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Preface:

Significant research over the past two decades has established that extracellular matrix (ECM) 

elasticity, or stiffness, impacts fundamental cell processes including spreading, growth, 

proliferation, migration, differentiation, and organoid formation. Linearly elastic polyacrylamide 

hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins have become 

widely-used tools for assessing the role of stiffness, and results from these experiments are often 

assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. 

However, tissues and ECMs are not linearly elastic materials – they in fact exhibit far more 

complex mechanical behaviors, including viscoelasticity, or a time-dependent response to loading 

or deformation, as well as mechanical plasticity and nonlinear elasticity. Recent work has revealed 

that matrix viscoelasticity regulates these same fundamental cell processes, and importantly can 

promote behaviors not observed with elastic hydrogels in both 2D and 3D culture 

microenvironments. These important findings have provided new insights into cell-matrix 

interactions and have given context as to how these interactions differentially modulate mechano-

sensitive molecular pathways in cells. Moreover, these results indicate new design guidelines for 

the next generation of biomaterials that better match tissue and ECM mechanics for in vitro tissue 

models and applications in regenerative medicine.
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While indications of the impacts of the mechanical properties of culture substrates on cell 

behaviours have long been present, it is only in recent times that this concept has become 

widely accepted by the scientific community. Earlier studies demonstrating the impact of 

substrate mechanics on cell structure and proliferation were overshadowed by an emphasis 

on cell biology on genetics and biochemistry1,2. The situation began to change in the late 

1990’s when, using polyacrylamide hydrogels of varying elastic moduli coated with ECM 

proteins as cell culture substrates, Pelham and Wang showed that substrate stiffness affected 

cell-ECM adhesion, spreading, and migration3. Since this study, numerous groups have used 

polyacrylamide gels, and a variety of other material systems with tunable elastic moduli, to 

show that substrate stiffness impacts various other processes, including proliferation and 

apoptosis, stem cell differentiation, breast cancer progression and response to drugs4–6. 

Mechanistically, the current view is that cells exert traction forces using actomyosin-based 

contractility when coupled to substrates through integrin-based adhesions, or other cell-

surface links, and they sense variations in substrate stiffness through differing magnitudes or 

extents of integrin and syndecan clustering and associated signaling, conformational changes 

in mechanosensitive proteins such as talin, vinculin, or lamin, activation of mechanosensitive 

ion channels (such as piezo1), and downstream activation of transcription factor activity7–10. 

While changes in ECM mechanics are sensed by cells over short timescales, these can 

impact long term cellular processes such as differentiation, fibrosis, and malignancy through 

continued sensing, mechanical memory, and changes in the epigenome11–13. Reported tissue 

elastic moduli vary from ~100s of Pascals in brain and fat tissue all the way up to 10s of 

GPa in bone14,15. Further, alterations in tissue mechanics are observed in development and 

in various diseases and have been linked to cell phenotype in these contexts16,17. Thus, the 

current consensus is that ECM stiffness plays a key role in regulating development, 

homeostasis, regenerative processes, and disease progression.

Living tissues and organisms appear as macroscopically solid objects, however they behave 

very differently to what one would expect of a perfectly elastic, or Hookean, solid when put 

under pressure or stretched. For example, whilst our skin and fat tissues eventually recover 

their shape after they are pinched or compressed, or after a wearable device is removed, they 

take time to do so. Tendons, when stretched slowly, are able to extend and then recoil back 

to their original size and shape, however, when rapidly extended, can further strain stiffen 

and eventually rupture18. Tissues are thus not purely elastic materials, like a rubber ball or a 

spring, because they exhibit a time-dependent mechanical response and dissipate a fraction 

of the energy it took to deform them, a property called viscoelasticity or poroelasticity, 

depending on the molecular mechanism. Macroscopically, loss of the ability to recover 

shape after applied mechanical stress or stretch is often a sign of injury, disease, or aging, as 

the affected tissues no longer recover shape after a bone break, a skin tear, or the drooping of 

the face after decades of gravitational stress19. However, even when tissues globally recover 

shape, local regions might not do so after forces are removed, experiencing irreversible or 

plastic deformations. Plastic deformation of the extracellular matrix is implicated in 

contributing to the conversion of an originally isotropic network of collagen fibers to a more 

aligned pattern that is often seen around tumors20–22, and irreversible changes in cell-cell 

boundaries caused by cell-derived forces at junction sites have recently been shown to be 

essential features of pattern formation during development in Drosophila23 and c-elegans24. 
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Many soft tissues also exhibit nonlinear elasticity by strain-stiffening, or become 

increasingly difficult to extend as they are deformed, which may be advantageous in 

preventing large deformations that damage tissue25. For example, in blood vessel walls, 

distensibility at low strains accommodates pulsatile blood flow while increased stiffness at 

high strains provides elastic stability to prevent vessel rupture26. Biological tissues and 

ECMs thus exhibit complex, time and rate-dependent mechanical behaviors including a 

combination of viscoelasticity, poroelasticity, plasticity, and nonlinear elasticity (Box 1).

As cells interact with ECMs through dynamic processes that span a range of forces, from 

piconewtons up to hundreds of nanonewtons for individual cells, and span a range of 

timescales, from milliseconds to hours, it would be expected that time-dependent and strain-

dependent mechanical responses in ECMs should impact cell-matrix interactions and 

mechanotransduction (Fig. 1). Indeed, an emerging body of evidence has demonstrated that 

these more complex mechanical characteristics of tissues and ECMs impact cells, sometimes 

in ways not anticipated from our previous understanding of mechanotransduction based on 

purely elastic substrates. Here, we review the complex mechanical behaviors of tissues and 

ECMs, discuss recent work elucidating the impact of ECM viscoelasticity on cells, and 

describe the potential for use of viscoelastic biomaterials in regenerative medicine.

Tissue and ECM mechanics are complex

Viscoelasticity has been found to be a near universal characteristic of living tissues and 

ECMs. In response to a mechanical perturbation, viscoelastic materials exhibit an 

instantaneous elastic response, characteristic of purely elastic solids, followed by a time-

dependent mechanical response and energy dissipation or loss, both characteristics of 

viscous liquids. Viscoelastic materials will ‘creep’, or deform in a time-dependent manner, 

in response to the application of an external step stress or load, and undergo ‘stress 

relaxation’, or reduce stress levels in a time-dependent manner, in response to a step 

deformation. Further, under an imposed sinusoidal deformation, stress and strain are 

completely in-phase for a purely elastic material, due to all of the inputted deformation 

energy being able to be ‘stored’ and ‘recovered’ during each cycle without any loss, whereas 

for a purely viscous fluid they are completely out-of-phase, a result of all of the inputted 

deformation energy being dissipated or ‘lost’ by internal friction in the system as it flows. 

Viscoelastic materials exhibit a response between these two extremes, with the in-phase 

component of the response described as the storage, or elastic, modulus and the out-of-phase 

response described as the loss, or viscous, modulus. The magnitude of the ratio of the loss 

modulus to the storage modulus in viscoelastic materials typically depends on the frequency. 

Viscoelastic solids are differentiated from viscoelastic fluids by maintaining stress or elastic 

resistance at long times under a constant deformation, or by reaching an equilibrium 

deformation under loading at long times. Everyday examples of viscoelastic solids include 

jello (gelatin), a “stress ball”, and bread dough, while silly putty serves as an example of a 

viscoelastic fluid. One of the softest and most dissipative viscoelastic tissues in mammals is 

the brain, which has been extensively studied at time scales and deformation magnitudes that 

span the range relevant to blasts and concussions on the fast (ms) and high stress (MPa) limit 

to the deformation caused by tumor growth on the slow (weeks) and low stress (10 Pa) limit. 

Depending on the time scale and deformation, brain tissue can dissipate at least as much 
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energy as it stores in elastically recoverable deformation27, and at very long time scales it 

appears to flow like a glass or liquid28. Further, dissipation (and viscoelasticity) can resolve 

not only grey from white matter, but also different regions of the brain29. Other soft tissues 

are also viscoelastic, with rheological analysis showing that soft tissues generally exhibit 

loss, or viscous, moduli that are usually around 10 – 20% of their storage, or elastic, moduli 

at 1 Hz (Fig. 2a). Stress relaxation tests reveal that soft tissues, including liver, breast, 

muscle, skin, and adipose substantially relax their resistance to a deformation over 

timescales from tens to hundreds of seconds30–36 (Fig. 2b). Even stiffer skeletal tissues 

including bone, tendon, ligaments, and cartilage are viscoelastic, with loss moduli at about 

~10% of the storage moduli. Embryos at various stages of development37, and regenerative 

structures such as fracture hematomas30 or blood clots38 also exhibit viscoelasticity.

Importantly, changes in viscoelasticity have been associated with disease progression. 

Determination of elastic moduli, the basis of palpation that can identify stiff tumors, is not 

efficient for identifying most types of brain tumors, but rather changes in their dissipative 

properties, as revealed by magnetic resonance elastography, can identify the margins of 

gliomas and other types of brain tumor in situ39. Further, changes in brain viscoelasticity 

have been linked to aging40 and multiple sclerosis41. Similarly, breast cancer progression is 

associated with changes in both stiffness and energy dissipation42. Changes in viscoelasticity 

are likely to be associated with other types of cancers or other diseases, particularly those 

involving fibrosis or inflammation, as well as injuries, but data on these are largely missing, 

representing a critical gap in knowledge.

Materials that exhibit viscoplasticity represent a subset of viscoelastic materials, in that they 

exhibit permanent deformations when the applied stress exceeds a material ‘yield stress’ and 

remain at least partially deformed when the stress is removed. The response of these 

materials is viscoelastic to loads or deformations below their yield stress. For instance, 

molding clay and toothpaste are both viscoplastic. Reconstituted extracellular matrix 

materials used for cell culture, including common formulations of type-1 collagen gels, 

reconstituted basement membrane matrix, and fibrin gels, are typically viscoplastic22,43 

unless they are sufficiently crosslinked covalently by enzymes such as Factor XIIIa or 

lysyloxidase44,45. Tissue viscoplasticity has been characterized even less than tissue 

viscoelasticity, representing another critical gap in knowledge.

Numerous mechanisms underlie the dissipative properties of tissues and ECMs, with some 

of these mechanisms also leading to viscoplasticity. Tissues consist of cells, ECM, and 

extracellular fluid. The ECM, composed of fibrous protein polymer networks, typically 

type-1 collagen fiber networks, interspersed with highly hydrated, flexible polysaccharides 

and other large molecules, is thought to be a key regulator of tissue mechanics and 

viscoelasticity46,47. Dissipation in networks of collagen or fibrin fibers depends on the 

nature of the bonds that link one fiber to another43,48. Most network crosslinks are non-

covalent and arise from numerous weak bonds with dissociation rates fast enough to allow 

stresses to relax, or allow material creep, on a relevant time scale. These weak bonds can 

also exhibit load-dependent dynamics43, and the breaking of weak bonds under mechanical 

deformation or loading dissipates energy. Reformation of weak bonds following matrix 

deformation can stabilize the deformed state of the material, leading to plastic deformations. 
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Using a theoretical fiber network model of collagen, a phase diagram was derived that 

classified the dominant mechanisms of plasticity based on the rate and magnitude of 

deformation and the mechanical properties of individual fibers21. It was shown that the 

experimentally observed viscoplasticity of collagen networks is caused by the formation of 

new cross-links if moderate strains are applied at small rates or due to permanent fiber 

elongation if large strains are applied over short periods. Both slipping of bonds between 

collagen fibers, and sliding of collagen fibrils, have been observed in vivo for tissues under 

load, for example in skin49 and tendon50, respectively. Polymer entanglements may function 

similarly to weak crosslinks, as release of an entanglement dissipates energy and allows the 

matrix to flow. These weak crosslinks or entanglement interactions co-exist with more stable 

covalent crosslinks, which act to diminish liquid-like flow and mechanical plasticity of the 

matrix overall, but do not eliminate dissipation by unbinding of the weak bonds or by 

deformations that can change sample volume. Elastin fibers also act to promote elastic 

recovery at the tissue-scale51,52. Protein unfolding is another mechanism of energy 

dissipation and viscoelasticity53,54, and has been reported in fibrin55, spectrin56,57 and 

intermediate filament58 networks in vitro. The relative importance of these distinct 

mechanisms of dissipation will likely vary substantially in their relevance to the viscoelastic 

spectrum displayed by different tissues.

Since tissues are largely water, the flow of water within the ECM can cause significant 

viscous dissipation and what are termed poroelastic effects, depending on the mesh size or 

porosity of the tissue and the rate of loading. Dissipation due to poroelasticity occurs under 

tension or compression, and results from volume changes due to water flow into or out of the 

network59. Variations in cell number or density and ECM composition, density, and 

conformation in a tissue, enables fluid to be differentially held by or released from the 

matrix when under an externally imposed load or strain, resulting in variations in response. 

In contrast, shear deformations change shape but not volume of the sample, and dissipation 

due to water movement within the matrix is much lower. As a result, the time- or frequency-

dependent viscoelastic modulus measured in uniaxial strain for the ECM is much greater 

than it is for shear strain60. Poroelastic effects superpose with other mechanical behaviours 

of tissues and ECM, including nonlinear elasticity, viscoelasticity, and viscoplasticity.

Similar mechanisms apply to viscoelasticity of the cytoskeleton of cells61–63, with two 

important distinctions. The relatively impermeable cell membrane tends to prevent or retard 

poroelastic effects due to global cell deformation, but local contraction of the cytoskeleton 

can lead to intracellular poroelastic effects and transient pressure gradients that persist for 

biologically relevant times64. The second distinction is that covalent links between filaments 

of the cytoskeleton are very rare or non-existent. In addition, motor proteins apply random 

non-thermal forces to cytoskeletal filaments65, moving them faster than they would under 

thermal agitation alone, with the result that the active cytoskeleton is more fluidized than 

one without motors66. Cellular viscoelasticity can also manifest at the tissue-scale. For 

example, rigor mortis, the stiffening and solidification of muscle that occurs after death, 

happens in part because the links between actin and myosin fibers become both more 

numerous and permanent rather than rapidly forming and dissociating, while the living 

sarcomere hydrolyses ATP so that the actin-myosin links rapidly form and dissociate.
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Finally, many tissues exhibit nonlinear elasticity and do not display the simple linear 

relationship between stress and strain that characterizes most conventional Hookean solid 

materials used in engineering, such as concrete, aluminum, or steel. Analogous to a 

nonlinear elastic material, a coiled bungee cord or rope, an exercise band, or an accordion is 

easy to straighten out initially, but becomes increasing difficult to stretch as it becomes fully 

extended. In addition to their role in mediating tissue viscoelasticity, networks of cross-

linked collagen fibers are thought to govern nonlinear elasticity. For both shear and tensile 

deformations, collagen networks behave like linear elastic materials up to a threshold level 

of strain, beyond which they strain-stiffen concomitant with the alignment of fibers in the 

direction of maximum tensile strain25,67–71. The alignment of fibers can enable force 

transmission over hundreds of micrometers, facilitating long-range communication between 

cells70,72. A theoretical fiber network model of collagen showed that strong coupling 

between modes of deformation can give rise to significantly higher strain-stiffening of the 

networks in triaxial and biaxial tensile loading compared to uniaxial loading73. Nonlinear 

elasticity is also observed in cytoskeletal filament networks, including actin, vimentin, and 

neurofilaments, but the origins of nonlinear elasticity in these networks may have a stronger 

contribution of entropic elasticity, due to the semiflexible nature of the filaments25,74,75.

2D culture and the molecular clutch

The impact of substrate viscoelasticity on cells has been demonstrated powerfully through a 

set of 2D culture studies. In an early study, human mesenchymal stem cells (hMSCs) were 

cultured on collagen-coated polyacrylamide gels that had similar storage moduli, but varying 

loss moduli and creep responses110. Increased loss, or creep, in the substrates promoted cell 

spreading, focal adhesion formation, proliferation, and differentiation towards adipogenic, 

osteogenic, and smooth muscle cell lineages. Myosin and Rho-inhibition studies indicated 

the role of cytoskeletal tension in mediating the response to increased mechanical loss. In a 

follow-up study, increased activation of Rac1 and increases in motility and lamellipodial 

protrusions were found in hMSCs on substrates with higher loss and creep122. Another study 

compared fibroblasts and cancer cells cultured on covalently crosslinked, or elastic, versus 

ionically crosslinked, or viscoelastic and viscoplastic, alginate gels that presented RGD cell 

adhesion ligands. While cells were unable to spread on soft elastic gels, they were able to 

spread on soft viscoelastic gels through β1 integrin, myosin, and Rho, exhibiting robust 

focal adhesions and stress fibers and enhanced YAP activation, similar to their behavior on 

stiff and elastic substrates123. Increased spreading was associated with plastic deformation. 

To distinguish impacts of viscoelasticity versus viscoplasticity, viscoelastic but not 

viscoplastic substrates were formed using elastic polyacrylamide gels with linear acrylamide 

chains trapped inside111. An increased loss modulus, or faster stress relaxation, diminished 

fibroblast stiffness and cell spreading area, contrasting the results with viscoplastic alginate 

substrates. Similarly, hepatic stellate cells exhibited reduced spreading, stress fibers, and 

MRTF-A nuclear localization on viscoelastic compared to elastic substrates124. Interestingly, 

normal human hepatocytes also spread less and had lower motility on viscoelastic substrates, 

but hepatocellular carcinoma cells responded oppositely125.

To explain these seemingly disparate results, computational modeling has been applied. The 

primary sensing apparatus of substrate stiffness for cells in 2D culture is thought to be the 
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myosin-actin-adhesion system, also known as the motor clutch module (Fig. 3), whose 

dynamics have successfully explained stiffness sensing of cells on elastic substrates126–128. 

To study the impact of ECM viscoelasticity on cell spreading, a generalized motor-clutch 

model that explicitly accounts for dissipative processes both in the ECM and in the cell has 

recently been developed129. In this model, myosin motors pull actomyosin networks at the 

leading edge of the cell towards the nucleus, generating actin retrograde flow. The retrograde 

flow is resisted by adhesion molecules that can randomly bind and unbind between actin 

bundles and ECM. At the cell leading edge, the polymerization of actin filaments, countered 

by retrograde flow, pushes the cell membrane forward, further resulting in the spreading of 

the cell. To account for processes that reinforce the adhesion (e.g., talin unfolding in the FA 

complex, which triggers recruitment of integrins130), the clutch binding rate is assumed to 

increase beyond a threshold level of force. Interestingly, the model shows that, for soft 

substrates, maximum cell spreading is achieved at an optimal level of viscosity in which the 

substrate relaxation time falls between the timescale for clutch binding and its characteristic 

binding lifetime. That is, viscosity serves to stiffen soft substrates on a timescale faster than 

the clutch off-rate, which enhances cell–ECM adhesion and cell spreading. On the other 

hand, for substrates that are stiff, the model predicts that viscosity will not influence cell 

spreading, since the bound clutches are saturated by the elevated stiffness. The model was 

tested and validated using experimental measurements on three different material systems 

and explained the different observed effects of viscosity on each substrate129. The clutch 

model has also been applied to describing myoblast interactions with purely viscous lipid 

bilayers131.

3D culture and mechanical confinement

The role of matrix viscoelasticity has also been investigated in 3D culture. Culture 

dimensionality is known to impact cell structure, adhesions, signaling, and nutrient 

transport132. 3D culture supports various behaviors, including epithelial morphogenesis, 

maintenance of pluripotency in human embryonic stem cells, and the differentiated state in 

chondrocytes133–135. Culture dimensionality has also been specifically implicated in 

mediating mechanotransduction. For example, while 2D culture studies have implicated the 

YAP transcriptional regulator as a universal mechanotransducer, mediating the response of 

cells to stiffness in all 2D culture contexts136, YAP-independent mechanotransduction is 

found in a 3D culture model of stiffness-induced breast cancer, which is consistent with 

analysis of human breast cancer patient samples137. Similarly, culture dimensionality 

impacts YAP/TAZ signaling in hMSCs138. YAP has been shown to play a role in 

mechanotransduction in some in vivo contexts, such as pancreatic cancer139, highlighting 

that the importance of using 3D culture models depends upon the specific biological process.

Various studies have explored the impact of matrix viscoelasticity on cells in 3D culture. 

Increased stress relaxation, enhanced creep, or a higher loss modulus in RGD-coupled PEG 

gels31, RGD-coupled alginate gels30,119, and interpenetrating networks of hyaluronic acid 

and collagen116 promotes spreading of adherent cells such as myoblasts, fibroblasts, and 

MSCs. Faster stress relaxation and increased loss also promote cell cycle progression and 

completion of mitosis in single cancer cells and fibroblasts, as well as osteogenic 

differentiation of MSCs30,107,140. Transcriptional responses are cell type specific, with 
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human cortical progenitors and MSCs being sensitive to different ranges of stress relaxation 

and initial elastic moduli141. Maintenance of neural progenitor stemness is also facilitated by 

hydrogels with fast stress relaxation, while being inhibited in covalently crosslinked 

hydrogels142. In addition, chondrocytes and osteogenically differentiated MSCs can form 

wide volumes of interconnected cartilage-like or bone-like matrix, respectively, in 

viscoelastic hydrogels that exhibit fast stress relaxation30,143. Notably, viscoelastic 

hydrogels used in theses 3D culture studies are all viscoplastic.

Matrix viscoplasticity has been implicated in enabling mechanical remodeling of the matrix 

structure for cells cultured in 3D in collagen gels both locally20,22,144,145 and in 

microtissues146. The impact of viscoplasticity on cancer cell migration was explicitly tested 

in interpenetrating networks of reconstituted basement membrane matrix and alginate147. 

Cancer cells were found to be able to migrate through the nanoporous matrices in a protease-

independent manner when the matrices exhibited sufficient mechanical plasticity. Cells 

mechanically opened up channels in the matrix using invadopodial protrusions, independent 

of proteases, and then migrated through the channels.

The impact of hydrogel viscoelasticity and viscoplasticity on cell spreading, proliferation, 

matrix deposition, and migration in 3D culture indicates a link to the concept of mechanical 

confinement. Many cellular processes involve changes in cell volume, shape, or movement 

(Fig. 4a). When these processes are physically restricted in 3D by the surrounding ECM or 

cells, the cells are considered to be mechanically confined148,149. The established view has 

been that pore size and matrix degradability are key regulators of mechanical 

confinement148. For example, in the context of cancer cell migration, it had been shown that 

rigid pore sizes below ~3 μm block migration, with cells unable to squeeze their stiff nucleus 

through smaller pores150–152. Note that PEG, alginate, and hyaluronic acid based hydrogels 

typically have nanometer scale pores. With rigid or elastic pores, matrix degradation was 

required for the cells to overcome confinement and migrate. However, given sufficient 

viscoelasticity or viscoplasticity, cells can overcome confinement to grow in size, deposit 

matrix, change their morphology as they spread or undergo mitosis, and migrate. This 

provides the new perspective that in addition to pore size and degradability, matrix 

mechanical viscoplasticity governs confinement (Fig. 4b). During cell-matrix remodeling, 

these properties are coupled: cell remodeling of viscoplastic matrices alters pore size147, 

degradation of the matrix changes its viscoelastic properties153, and changes in the matrix 

architecture likely impacts both viscoplasticity and degradability.

In viscoelastic and viscoplastic 3D matrices, various mechanisms of mechanotransduction 

have been reported. As with 2D culture, actomyosin based contractility coupled to the 

matrix through integrin mediated adhesions, and integrin-ligand clustering, are 

implicated30,154. While in principle, some of these impacts could likely be explained by 

molecular-clutch based models, these models have not yet been extended to 3D contexts 

involving mechanical confinement. Another mechanism involves cell volume expansion. 

Chondrocytes, MSCs, and cancer cells expand their volume, or grow as part of the cell 

cycle, in matrices with fast stress relaxation, but the volume expansion is restricted in 

matrices that exhibit slow stress relaxation, or are more elastic107,143,155. In MSCs, volume 

expansion activates TRPV4 stretch-activated ion channels, and the signaling cascade 
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induced by the resulting calcium influx drives nuclear localization of RUNX2, but not YAP, 

to promote osteogenic differentiation in MSCs155. Similarly, growth during the G1 phase of 

the cell-cycle activates a TRPV4-PI3K/Akt-p27kip1 signaling axis to promote cell cycle 

progression in cancer cells107. Restriction of cell volume expansion promotes Il-1β signaling 

in chondrocytes, resulting in an osteoarthritic phenotype143. Finally, as matrix remodeling 

and deposition are often enhanced in matrices with increased viscoplasticity, the mechanical 

microenvironment to which cells respond is time-dependent, and cell-matrix interaction 

becomes a dynamic and potentially iterative process.

Viscoelastic biomaterials in medicine

One potentially impactful application for these findings lies in the design of biomaterials for 

regenerative medicine. This field originated with the goal of regenerating tissues and organs, 

or engineering replacements, for those damaged or lost to disease or trauma156. Biomaterials 

are typically utilized for cell and drug delivery, to spatially organize transplanted and 

resident cells, for regulation of gene expression, and to guide tissue structure and function in 

various regenerative, tissue and immune-engineering applications157. The demonstrated 

impact of matrix viscoelasticity on cell proliferation, gene expression, fate, and migration 

highlights it as potentially a key design parameter for biomaterials-based applications. 

Indeed, FDA-approved, tissue engineering products (e.g., Apligraft™ engineered skin, 

Infuse™ bone regeneration devices) are often based on viscoelastic matrices. Advances in 

materials processing techniques such as 3D printing, which often utilizes viscoelastic 

materials158,159, have allowed tissue and organ structure and properties to be more faithfully 

recapitulated. The utility of engineered tissues as improved models for basic studies of 

development and pathology, test beds for toxicology analysis, and improved drug screening 

have also led to significant interest in the development of microphysiological systems (e.g., 

tissue-on-chip) and cultured organoids160,161. These can more faithfully recapitulate tissue 

and organ biology than standard, 2D cell culture models, while also enabling the study of 

human biology as versus the animal biology of classic preclinical studies.

There is both direct evidence, and significant correlative data, that viscoelasticity is an 

important design parameter for biomaterials used in regenerative medicine. The first 

demonstration that matrix stiffness regulates regeneration utilized the transplantation of stem 

cells within viscoelastic hydrogels162. Strikingly, the impact of stiffness on stem cell fate in 

those gels related to the ability of cellular traction forces to remodel the polymers 

comprising the hydrogels154, suggesting that in fact it was the viscoelasticity of the gels that 

was key to their impact on cell fate in vivo. A subsequent study directly examined the impact 

of viscoelasticity by transplanting cells in hydrogels of matched initial elastic moduli, but 

varying rates of stress relaxation. Hydrogels with more rapid stress relaxation led to greater 

bone regeneration163; the optimal relaxation rate corresponded to that of human fracture 

hematomas isolated from patients163, which provide the environment in which bone 

regeneration naturally occurs. Similar viscoelastic hydrogels delivering inductive proteins 

were also found to promote extensive bone regeneration, likely due to the ability of host 

cells to readily invade the gels164,165. The beneficial impact of hydrogels in various 

applications including cartilage regeneration, vocal cord regeneration, and amelioration of 
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pathologic remodeling of the myocardium following myocardial infarction may also relate 

to their viscoelastic properties166–169.

A key question is whether viscoelasticity has been a hidden variable that explains much past 

work in the biomaterials field more broadly. Some of the most widely used and successful 

biomaterials in regenerative medicine, including collagen gels, hyaluronic acid, and 

supramolecular assemblies170 are physically-crosslinked hydrogels (e.g., collagen and 

hyaluronic acid). The most widely used biomaterial for intestinal organoid formation in 

vitro, reconstituted basement membrane matrix, is also a physically-crosslinked viscoelastic 

hydrogel, as are others used to promote formation of skeletal muscle, liver, and neural 

organoids171–174. While there have been a number of studies aiming to delineate the impact 

of matrix degradation on tissue regeneration, a provocative possibility is that the impacts 

might, at least in part, relate to the viscoelastic behavior of these biomaterials. Several early 

studies concluded that more rapidly degrading hydrogels led to greater tissue regeneration 

than more slowly degrading gels175,176. However, those studies utilized alterations in 

polymer molecular weight to regulate gel dissolution, and these changes will also alter 

viscoelasticity. A number of studies examining 3D mechanotransduction have utilized 

covalently-crosslinked hydrogels and concluded that degradation of the gels was key to how 

cells interpreted gel cues177,178. However, the cellular activity leading to degradation of 

these materials will likely transition the local matrix to a more viscoelastic state. In addition, 

cells may be interacting with the matrix molecules they themselves deposit117, which might 

provide a viscoelastic substrate. Similarly, recent efforts to develop a synthetic analog to the 

naturally-derived, physical hydrogels for organoid formation demonstrate that gel 

degradability is critical to designing synthetic replacements179,180. While little is known 

regarding the role of viscoelasticity in the fate and functional state of cells of the innate and 

adaptive immune system, a recent study has implicated purely elastic covalently-crosslinked 

synthetic matrices, as contrasted to those fabricated with naturally derived physically-

crosslinked viscoelastic extracellular matrix, as leading to inflammatory as versus 

regeneration-promoting immune cell responses181. Clearly, significant research will be 

required to delineate the specific roles of viscoelasticity, other physical properties and 

chemical composition in the cellular and tissue response to various biomaterials mediating 

tissue repair and formation.

Future outlook

Viscoelasticity is a near universal feature of living tissues and ECMs, and a rapidly 

expanding body of evidence is establishing that cells sense and respond to the viscoelastic 

properties of ECMs, challenging the current stiffness-centric view of cell-matrix 

mechanotransduction. There is a fundamental need for additional measurements of the 

viscoelasticity and viscoplasticity of tissues during development, and adult and pathologic 

tissues, as such measurements are currently quite limited. The change in viscoelasticity and 

viscoplasticity associated with diseases will be of particular interest, especially at the 

microscale relevant to cells. As both 2D and 3D culture studies have shown that changes in 

matrix viscoelasticity drive broad changes in proliferation, gene expression, migration, and 

differentiation, it is likely that changes in tissue viscoelasticity will play a role in disease 

progression and this relation could serve as a potent target for therapeutic approaches. More 
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work is needed in the future to explore the relationships between viscoelasticity and 

viscoplasticity and higher order behaviours in development, tissue genesis and repair and 

disease aetiology.

While the impact of substrate viscoelasticity on cell spreading in 2D culture is increasingly 

understood, the impact of viscoelasticity must also be considered in the context of other 

physical cues of the matrix. Architectural features, including geometry, porosity, and 

topology (e.g., nanoscale roughness) have all been demonstrated to impact various aspects of 

cell behavior182–186. However, these have typically been studied in the context of high 

moduli, purely elastic matrices. It is unclear how cells will interpret these cues in the context 

of viscoelastic matrices. Cells generate forces and deformations on substrates in a highly 

dynamic manner, leading to a complex time-dependent mechanical response of the 

substrates, which may significantly alter the original architectural and the feature sizes to 

which cells respond. While externally applied stresses (e.g., compressive and shear forces) 

conveyed to cells from their matrices also regulate cellular gene expression and tissue 

structure and function187,188, their impacts have often been studied in the context of purely 

elastic substrates. Dissipation of externally applied forces by viscoelastic matrices is likely 

to diminish the magnitude and distance of action of these cues and may alter the 

mechanotransduction pathways they trigger.

Mechanistic understanding of mechanotransduction in viscoelastic and viscoplastic matrices 

in 3D is still limited. New tools and approaches that enable one to decipher cell-matrix 

interactions with greater spatiotemporal resolution are needed. This is particularly important 

in viscoplastic matrices as cell interactions with the matrix would be expected to 

dynamically alter local matrix architecture, ligand density, and viscoelasticity. Super-

resolution imaging in 3D, molecular force sensors, and materials with dynamically tunable 

mechanical properties are emerging technologies that may address this need and provide a 

detailed readout of the dynamic molecular scale interactions and forces that occur between 

cells and viscoplastic matrices189–192, helping to develop a more holistic view of cell-matrix 

signaling. In addition, most synthetic hydrogel systems used in this field are nanoporous and 

do not capture the fibrillarity and ligand presentation of native ECMs.. Incorporation of 

collagen fibers into synthetic hydrogels116,121, or use of synthetic approaches to generating 

collagen-like fibers193, may help address this important limitation. Further, integrating 

advances in chemical synthesis routes that permit explicit control over composition, 

architecture and precise positioning of functional groups194,195 (e.g. RAFT, DNA origami) 

and real time, non-invasive tuning of properties191, with adaptive manufacturing processes 

that can program material composition and architecture across varying length scales159 

likely will provide new material systems to explore the impacts of viscoelasticity and 

viscoplasticity both in vitro and in vivo. New synthetic semiflexible filament networks made 

from self-assembling helix-forming monomers or by electrospinning represent a novel class 

of materials that can more closely mimic the elastic properties of native ECM196,197 as well 

as incorporate energy dissipation198 and plastic deformation199. In addition, there are major 

gaps in our understanding of how matrix viscoelasticity impacts signaling pathways and 

regulation of transcription in 3D. Mechanical cues generally regulate genome 

architecture200, and a recent study found that matrix stiffness impacted genome accessibility 

in a 3D culture model of breast cancer, which mediated induction of malignancy by 
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enhanced stiffness13. The connection between matrix viscoelasticity and cell signaling, 

transcription factor activation, and the epigenome is an area ripe for study.

While biomaterials design has historically operated in the dark, relative to the importance of 

viscoelasticity, viscoelasticity is likely to be a key technical specification in many 

applications moving forward (Fig. 5). Success will likely involve mimicking the mechanical 

characteristics of developing tissues, as this is often used as the model for regenerative 

strategies. The role of viscoelasticity in regulating the biology of the various cell types 

regulating regeneration, possibly including pluripotent stem cells, tissue resident stem and 

differentiated cells, and immune cells will also need to be delineated to rationally design 

materials to enhance tissue regeneration. Biomaterial design may also require decoupling of 

the local viscoelastic properties that cells sense, from the larger, tissue-scale properties 

required to achieve mechanical stability of the regenerating or engineered tissue. Thus, the 

advent of biomaterials with controlled viscoelasticity may be transformative in improving 

the success of biomaterials applications in regenerative medicine.
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Box 1| Materials and mechanical concepts: linking material structure to 
functional responses under load.

Materials can be categorized by how they deform (or change shape) in response to 

mechanical loading, typically in a stress strain test. Mechanical stress is defined as the 

force per unit area, with units of Pascals (N/m2) and can be in shear or normal. Strain is a 

normalized measure of deformation. Constitutive equations describe the relationship 

between stress and strain for a given material. Biological tissues and ECMs can exhibit a 

combination of nonlinear elasticity, viscoelasticity, poroelasticity, and plasticity. 

Materials that are both viscoelastic and plastic are considered to be viscoplastic.
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BOX 2: Biomaterials with tunable viscoelasticity

To reproduce both the elastic and dissipative properties of tissues in simplified 

bioengineered materials used for cell culture, several novel approaches based on the 

principles of polymer physics have recently been reported. Polymers that are inert to cell 

binding and not susceptible to degradation by mammalian proteases are typically used, 

with cell-adhesion peptide motifs or protein coupling to the polymer serving as tunable 

design parameters. A purely elastic hydrogel involves formation of an ideal covalent 

polymer network, as uncrosslinked polymers and loose ends lead to energy 

dissipation109. In contrast, non-ideally crosslinked polymer networks, such as 

polyacrylamide crosslinked to just beyond the gel point, form materials with incomplete 

crosslinking that allow for loss and creep110. Varying the concentrations of acrylamide 

(monomer) and bisacrylamide (crosslinker), or inclusion of non-crosslinked linear 

acrylamide polymers into crosslinked polyacrylamide gel111, allows formation of a set of 

gels with the same storage modulus, but varying loss moduli.

Other approaches are based on hydrogel materials that are formed, at least in part, with 

weak (dynamic or physical) crosslinks between the polymers. Viscoelastic polyethylene 

glycol (PEG) hydrogels have been formed using dynamic covalent hydrazone bonds, 

boronate bonds, or thioester exchange31,112–114. In alginate gels, weak ionic crosslinking 

leads to viscoelastic gels115. Viscoelastic hyaluronic acid-based hydrogels can be formed 

by using hydrazone bonds or guest-host crosslinking116,117. Weak crosslinks can also be 

programmed into peptide-based hydrogels118. In these networks with weak bonds, 

viscoelasticity can be modulated independent of the initial elastic modulus by some 

combination of varying the following parameters: molecular weight of the constituent 

polymer; coupling of inert molecules to the constituent polymer as spacers; affinity of the 

weak bonds; ratio between weak and covalent bonds; and the total number of 

bonds30,116–121. Networks formed exclusively from weak crosslinks are expected to be 

viscoplastic, whereas single or double networks formed with a combination of covalent 

and weak crosslinks may or may not exhibit viscoplasticity at the bulk scale, depending 

on the molecular architecture.

Box 2 Figure|. 
Strategies for forming hydrogels that are elastic, viscoelastic but not viscoplastic, or 

viscoelastic and viscoplastic.
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Figure 1|. Mechanical interactions between cells and extracellular matrices.
Cells interact with ECMs mechanically, including by pulling, often through actomyosin-

based contractility coupled to the ECM through integrin-based adhesions, and pushing, often 

through actin polymerization and microtubules. The mechanical properties of ECMs mediate 

these interactions resulting in cell mechanotransduction and impacting cell behaviors.
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Figure 2|. Biological tissues and extracellular matrices are viscoelastic and exhibit stress 
relaxation in response to a deformation.
a, Plot of loss modulus at ~1 Hz, a measure of viscosity (or dissipation), versus storage 

modulus at ~1 Hz, a measure of elasticity, for skeletal tissues, soft tissues, and reconstituted 

ECMs (rECMs). Grey dotted line indicates a loss modulus that is 10% of storage modulus. 

Data was taken from a set of randomly selected publications28,33,35,43,76–106. Shear storage 

and loss moduli were converted to storage and loss moduli by assuming a Poisson ratio of 

0.5, and thus multiplying by a factor of 3. b, Stress relaxation tests on the indicated tissues. 

Data from refs.14,30,31,107,108. Data for a and b result from various modalities of 

measurement (shear, compression, tension), various measurement tools (mechanical testers, 

nanoindentation, AFM, shear rheometry), and tissue of different animal origins (human, rat, 

mouse, bovine, sheep, porcine, canine).
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Figure 3|. The molecular clutch model of mechanotransduction explains the impact of matrix 
viscoelasticity on cell spreading in 2D.
a, Schematic of molecular clutch model of mechanotransduction as applied to viscoelastic 

substrates. Adapted from Ref.129. b, Molecular clutch model simulations predict optimal cell 

spreading when the timescale for stress relaxation is similar to the clutch binding timescale.
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Figure 4|. Matrix viscoplasticity mediates mechanical confinement in 3D culture.
a, In confining 3D matrices, processes that involve volume change, morphological changes, 

or a combination of both are restricted. b, Confinement is governed by a combination of 

matrix pore size, matrix degradability, and matrix viscoplasticity. A sufficiently large value 

for any one of these properties releases confinement.
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Figure 5|. Designing viscoelastic biomaterials for regenerative medicine.
a-b, Advanced imaging is utilized to detect the mechanical properties of the tissue, damaged 

and normal, in order to design materials with appropriate viscoelastic properties to guide the 

desired pattern of gene expression from interacting cells and morphogenesis. c-d, 
Introduction of the material, either alone or carrying various regeneration-promoting cargoes 

(e.g., cells) will then lead to (right panel) regeneration of the damaged tissue and 

reconstitution of function.
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