 overex-
pression in peripheral blood (PB) or bone mar-
row (BM) (PB 74%; BM 45%) [74]. In another
study, Ho et al. revealed that in a group of pae-
diatric AML, a significant difference in event-
free survival and leukemia-free survival for ca-
ses with high versus low WT1 expression was
found [75]. Nomdedeu et al. reported that de
novo AML patients with high-level WT1 expres-
sion with 3-year overall survival (OS) was only
19%, whereas patients with low-level WT1 ex-
pression 3-year overall survival (OS) was about
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64% [54]. Brieger et al. showed in his study of
52 AML cases WT1 gene was overexpressed in
41/52 (79%) patients at the time of first diag-
nosis. The majority of the 14 patients lost WT1
expressions that were studied in CR, where as
in 4 cases reappearance of WT1 expression
estimated before relapse [76]. In one of the
study with background knowledge of WT1 and
Bcl2 controlling apoptosis, WT1 expression and
proto-oncogene Bcl-2 was estimated simulta-
neously as prognostic markers of AML treat-
ment outcome. The study showed that incre-
ased WT1 and Bcl-2 expression was associat-
ed with reduced rate of continuing complete
remission and increased deaths among AML
cases with age less than 60 years [77].

Application of WT1 for detection of minimal
residual disease

WT1 is a potential marker for detection of MRD
in AML. The identification of MRD has led to
substantial improvements in early recognition
of recurrence of AML [78]. Many studies have
determined that the MRD assessment provid-
ed evidence to stratify high-risk AML patients
better and give significant insight into the effec-
tiveness of treatment. Allogeneic hematopoiet-
ic stem cell transplantation (Allo-HSCT) serves
as an effective treatment strategy for high-risk
patients with AML in CR [79]. WT1 expression
affects prognosis of Allo-HSCT in AML [80]. Fur-
thermore, increased WT1 expression was asso-
ciated more with higher rate of relapse com-
pared, with cases under remission were con-
stantly associated with low levels [81]. There
are studies which have showed association
between expression of WT1 gene and chances
of relapse after allogeneic stem cell transplant
(Allo-HSCT). Ogawa et al. found that higher
WT1 levels after Allo-SCT were associated with
increased chances of relapse. There was con-
stant doubling time in WT exponential expres-
sion in sust of cases having relapse. The signi-
ficance of WT1 log reduction after induction
chemotherapy to be an independent predictor
of relapse [82]. Weisser et al. observed that
higher than 2 log decline in WT1 transcript lev-
els from the beginning of chemotherapy was
correlated with a significantly improved Overall
Survival (0S) and event-free survival (EFS). After
induction chemotherapy, decreased WT1 gene
expression in AML patients conferred a more
favourable prognosis and correlated with high-
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er Overall Response Rate (ORR), and 2-yr over-
all survival rates and disease-free survival
(DFS) rate were highly significant (P-value
<0.05) [83]. In an another study, Cilloni et al.
demonstrated that less than 2 log decline in
WT1 transcripts after induction therapy en-
hanced the significant risk of relapse in pati-
ents with AML [51]. While another research
group, Ido et al. showed association between
expression levels of WT1 before and after Allo-
HSCT and the risk of fatality among AML. In
patients with AML who underwent Allo-HSCT
after two years, the fatality rate was signifi-
cantly lower in AML patients who are having low
expression levels of WT1 when compared with
cases having high expression level of WT1. Fur-
thermore, in the whole cohort of AML patients,
WT1 mRNA >5000 copies/ug RNA before Allo-
HSCT was significantly associated with an in-
creased risk of mortality [84]. These studies
are suggesting that the WT1 mRNA level might
reflect tumor burden.

Future research on WT immunotherapy in
AML

The virtue of being a pan leukemia markers
makes WT1 as a potential target for immuno-
therapy. Both higher expression of WT1 and
mutation in WT1 gene is involved in AML has
lead to both clinical and preclinical therapeu-
tic strategies in hematological and solid malig-
nancies such as uterine sarcoma [85-87]. In
cases where raised WT1 expression has been
estimated, WT1 based immunotherapy com-
bined with standard neoadjuvant therapy in-
duces T cell recognition of tumor antigens by
vaccination and induces immune response to
produce tumor antibodies in breast cancer ca-
ses [88]. WT1 peptide vaccination can induce
cells of WT1-specific cytotoxic T lymphocytes,
prevent relapse, and sustains long-term, com-
plete remission in AML [89]. After WT1 vaccina-
tion, most studies showed that the number of
granulocytes, lymphocytes, and leukemia blast
cells were reduced. Phase | study conducted
mice vaccinated with Mycobacterium Bovis ba-
cillus Calmette-Guerin cell-wall skeleton (BCG-
CWS) with WT1 peptide survived significantly
longer when compared with a non-vaccinated
mice. Thus, adjuvant like BCG-CWS may prove
to enhance the clinical efficacy of WT1 vaccine
for humans [90]. Currently WT1 vaccine based
immunotherapy research are in early trials and
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phase | studies have generated positive inclina-
tions. This has promoted phase Il trials to eval-
uate it further, once phase Il clinical trial has
been carried out on AML cases. The treatment
with WT1 peptide was combined with treat-
ment with granulocyte-macrophage colony-
stimulating factor [GM-CSF]. This cytokine is
used as an adjuvant and functions as a white
blood cell growth factor. The treatment with
this vaccine was well-tolerated, blast reduction
and hematological improvement were seen in
some patients; the results were overall promis-
ing [91, 92]. Such in vitro findings have led to
design of the human WT1 vaccine. Recently
several studies (Table 1) have reported the
safety and efficacy with favorable results con-
cerning the use of the WT1 peptide vaccine in
patients with AML. These results showed that
the WT1 vaccine is well tolerated, stimulates a
specific immune response, and can improve
the prognosis of patients.

Conclusion

The newer advancement in field of molecular
genetics and therapeutic researches has dras-
tically improved the overall survival figure for a
complex heterogeneous disease such as AML.
Our understanding on the impact of mutation
and expression of WT1 gene on AML has great-
ly improved. This has facilitated application of
WT1 as as potential biological marker for diag-
nosis, clinical management, monitoring of ther-
apy, detection of MRD and Immunotherapy. The
current article has tried to emphasize the up-
coming application of WT1 based interventions
in AML. WT1 encodes a transcription factor
that plays a regulatory role in normal and malig-
nant haematopoiesis. Frequent monitoring of
the WT1 gene expression level during follow-
ups in AML patients is useful as a marker for
residual blast populations or even to predict
the risk of relapse following allogeneic SCT. The
current review validates WT1 as promising po-
tential biomarker for AML on the basis of avail-
able published medical literature.
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