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A B S T R A C T

The goal of this paper is to shed some light on the usefulness of a contact tracing smartphone app for the
containment of the COVID-19 pandemic. We review the basics of contact tracing during the spread of a virus,
we contextualize the numbers to the case of COVID-19 and we analyze the state of the art for proximity
detection using Bluetooth Low Energy. Our contribution is to assess if there is scientific evidence of the benefit
of a contact tracing app in slowing down the spread of the virus using present technologies. Our conclusion
is that such evidence is lacking, and we should re-think the introduction of such a privacy-invasive measure.
. Introduction

During the recent pandemic of the coronavirus infectious disease
019 (COVID-19) national governments imposed various flavors of

‘lockdown’’ forcing people in their houses and preventing many of
hem to work, with the goal of slowing down the pandemic and make
t more manageable by national health systems. Such measures are
nprecedented as they limit personal freedom and strongly impact
ational economies and need to be maintained only for the shortest
ime required to stop the emergency. When the emergency is tamed,
overnments introduce a so-called ‘‘phase 2’’ which imposes milder
imitations that can progressively help economies recover. Yet, being
he first time in modern history that our society faces such a threat,
e do not have a clear path to follow for phase 2. On the one hand,

here is a widespread interest in removing personal limitations, on the
ther, the risk of provoking a second wave of spread of the virus will
e present until a vaccine or a cure are found and made available to
verybody.

One of the measures considered by many governments, and imple-
ented by some, is the introduction of a mobile phone application that
erforms contact tracing, e.g., it provides a list of contacts that took
lace between couples of people in a certain time span. The app enables
person that was tested positive to Sars-CoV2 (the aetiological agent

f COVID-19) to send a warning to all the contacts. Those who receive
he warning will presumably act accordingly (isolating themselves, or
sking to be tested) and this is imagined to contribute to keep the
iffusion of the virus under control.

In a few weeks the interest for this application skyrocketed, Google
nd Apple produced a dedicated API to support contact tracing, the
uropean Union provided guidelines to specify the privacy implication
f such applications and a consortium of companies started to elaborate
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proposals. The public debate rightly focused on the privacy aspects,
which are of paramount importance because this is, in essence, the
first ever mass-scale contact tracing action promoted by democratic states.
The privacy fallout caused by the extensive use of such an app may be
huge and the analysis of the correlated risks was the subject of several
works [1–3]. If our society takes such risks, we must expect a greater
collective payoff.

Unfortunately, little importance has been given to the effectiveness
of this application in limiting the diffusion of the virus. Here we take
a first principle approach, and review the research literature to un-
derstand if the current technical means may correctly perform contact
tracing as needed to stop the pandemic. If this is not true, then the
whole debate about the privacy implications may simply lose ground.
Our approach does not rely on the analysis of each single application,
as there are other ongoing works that cover their details [4,5]. Instead,
we use an interdisciplinary approach: we analyze some real world
constraints on what a contact tracing app may be allowed to do,
we interpret the data coming from the medical literature about the
dynamics of viral spread, and we review the technical literature to
understand what technology provides.

In our analysis we were not able to find any strong evidence that a
privacy preserving app based on current technologies can achieve the
stated goal. We observe that with current technologies a similar app
could be used to perform a mild risk assessment, but this approach
needs more technical discussion and social acceptance. Therefore, the
adoption of contact tracing apps has to be rethought.

In the rest of the paper we discuss what is needed to slow down the
spread of COVID-19 (Section 2), and what are the privacy and technical
constraints we have to respect for the app to be effective in a short time
(Sections 3 and 4). We then review the experiments carried out in the
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literature in similar realistic conditions (Section 5). All these elements
constitute the basis for a grounded discussion on the use of a contact
tracing app (Sections 6 and 7).

2. Monitoring the contagion

The transmission of Sars-CoV2 primarily happens due to respiratory
droplets [6,7], therefore reducing the number of contacts of an infected
person is a key factor to slow down the contagion. This is achieved with
social distancing, hygiene measures and isolation of infected people. It
is intuitive that the earliest an infected person is isolated, the lowest
are the chances to have contacts and spread the virus. Therefore,
the rationale for contact tracing is straightforward, when a person is
tested positive, we need to quickly identify those that were potentially
infected by this person so that we can isolate them as well. For COVID-
19 there are evidences that the transmission could occur also from
asymptomatic and pre-symptomatic people [8], these people may not
even known to be infected, which makes it even more urgent to quickly
isolate the close contacts of a person that was tested positive.

The key parameter to monitor the speed of the diffusion of con-
tagion is the reproduction number 𝑅, which expresses the expected
number of people infected by one single individual at a certain stage of
the epidemic. 𝑅 depends on a number of factors, including the way the
virus is transmitted but also the contention measures that are enforced.
The higher is the value of 𝑅, the faster the virus spreads. The goal of
ontention measures is to lower 𝑅 below 1, so that the total number
f infected people decreases with time. The base reproduction number
0 is the value of 𝑅 at the beginning of the contagion, when all the
opulation is susceptible of being infected and no contention measures
re in place, thus, it generally holds that 𝑅 ≤ 𝑅0.

There are estimates of the value of 𝑅0 using data that refer to initial
hases of the outbreak when no contention measures where in place
nd all the population was susceptible. One of the first attempts to
stimate 𝑅0 was performed observing the passengers of the Diamond
rincess cruise ship [9] and reports a median value of 𝑅0 = 2.28. A

recent modeling analysis of the initial phases of the outbreak in China
estimates a 𝑅0 = 3.54 [10]. When contention measures are put in place
𝑅 is expected to decrease, for instance at the time of writing the value of
𝑅 in Germany is estimated to be lower than 1 [11], as well as in Italy in
the period between April 19th and May 7th, and in Wuhan (where the
contagion started) the number estimated after the lockdown measures
was 0.28 [12].

Of course the average or median estimated value of 𝑅 may not be
representative of some extreme cases, the presence of super-spreaders
has been reported for COVID-19 [13] with individuals possibly infect-
ing up to 10 other people in a single event or in extreme cases up to 32.
Yet, this kind of event is likely at the early stage of the epidemic but
can be controlled with contention measures that have a limited impact
on personal freedom: maintaining interpersonal distance, using face
masks and hygiene measures, and forbidding large in-person meetings
or taking additional measures such as lists of participants in those cases.
In the phase 2, these measures must be already in place.

2.1. The secondary attack rate and the contact type

Another element that is relevant for our analysis is the so-called
secondary attack rate (SAR), that is, the percentage of people that is
actually infected among the contacts of a person that has been tested
positive to Sars-CoV2. In the early stages of the outbreak of the virus
in China (Jan 14th–Feb 15th, 2020) a group of people that tested
positively were observed together with 1286 people among their con-
tacts [14].1 The estimated value of SAR was 6.6% (81 over the 1286),

1 Contacts were identified as ‘‘those who lived in the same apartment, shared
meal, traveled, or socially interacted with an index case’’ and excluded ‘‘contacts

e.g, other clinic patients) and some close contacts (eg, nurses) who wore a mask
uring exposure’’.
 4

10
while in more recent works that analyze the evolution of th Pandemic
in Taiwan, SAR was estimated to be 0.8% (32 out of 3795 [15]).

The secondary attack rate can be further specified for different
contacts types (family, workplace etc. . . . ). Among the contacts in the
Chinese study, the large majority of those that tested positive (77 over a
total of 81 positives) were households of the infected person. A similar
statistics related to the advanced phases of the contagion comes from
the Istituto Superiore per la Sanità (ISS, the main center for research,
control and technical scientific advice on public health in Italy) which
provides weekly updates on the evolution of the Italian situation. The
report referring to April 7th–May 7th [12] includes the distribution of
the contact places for more than 9360 cases.2 Table 1 summarizes the
data and shows several interesting facts, the first is that in Italy 58%
of the new infections in the observed period happened in retirement
homes. This is due to the management of the emergency in Italy, which
made retirement homes a focus of infection. Albeit this happened in
other nations, it cannot be fully generalized. For this reason in the last
two columns of the table we report the distribution of cases excluding
the first line.

We can see that about 87% (70% excluding retirement houses) of
the cases happen in extremely predictable locations: 18% (44%) in the
family, 8% (21%) in hospitals, and 2.4% (5.9%) in workplaces. Only
12% (29%) of the cases happen somewhere else.

2.2. The needle in the haystack

Previous sections exposed data generally overlooked when dis-
cussing about contact tracing applications: (i) every infected person
infects in average 3 people in the early stage of the epidemic, a number
that decreases when contention measures are applied; (ii) the large
majority of the infections involves extremely predictable groups of
people, family members and work mates which can be identified with
basic means, i.e. with manual contact tracing among households and
colleagues. If we consider a pessimistic value 𝑅 = 2 for the phase
2, and we assume that 29% of the infected people cannot be traced
with manual contact tracing (we derive this figure from the data in
Table 1), then we have an average rounded value of approximately
2 non-identified infected contact per 3 infected people. Moreover, we
observed that SAR for COVID-19 is low: only a small percentage of the
close contacts monitored by medical authorities were tested positive,
which means that the definition of close contact is already coarse
enough to produce a large number of false positives. Fig. 1 summarizes
the situation, with the numbers discussed so far: from a group of three
infected people we expect 6 more infected people (𝑅 = 2), since the SAR
is between 1% and 6%, then the close contact group is in the orders of
hundreds of people. Among them only two out of six will not be easily
traced with analog contact tracing. The set of close contacts is included
in the set of people that were in the proximity of the infected people
(which we discuss in the next section).

The requirements that emerge from the medical literature suggest
that digital contact tracing, to be useful must be extremely precise: we
need to identify a small number of people that are not easily tracked
with analog contact tracing (two every three infected people) and
we cannot arbitrarily enlarge the amount of identified close contacts,
because the percentage of infected people among them is very small.

3. Contact tracing with mobile phones: Motivations and privacy
guidelines

Contact tracing refers to identifying ‘‘close contacts’’, a term that is
specifically defined for a certain virus. For COVID-19 the World Health
Organization defines a ‘‘close contact’’ as ‘‘Any person who had contact

2 In Italy the contention measures have been adopted with three steps of
ncreasing intensity in March 1st, 9th and 22nd, were reduced starting May
th and were still in place in the considered period.
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Table 1
The location of contagions in Italy, April 7th–May 7th. Column 5 and 6 report the same data excluding the numbers related to Retirement
homes.
Location Number of infected Percent Cumulative Percent w/o RH Cumulative w/o RH

Retirement home (RH) 5468 58.4 58.4 – –
Family 1712 18.3 76.7 44 44
Hospital/clinic 816 8.7 85.4 21 65
Workplace 228 2.4 87.9 5.9 70.8

Boat/Cruise 83 0.9 88.8 2.1 72.9
Religious Community 64 0.7 89.4 1.6 74.6
Other 989 10.6 100 25.4 100
Fig. 1. A schema of contact tracing, every three infected people, with 𝑅 = 2 we are
looking for 6 infected more people, among which two of them are expected not to
be in the group of close contacts. The close contacts are part of the group of those
considered in proximity of the infected people.

(within 1 meter) with a confirmed case during their symptomatic period,
including 4 days before symptom onset ’’.3 This definition leaves room
for interpretation because the duration of the period is uncertain and
does not take into consideration prevention measures that could be
adopted (such as face masks). Several national health systems provide
a more specific version, the ones we were able to review generally
consider close contact as being at short distance (less than 2 m) with
an infected person for more than 15 min (see Appendix A.1). One of
the key challenges of analog contact tracing is that the person that
is positive to tests needs to be interviewed by an expert that is able
to identify the close contacts, based on the kind of exposure. This is
a time-consuming task, and people cannot always remember all their
contacts. The rationale of a contact tracing app is that we can identify
new contacts that for some reason did not emerge from the interview,
and that we could speed up the notification to the close contacts with
notifications on the smartphone.

Mobile phones cannot be used for contact tracing but can be used for
‘‘proximity detection’’, which means, in a nutshell, identifying couples
of devices that have been in communication range with each other for a
specific time. At the base of the use of mobile apps lies the assumption
that the set of people for which a proximity event was recorded is a
good approximation of close contacts.

One of the works that is often mentioned in support of a contact
tracing application is from Ferretti et al. [16]. Ferretti et al. model the
outbreak of COVID-19 using the state of the art data on its diffusion
and show that considering the specific characteristics of COVID-19, a
fast contact tracing can be beneficial to lower the value of 𝑅 below

3 See https://www.who.int/publications-detail/the-first-few-x-(ffx)-cases-
nd-contact-investigation-protocol-for-2019-novel-coronavirus-(2019-ncov)-
nfection.
11
1. The authors assume that a contact tracing app can help speeding
up this task, but they do not enter into the details of the performance
of the application. They just consider the app as a factor that can
speed up the detection of new infected people. In this sense, it is
quite straightforward that any factor that can make detection faster
will reduce 𝑅, and the paper provides a quantitative analysis of this
reduction using the efficacy of contact tracing as one of the parameters
of the model.

On this basis, several governments started to express interest on
the adoption of such an app, which of course initiated a debate on its
privacy implications. It is clear that collecting data on contact tracing
introduces a privacy risk, which must be mitigated using a proper app
design. This sparkled an intense public discussion on several key themes
such as the app model (centralized/distributed), on the adoption (opt-
out/opt-in), and on the data to be collected (only proximity or any
other relevant data, such as position using GPS). A deep analysis of
the privacy and security implications of contact tracing apps is out of
the scope of this paper, and can be found in other works that were
published in the months following the outbreak of the pandemic [2,
1,3,4]. In the context of our paper we are interested in the outcome
of this debate, which can be summarized in two landmark events.
The first was the publication from the European Union of guidelines
for Privacy-Preserving contact tracing apps. These guidelines must be
respected for apps to be acceptable under a privacy point of view in
Europe. The second was the publication by Apple and Google of an API
for Exposure Notification (EN), the building block required to perform
proximity detection on their mobile operating systems. Such API is
compatible with the European guidelines. These events set the stage for
the development of any contact tracing app, because having the support
from vendors covering almost 100% of the mobile phone market is
essential to reach a large adoption, and respect of privacy guidelines
(at least in the European panorama) is essential. In fact, recent works
analyzing some of the available contact tracing apps show that in the
continental Europe among the 8 monitored apps 5 use the broadcast
model (essentially the EN model we describe later on), while 3 use the
broadcast model and rely to a connection-based model when the first is
not available [5]. Therefore, without entering into the privacy debate,
the goal of this paper is to address the following question: do we have
enough evidences suggesting that the proposed proximity detection solution
can achieve the necessary accuracy in contact tracing while respecting the
privacy guidelines?

To answer this question we need to briefly review the technical
guidelines provided by the EU, and the technology proposed by Apple
and Google.

3.1. Contact tracing: the EU privacy technical guidelines

The people we meet every day and the duration of the encounters
are extremely sensitive information. For this reason, the European
Union published guidelines on the use of contact tracing in the context
of the COVID-19 pandemic [17] which we take as functional require-
ments for contact tracing apps. Among them, some of the points that are
relevant for our analysis can be summarized as follows (Appendix A.2
reports excepts from the mentioned document that expand the bullet

points):

https://www.who.int/publications-detail/the-first-few-x-(ffx)-cases-and-contact-investigation-protocol-for-2019-novel-coronavirus-(2019-ncov)-infection
https://www.who.int/publications-detail/the-first-few-x-(ffx)-cases-and-contact-investigation-protocol-for-2019-novel-coronavirus-(2019-ncov)-infection
https://www.who.int/publications-detail/the-first-few-x-(ffx)-cases-and-contact-investigation-protocol-for-2019-novel-coronavirus-(2019-ncov)-infection
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• Contact tracing must be based on voluntary adoption, there
should be no consequences for those that opt-out

• Phone location should not be used, only proximity data should be
used

• It should not be possible to track back the identity of a person
using the data from the app. This is a crucial point, when Alice
receives the notification that she was in contact with an infected
person, she should not be able to say if this person is Bob.4

• Information should not exit the user phone if not absolutely
necessary.

These guidelines go in the direction of retaining the least possible
nformation and maintaining it as much as possible in the user device,
nd not in some centralized server.

Another extremely important guideline states the importance of
alse positives. People that are diagnosed with COVID-19 will be subject
o isolation and thus decisions cannot be taken with an automated
echanism [1]. Beyond personal consequences, false positives may
ave two side effects that can make the app useless, or even detri-
ental. If the rate of false positives is too high, people receiving alerts
ill simply start to ignore them, thus defeating the goal of the app

tself. If instead people do not underestimate the alerts and receive
any false positives, huge testing capacity, large enough medical staff

o perform the tests, and efficient logistic to avoid risk of transmission
n the hospital setting will be required. All these resources are scarce
uring the upsurge of an epidemic and cannot be wasted due to the
naccuracy of contact tracing.

. Proximity detection with bluetooth low energy (BLE)

BLE is a natural candidate to perform proximity detection between
airs of mobile phones. It is a well established technology, introduced
n 2010 and currently part of the core Bluetooth specification.5 There

are no publicly available statistics for the market uptake of BLE in
active devices at the time of writing. According to Katevas et al. [18]
BLE is present in almost all the existing iPhones, and the Bluetooth
SIG estimates that in 2024 100% of new devices will be equipped with
BLE.6 Support for BLE is available in Android since version 4.3 (2013)
and in iOS since version 5 (2011), so it is reasonable to assume that a
very large portion of the mobile phones on the market support BLE.

Proximity detection can be performed with BLE with a simple mech-
anism. Each BLE-equipped device can be in two states, the broadcaster
or the observer. The broadcaster sends a broadcast beacon message
on three default channels every ‘‘Advertising Interval’’, the observer
instead every ‘‘Scan Interval’’ wakes up and listens to beacons for
a ‘‘Scan Window’’ time. When the observer receives the beacon it
estimates the distance from the broadcaster using the Received Signal
Strength Indication (RSSI). We focus only on the description of the
solution that Google and Apple provided to perform Contact Tracing
using BLE, while generic descriptions of BLE can be easily found in the
literature [19].

4.1. Google/apple privacy-preserving contact tracing

In April 2020 Apple and Google released a joint document with
the technical specifications of a Privacy-Preserving Contact Tracing API
supported by their operating systems7 based on BLE. The specification
is called Exposure Notification and offers a trade-off between energy
consumption, user privacy, and efficacy. It is supposed to become the

4 We use the widespread cryptography jargon describing two users of the
pp as Alice and Bob and the server that is their intermediary as Eve.

5 See https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-
ith-advertising/.
6 See https://www.bluetooth.com/bluetooth-resources/2020-bmu/.
7 Privacy-Preserving Contact Tracing, see https://www.apple.com/covid19/

ontacttracing/.
 a

12
layer on which every contact tracing application may be based on.
Nothing prevents developers to use other technologies, but considering
the large diversity of devices and OS versions in the market it is unlikely
that any custom solution may reach the needed uptake to be effective.

When using EN, a phone acts both as a broadcaster and as an
observer. The Advertising Interval is set between 200 and 270 ms
(corresponding to approximately 4 Hz), while the Scan Interval is not
specified, it should ‘‘have sufficient coverage to discover nearby EN Service
advertisements within 5 min [. . . ] with minimum periodic sampling every 5
minutes’’. In the API specification it is mentioned that scanning hap-
pens typically every five minutes, with a Scan Window of 4 seconds.8
EN defines for each device a Temporary Exposure Key (TEK), which
changes once per day. This key is kept in Alice’s phone and never
leaves it if Alice does not get infected. Every ten minutes this key is
used together with a counter ranging from 0 to 144 to generate another
key, the Rolling Proximity Identifier (RPI). The RPI is included in the
beacon (together with some meta information that are not relevant
for this discussion). Alice’s phone is thus identified by the same RPI
for 10 min, which will give Bob the chance of being an observer for
two Scan Windows. Without packet loss Bob will receive in average 32
beacons to estimate the distance with Alice’s identifier before it rotates.
Bob stores all the RPI he receives in his device.

If Alice at some point becomes infected she uploads all the TEK
for the last 14 days (or any other value decided by the application)
to a Diagnosis Server (Eve), that is run by the app provider (not Apple
or Google necessarily but the developer of the app). Eve periodically
aggregates the keys ‘‘from all users who have tested positive, and distributes
them to all the user clients that are participating in EN ’’. Bob then periodi-
cally receives sets of TEK keys coming from many people tested positive
to COVID-19, he re-generates all the RPIs and checks if some of them
are present in his own local storage. If some of the keys are present in
his storage, he was in the proximity of an infected person.

The rationale of EN seems to be following:

• minimize the energy consumption. Since users are expected to
constantly run this system, it should not severely impact battery
use.

• minimize the amount of exchanged information between Alice
and Bob. There is no unicast communication happening or packet
handshake. This also makes power consumption predictable as it
does not depend on the number of devices nearby.

• minimize the amount of information transmitted to Eve. Eve does
not store the contacts of Alice and Bob.

• provide to Bob a sufficient amount of information to estimate his
exposure to some infected person without revealing who these
people were.

Note that Apple and Google do not take responsibility for deciding
when to notify Bob, the task of passing from Proximity Detection to the
definition of Close Contact is completely delegated to the app.

4.2. Privacy of EN

EN seems to be aligned with the privacy guidelines from the EU.
In this regard it is worth mentioning the notable work done by the
DP-3T consortium, a group of international experts that are devising
distributed, privacy-aware solutions for contact tracing. In a white
paper they describe three solutions, two distributed ones and a cen-
tralized one, and analyze their privacy characteristics [3]. One of the
distributed solution is very close to the EN proposal and their analysis
basically confirms that EN can be used minimizing the risk of privacy
breach.

Yet, minimizing risk does not mean removing it. A deep discussion
on the privacy risks related to contact tracing are out of the scope of this

8 See https://developers.google.com/android/exposure-notifications/ble-
ttenuation-overview#aggregation_over_a_scan_scaninstance_min_and_average.

https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.bluetooth.com/bluetooth-resources/2020-bmu/
https://www.apple.com/covid19/contacttracing/
https://www.apple.com/covid19/contacttracing/
https://developers.google.com/android/exposure-notifications/ble-attenuation-overview#aggregation_over_a_scan_scaninstance_min_and_average
https://developers.google.com/android/exposure-notifications/ble-attenuation-overview#aggregation_over_a_scan_scaninstance_min_and_average
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paper, we just mention two issues, as concrete examples. First is that
when Alice is tested positive, if Bob and Alice spent time in proximity,
Bob should receive enough information to know that there was a close
contact with an infected person, but not enough to understand who
this person was. Alice has the right of not letting others (beyond
medical staff) know she is infected. In practice this is impossible to
guarantee with a decentralized solution. Bob will receive all the RPIs
Alice generated and he can associate to each RPI a short time-interval
in which he was in proximity of an infected person. If the contact lasted
for a long enough time there are chances that Bob may infer that Alice
was, for instance, the person that was sitting next to him in the office
for all the covered period. Second, is that even in the decentralized
model, there is a server that receives from the apps the notification
that the app owner was tested positive. The server does not need to
store the association between the app owner (from which the message
is coming) and his/her health state, but there is still one point in which
this information could potentially be collected. This opens the way to
attacks to the servers from criminals that may be interested in collecting
such information.

As risks exists and their impact can be amplified by the mas-
sive scale of the adoption of contact tracing applications, we need to
properly assess the benefit we expect this application could produce.

5. Proximity detection with BLE: State of the art

In this section we review the works in the literature that deal with
proximity detection using BLE on mobile phones. Indoor localization
has been a hot research topic in the last few years and the estimation
of the distance between devices is the building block of any localization
system. Our intention was to restrict the analysis to those works that
provide insights on the applicability of BLE contact tracing for the
COVID-19 use case, i.e. those that respect the following criteria:

1. The work must present a real implementation.
2. The experimentation must involve commercial off the shelf mo-

bile devices, and not only custom devices.
3. Proximity detection should be performed without external aids

if not for results validation. This excludes fixed BLE beacons or
implicit constraints due to the set-up of the experiment (e.g., the
experiment takes place in a single room only).

4. The proposal must be compatible with EN: it must use BLE, it
should not require post-processing of data by a centralized entity
and should not require handshakes between devices.

Unfortunately, none of the works in the literature satisfied these
criteria. We decided then to analyze two sets of works, the first one
provides an overview of the challenges in the distance estimation
using BLE, which is itself a non-trivial task. The second set describes
experiments that are as close as possible to the use case of contact
tracing for COVID-19, in order to assess what are the main challenges
for a real contact tracing app.

5.1. Estimating distance with BLE

Indoor positioning is a hot research topic and there are many works
in the literature that deal with it (see Gu et al. for a recent literature
review [20]). In most cases indoor positioning is obtained with static
beacons (i.e. dedicated devices that behave as BLE broadcasters). The
mobile devices receive the messages from the beacons, measure the
RSSI and use this information to estimate their position. Even if this
approach is not usable for contact tracing, the works in the literature
can provide insights on the performance of distance estimation. EN
uses RSSI with BLE and thus it is important to shed some light on its
accuracy, even only in controlled environments.

Given the RSSI from a transmitting device, distance can be com-
puted as [21]:

𝐷 = 10
𝑅𝑆𝑆𝐼−𝑅𝑆𝑆𝐼

10𝑛 (1)
 j

13
where 𝐷 is the estimated distance, RSSI is the received signal strength,
𝑅𝑆𝑆𝐼 is the average RSSI value at a reference distance from the
transmitting device (typically 1 m), and 𝑛 is the decay exponent. The
values of 𝑛 and 𝑅𝑆𝑆𝐼 are not universally given, they depend on the
transmitter and on the environment, and they need to be estimated
for each device and for each environment. As an example, Mackey
et al. [21] make an estimation of 𝑅𝑆𝑆𝐼 for three beacon devices whose
pecification stated the same value of 𝑅𝑆𝑆𝐼 , and measure a difference

up to 10 dB. The EN documentation does not enter into the details of
distance estimation. EN provides only an estimation of the attenuation
of the signal over its path, and leaves to the implementer the choice
for the thresholds to identify a close contact. EN provides a list of
transmission power and correction factors for a number of devices that
were tested, but still, the parameters of Eq. (1) are in general uncertain.

Even assuming that the parameters of Eq. (1) are fixed, the second
source of error is the estimation of the RSSI. If we set 𝑅𝑆𝑆𝐼 =
−82.42dB, 𝑛 = 1.96 (extracted from [21]) we see that an error of 1 dB at
a distance of roughly 1.5 m9 produces an error of roughly 20 cm. Which
are the possible causes of error? First of all, the value of RSSI provided
by the devices is not a standard measure. As noted in the literature [22]
the value received by an application is the result of the elaboration
made by hardware, drivers and software, and there is no standard
expectation on its accuracy. Second is multipath fading: the RSSI is the
sum of the signal that is directly received in the line of sight and/or
the reflections from the objects in the surrounding environment, which
changes constantly. Third, BLE broadcasts beacons on three different
Bluetooth channels and the response of the smartphone radio in the
three channels is different, which provides a very noisy figure when the
levels are summed into a single value. Finally, even the orientation of
the phone influences the RSSI, so that the same couple of devices, at the
same distance may measure a different RSSI due to phone orientation.
Considered altogether, these factors make the parameters of Eq. (1)
extremely variable depending on the environment, the devices, the
position of the phones, and thus distance estimation using RSSI is
simply noisy in generic conditions.

If we look at the results in the literature we can try to quantify the
expected error.10 Katevas et al. [18] performed detailed experiments
to estimate the accuracy of distance estimation with BLE in a very
controlled environment, including an anechoic chamber. The results
show that distance estimation on commercial devices (iPhone 5S and
6S) are very noisy, with en error around 0.75 m at the 1.5 m distance,
and 1.5 m on an 3 m distance. Neburka et al. [23] provide another
interesting insight on the behavior of BLE, showing that the same
device (an RN4020 BLE module, not a mobile phone) when using
different channels (again, in an anechoic chamber) can show up to
15 dB variation in RSSI measurement, depending on the channel.

Several papers [24,25] perform an analysis of the accuracy of a
BLE-based positioning system when using mobile phones as receivers
and fixed, dedicated devices as broadcaster. Again, they measure RSSI
variations of tens of dB, for instance, when people walk there can
be drops in the measured RSSI up to 30 dB [24]. Similar measures
are performed also by Montanari [19], and the interesting observation
that the author does is that the RSSI value is different from the ones
measured in other works [24], as a confirmation that even in controlled
environments, the measured values differ largely. Naghdi and O’Keefe
quantify the effect of human bodies that shadow the propagation of BLE
signals [26] and show they can produce a drop of tens of dB in the RSSI

9 The error is non linear, we use 1.5 m as a reference as it falls between 1 m
nd 2 m, which are the cut-off distance for contact tracing adopted by WHO
nd several countries.
10 Unfortunately, the absence of open data does not enable us to extract
xact figures from the works in the literature. We need to rely on visual
nspection of graphs and therefore, our observation are quantitative but cannot
e easily systematized. Still, the inaccuracy we outline is so macroscopic that
ustifies our reasoning.
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values, with a large variability due to distance from the source and the
channel used.

Finally, the EN library documentation provides a procedure to
calibrate distance estimation. The documentation reports that RSSI
measured using two phones in an anechoic chamber varies up to 10 dB
just for a change in the orientation of the phone, without changing any
other environmental parameter.11

Summing up, the literature provides enough evidence for the fact
hat even in favorable conditions (anechoic chamber, controlled sce-
ario, known hardware for the transmitter) several sources of noise will
ffect the received RSSI up to tens of dB, which translates in distance

estimations error up to several meters. While this can be tolerable in
certain applications (for instance the location of a person inside a room)
it completely defeats the goals of contact tracing that should identify
contacts in the range of 1–2 m.

5.1.1. Improving the estimation
Mackey et al. [21] introduce several filtering techniques and test

them to estimate the distance of a phone from a beacon. They achieve
encouraging results, with a mean absolute error for distance estimation
(below 3 m) given by 0.27 m and 0.412 m (in large or small room) for
the best chosen filtering technique. Unfortunately, these results are far
from reproducible in the contact tracing environment: they use static
beacons as transmitters, in line of sight with the phone, they require
training (4 out of 5 filtering techniques use internal parameters that
were calibrated on the scenario, with fixed thresholds), the scenario is
completely controlled (empty room, no people), and before beginning
the experiment, 1000 data points for each distance are collected to
estimate 𝑛 and 𝑅𝑆𝑆𝐼 , with 1200 more data points used to make the
estimation (against the 32 we expect to have with EN).

To improve the distance estimation is possible to use BLE to-
gether with data coming from other sensors on the mobile phone.
Liu et al. [27] use the phone accelerator and gyroscope to improve
localization, inferring the walking direction of the user. Alas, also
phone sensors are imprecise and they are sensitive to the way the user
holds the phone therefore this approach requires calibration for each
specific device. Multi-modal positioning has been proposed using a mix
of BLE, Wi-Fi, and visual landmark recognition [28], which requires
the user to periodically re-calibrate the app in known positions. These
recent papers show once more that distance estimation based only on
BLE is extremely noisy in real world settings, and describe promising
research direction that will be explored in the future, but are not
yet ready to be used. A further confirmation comes from Kouliaridis
et al. [29] that made a static and dynamic analysis of 22 contact
tracing apps for the Android operating system. They report that none of
them requires the permissions to access sensors such as accelerometer,
gyroscope or microphone, and only 3 require the access to the camera,
for non specified reasons. As a matter of fact, scientific works suggest
that improving distance estimation with sensors works in a controlled
environment, but it was never adopted in real world applications for
the COVID-19 contact tracing.

5.2. ‘‘Contact tracing’’ with BLE

Montanari et al. [30,19] use BLE to perform contact tracing in an
office environment, with a set-up that is the most similar to a real
world situation. The goal of the experiment was to track interactions
among 25 co-workers in an office for 4 weeks, data were validated
by human observers in the office and stationary beacons. The ground
truth consisted in 401 observed interactions, meaning two or more
people standing at less than 3 meters from each other and having a

11 This value is reported by Google in the description of the
rocedure necessary to calibrate the parameters of EN, see https:
/developers.google.com/android/exposure-notifications/ble-attenuation-
rocedure#device-orientation.
14
conversation. On average the interactions lasted for 1 min and 13 s
and 70% of the interactions were shorter than 1 min, while only
5% were longer than 5 min. The authors use a custom device in
order to achieve a high precision in data collection, but they then re-
sample data in order to match the configuration that is achievable on
commercial devices. Some of the results are encouraging, with realistic
configurations that could achieve between 81% and 96% true positive
detection rate.

Unfortunately the experiment set-up is far from the COVID-19 use
case as it breaks all the criteria we defined. Devices were smart watches
and not smartphones, this makes a big difference because watches are
always at people’s wrist and cannot simply be left on a desk. With
smart watches there are higher chances that the two devices are in
line of sight, while a smartphone usually stays in a pocket or bag, and
RSSI strongly depends on shadowing. The choice of the parameters
allowed a much more fine-grained sensing than EN, as Scan Interval
and Scan Window were set to be below 5 s, orders of magnitude lower
than with EN. The testing environment was a firm office and only
that office, participants were asked to remove watches when going
out of the office. Each contact was tracked using the RSSI measured
on both watches in order to mitigate the effects of multipath fading.
To achieve this, all data were stored in a server and later on post-
processed. Post processing used machine learning to identify contacts,
with a supervised learning approach. All these issues make the set-
up not at all comparable with the COVID-19 use case, and make it
impossible to generalize the results.

Girolami et al. [31] investigate the possibility of using smartphones
for contact tracing. In this case the experiment included students from
a high-school that were asked to perform certain interactions (such
as standing or sitting in front of each other for 3 min) while their
mobile was recording BLE messages. The reported accuracy of en-
counter detection reached almost 82%. Unfortunately, again the testing
conditions were not comparable to the COVID-19 use case. Interactions
were not spontaneous, the participants were asked to perform specific
actions, and these actions were happening in certain places, not ‘‘in
the wild’’. The whole data-set was collected and post-processed, the
reported accuracy was obtained with the best combination of tracking
parameters and considering received beacons on both mobiles involved
in the contact. A key contribution to this discussion from Girolami’s
work is contained in this sentence: Firstly, we investigate the possibility
of using commercial smartphones to advertise and to collect BLE beacons
demonstrating that, currently, such approach is not feasible due to the het-
erogeneous implementation of BLE firmware in different versions of mobile
OS (both Android and iOS). The authors initially tried to use the devices
of the students but found out that in the batch of Android devices
owned by the participants (which matched 15 different models), 42% of
them were not usable for contact tracing. Even if the hardware and the
software were supposed to be compatible with BLE, the device simply
did not allow BLE to be used for active beaconing. In the end, the
authors used mobile phones as observers but had to equip participants
with a BLE watch acting as the broadcaster. Even once the broadcaster
was set to be a ‘‘standard’’ watch with fixed hardware and software
features, and the receiver phone was kept in a pre-defined position
(front pocket or back pocket in participant’s pants), the measured RSSI
changed substantially depending on the mobile phone receiving the
data and its position. Furthermore, the median number of lost beacons
per session was larger than 50%, which suggests that in a real world
scenario the loss of beacons is an extremely important factor, which
can be mitigated only with a large Scan Window, which is known to
be the highest source of power consumption. The trade-off between
battery consumption and accuracy is completely unexplored in a noisy
use-case, in which people may find themselves in crowded places with
tens of other mobiles in the range of a few meters (a bus, a shopping
center, or even only the queue to get into a shopping center). In those
cases the loss of packets due to noise and collisions could introduce
false negatives, i.e., contacts that are not traced.

https://developers.google.com/android/exposure-notifications/ble-attenuation-procedure#device-orientation
https://developers.google.com/android/exposure-notifications/ble-attenuation-procedure#device-orientation
https://developers.google.com/android/exposure-notifications/ble-attenuation-procedure#device-orientation
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Katevas et al. in a recent paper [32] use iPhones to detect interac-
ions between couples and groups of people. 22 people were involved
n a 45 min experiment in which they were left in an open space
nd were free to socialize. The ground truth was obtained with post-
rocessing of video recording. A total of 99 one-to-one encounters and
2 group encounters were detected. Again, the accuracy of encounter
etection was satisfactory (about 89%) but the experiment set-up does
ot generalize to the COVID-19 use case, for similar reasons to the
revious works. The experiment was in a controlled environment, the
articipants had a dedicated beaconing device in one pocket and an
Phone in the other, all data were stored and post-processed with
achine learning techniques. Furthermore the iPhone had access to

he data produced by other sensors: acceleration, gravity, and rotation
ime.

It is important to note that as of today all the experiments involving
Phones used a second dedicated device playing the role of the broad-
aster. This is due to the fact that iOS does not allow an app to act
s a broadcaster if the app is not in the foreground. This was noted
n the literature [18] and was brought to the attention of the media
ecently.12 This is a privacy-preserving feature that Apple introduced
o prevent the exact goal of contact tracing apps: constantly tracking
he user position. Even if it is likely that Apple could remove this
imitation for the COVID-19 use case, there are currently no scientific
orks estimating the efficacy of proximity detection using an iPhone
s a broadcaster for prolonged periods.

Palaghias et al. [33] present an accurate technique to perform
roximity detection using smartphones only. The authors start from
he observation that proximity detection using RSSI only is not precise
nough and elaborate a new strategy that needs 6 Bluetooth packets
o correctly estimate user proximity. Results show an accuracy close
o 82% in a realistic scenario but again the technique cannot be
eneralized to the COVID-19 use case. Even if detection is done on-
ine by each phone (all other experiments performed off-line centralized
etection) it uses a machine learning approach which requires training.
urthermore, proximity detection is improved by estimating the direc-
ion the user is facing, based on a previously introduced technique [34]
hich requires access to various sensors on the phone. This technique
lso includes an interaction between the two phones using Bluetooth
n ad hoc mode, which is different than BLE. The experimental set-up
s limited to 8 people performing partly controlled operations in an
ndoor setting. It is also not clear what version of Bluetooth is used
n the experiment, and thus, what is the effective power consumption
f the proposed technique.

. Discussion

The first important consideration emerging from our analysis is that,
lbeit called with the same name, the ‘‘contact tracing’’ needed to limit
he spread of a virus is not what a mobile application can provide. A
‘close contact’’, according to international guidelines, is a person at a
istance of less than 1–2 meters without proper protections. A smart-
hone app can only estimate when two devices are in communication
ange, regardless of where their owners are and what is in between
a thin wall, a glass . . . ), which is generally referred to as proximity
etection. The second fundamental consideration is that improving
ontact tracing requires high precision. The reproductive number when
ontainment measures are in place is of a few units, and the majority
f the contacts are extremely predictable (family, workplace, hospital).
roximity detection should provide an estimate of, in average, less than
ne contact per infected person. The third important consideration is
hat a high rate of false positives could defeat the goal of the app
tself (with people ignoring the messages they receive) or even be
etrimental (diverting precious resources to manage false positives).

12 See https://www.bloomberg.com/news/articles/2020-04-20/france-says-
pple-s-bluetooth-policy-is-blocking-virus-tracker.
15
Proximity detection, to be useful, should provide a very short list
of people that had long-lasting contacts with Alice. Yet we know that
Bob’s phone should make a precise estimate of proximity with a very
small number of samples. The literature analysis we performed shows
that at the time of writing, there is no scientific evidence to support
that under these conditions, a proximity detection application running on
smartphones with a distributed design can provide such high precision.

All the works we reviewed provide reasonable accuracy for prox-
imity detection (between 80%–90%) but use a set-up that is far from
being applicable to the COVID-19 use case, combining at least two of
the following requirements:

• They require a centralized system to store all the raw data. The
database is needed in order to detect contacts and contain the RSSI
for all received packets.

• They require training. Calibration of the system needs ground
truth provided by the experimenters, and a controlled environ-
ment.

• They used dedicated devices. They were not able to perform
the experiments only with smartphones and used custom devices
worn by participants.

• They required direct communications between the two phones, or
access to other sources of data.

This makes impossible to forecast the accuracy of proximity detec-
tion when used ‘‘in the wild’’.

6.1. False positives and sensitivity

Consider a person that goes to work every day with public trans-
portation (bus), it is reasonable that he/she will stay in the bus for
more than 10 min, and repeat this routine twice a day. If a distance
of 2 m is maintained between people in the bus, and we consider only
the closest 4 persons to be in communication range, we may estimate
8 contacts per day. We set the observation period to three days, that
is, one day that passes from the emergence of the symptoms to when
the person is tested positive (a very optimistic estimation) and two
days in advance (again, a very conservative choice). This yields the
number of contacts 𝑁 = 24. The numbers we introduced in Section 2.2
(𝑅 = 2, 2 out or 6 contacts not traceable with analog contact tracing)
tell that we are looking in average for 2 people every 3 infected people.
If the app has full penetration in the whole society and works perfectly,
then we have that every 3 ∗ 24 = 72 traced contacts, there are only
two people that are likely positive and untracked. That is, the task of
contact tracing itself, under the assumptions of a perfect application
produces 35 false positives every true positive. Note that here we call
a false positive someone that was in proximity of some infected person,
detected by an app that has 100% accuracy. These figures clearly state
that physical closeness is not a good proxy to detect ‘‘close contacts’’
as defined in medical terms. Moreover, this figure does not consider
several other causes of contacts (people that work in contact with the
general public, social gatherings, shopping malls etc.) yet, it already
shows that using an app for contact tracing may produce an unbearable
amount of people to test, or people ignoring the messages they receive.

In order to make a rough estimation of the sensitivity of such an
app, we rely on statistics available at the time of writing. We call 𝐶
the fraction of people that is successfully using the contact tracing app
in a certain moment, the fraction of contacts that can be successfully
detected is 𝑆 = 𝐶2 ∗ 𝑃 where 𝐶2 is the probability that both people in
lose contact run the app and 𝑃 is the accuracy of the app. We estimate

using the following expression:

= 𝑀 ∗ 𝐴 ∗ 𝑊 (2)

Where 𝑀 is the fraction of people owning a smartphone, 𝐴 is the
raction of people willing to install the app, 𝑊 is the fraction of phones
hat supports contact tracing with BLE.

https://www.bloomberg.com/news/articles/2020-04-20/france-says-apple-s-bluetooth-policy-is-blocking-virus-tracker
https://www.bloomberg.com/news/articles/2020-04-20/france-says-apple-s-bluetooth-policy-is-blocking-virus-tracker
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According to the Pew Research Center13 in advanced economies
76% of the adult population owned a smartphone in 2018, we then
set 𝑀 = 0.76. A recent survey on the acceptability of the use of a
contact tracing app in several advanced economies reveals that about
74.8% of the people would agree on installing the app, so we set 𝐴 =
0.748 [35]. We note that this number is disproportionate compared to
the penetration of real apps, for which numbers are extremely lower.14

Recent statistics15 report that Android and iOS cover almost 100% of
the market of new devices with Android alone covering 86% of the
market. We know that at the time of writing, Apple iOS does not
allow active beaconing for applications that run in the background,
and one of the work observed that 42% of the Android smartphones
did not allow beaconing even if the phone specifications theoretically
allowed it [31]. Assuming at some point iOS will enable beaconing on
all devices we call 𝑊𝑎 the fraction of BLE-equipped Android devices
that support beaconing, then if 𝑊𝑎 = 1 − 0.42 = 0.58 is still a valid
estimation, we have that 𝑀 = (0.14+0.86 ∗ 𝑊𝑎) ≃ 0.63 (in Switzerland,
the ratio between app downloads and active apps is 0.57 so close to
our figure [36]). This yields 𝐶 = 0.76 ∗ 0.748 ∗ 0.63 ≃ 0.36. Let us
ssume that the app never introduces false positives (here false positive
efers to the fact that the app never considers a close contact someone
hat is far from the subject, an extremely strong assumption given
he imprecision of proximity detection) and that it is able to detect

fraction 𝑃 = 0.81 of the proximity events, the lower bound of the
esults reported by the literature in non realistic conditions. Then the
ensitivity of the contact tracing application (i.e. the fraction of contacts
hat are correctly traced) is given by 𝑆 = 𝐶2 ∗ 𝑃 = 0.362 ∗ 0.81 ≃ 0.10.
hat is, assuming that: (i) phones are always on and carried by their
wners; (ii) the app is always working; (iii) all the people declaring they
ant to use the application actually do it; (iv) the precision of the app

s the one observed in non-realistic controlled conditions and does not
reate false positives; then still the application will be able to provide
round 10% of the real contacts.

In conclusion, in the short term, with current technologies, we argue
hat the high number of potential false positives and the low sensitivity does
ot justify the introduction of a contact tracing application with an high
otential privacy risk.

. The way ahead

In this section we build on the previous discussion to provide some
ragmatic considerations on how to make the best use of digital contact
racing.

As a first point, we stress the importance of a rigorous monitoring
f the ongoing efforts to produce contact tracing applications. It is es-
ential that not only the source code of the apps, but also the results on
heir experimentation and their daily use is made available for public
crutiny. Since we outlined important technical unsolved challenges
t is paramount that the way these challenges are addressed is made
ublic, so that experts can evaluate the efficacy of the app, and validate
he whole approach. It is also fundamental that the results obtained
ith the app will be constantly monitored during its use, to periodically
ssess its overall social utility. So far we have only anecdotal evidences
aying that in some countries the results of digital contact tracing are
ot encouraging. For instance, in Australia it was reported that even
ith 6 millions download, the app did not report any contact that

13 See Spring 2018 Global Attitude Survey. We restrict our analysis
o advanced economies, as we focus on the European panorama:
ttps://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-
rowing-rapidly-around-the-world-but-not-always-equally/.
14 According to the news available at the time of writing the number
f downloaded apps per inhabitant is ≃0.23 in Switzerland [36], ≃0.19 in
ermany [11], ≃0.7 in Italy [37]. Note that not every downloads corresponds

o a running app.
15 See the data from IDC.com including the current and past market shares of

ew smartphones https://www.idc.com/promo/smartphone-market-share/os.

16
as not already known,16 in the UK the app was suspended due to
ifficulties in making it working properly17 and even in Singapore,
ne of the earliest adopters of digital contact tracing, where 35%
f the population appears to have downloaded the application, the
overnment is going to provide physical tokens to citizens, to have
eliable measures that are not possible with smartphones.18

If the apps will prove to be inefficient, there are still other ways we
could reshape their goals to provide some social benefit.

7.1. From contact tracing to risk profiles

Protection measures like safety distance, face masks and avoiding
gatherings are a limitation to freedom, and certain categories of people
that are less exposed to the risk may not be motivated enough to
enforce them. One way to encourage them is by creating empathy
towards the others, which has been shown to be effective [38]. To
reach this goal, gamification has proven useful in several domains,
including health [39] and may be adopted also in this specific situ-
ation. Gamification means introducing game elements in non-gaming
activities and can be used for the creation of social awareness of the
consequences or one’s own actions towards the more vulnerable ones,
which is an effective way of motivating people to respect contention
measures against COVID-19 [40].

Contact tracing apps could be reshaped to match this new purpose:
Instead of trying to capture the exact number of proximity events,
they could provide users with an estimation of their cumulative ex-
posure to risk, and thus, the potential danger they represent for the
others. Through gamification they could nudge users to take a better
behavior. The amount of information required for this task could be
lower than what required for contact tracing and can be performed
with anonymized data-sets, thus lowering the privacy risk. For instance,
re-use or RPIs could make it harder to de-anonymize the identity of
infected contacts, while still providing a reasonable measure of the
exposure risk. Extending this concept, distributed contact tracing may
support k-anonymity (as proposed recently [41]).

7.2. Assisted analog contact tracing and the centralized solution

As we mentioned, analog contact tracing requires expertise, time
and can be error prone. On the other hand we know that digital contact
tracing cannot be used automatically, as it only identifies proximity.
Merging the two forms of tracing would instead definitely improve
contact identification. If the expert can access a list of contacts which
can be reviewed together with the infected person, the whole process
would be made faster and more robust. Unfortunately this is not
achievable with the distributed, privacy-preserving solution.

Instead, a centralized solution would bring a number of advantages,
among which:

• Proximity tracing will improve, as it could be performed with data
coming from both smartphones;

• Big data would enable the use of advanced data analysis to filter
out false positives and improve the estimation;

• A contact graph could be produced, which would help complex
analysis and identify potential super-spreaders;

• If a person that tests positive is presented with a list of people
(not IDs) of possible contacts, he/she may provide details on the
kind of contact to reconstruct its associated risk.

16 See https://www.smh.com.au/politics/federal/much-hyped-contact-
tracing-app-a-terrible-failure-20200628-p5570h.html.

17 See https://www.technologyreview.com/2020/06/19/1004190/uk-
covid-contact-tracing-app-fiasco/.

18 See https://www.bbc.com/news/technology-53146360.

https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://www.idc.com/promo/smartphone-market-share/os
https://www.smh.com.au/politics/federal/much-hyped-contact-tracing-app-a-terrible-failure-20200628-p5570h.html
https://www.smh.com.au/politics/federal/much-hyped-contact-tracing-app-a-terrible-failure-20200628-p5570h.html
https://www.technologyreview.com/2020/06/19/1004190/uk-covid-contact-tracing-app-fiasco/
https://www.technologyreview.com/2020/06/19/1004190/uk-covid-contact-tracing-app-fiasco/
https://www.bbc.com/news/technology-53146360
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Indeed, almost all the works we reviewed use a centralized approach
for proximity detection, which helps overcoming several technical lim-
itations. For instance, a centralized system that collects data for every
single received BLE packet can estimate the distance from both end-
points, thus reducing the error due to multipath fading and shadowing.
Yet this approach is even more privacy intrusive than what is normally
described as a ‘‘centralized system’’ for contact tracing for COVID-
19 [3], which generally refers to a system that collects all the proximity
events after they were detected in the phones. Such a centralized
system instead owns enough information to de-anonymize the position
of the users and their loose interactions, and in general it would be
an unprecedented privacy nightmare. As scientists however, we have
to ask ourselves if it makes more sense to insist on the adoption of a
solution that may never work properly, or to accept the challenge of
imagining technical means that may reduce the risks associated with a
solution that may actually work.

8. Conclusions

The risk assessment of a proximity tracing app, considering its
privacy issues is very hard to perform, since the fallout of data leakage
can be simply impossible to predict with current information. For this
reason, a first principle approach would call to ask what is the esti-
mated benefit of an application that introduces a potential privacy risk.
We analyzed the available literature to answer this question, matching
the data of the pandemic with the available data from experiments
in proximity tracing, and our conclusion is that there is not enough
evidence to support that such an app would help slow down the running
contagion.

A contact tracing app, adopting the highest standards of privacy
could be indeed useful to spread awareness and encourage modifica-
tions in people behavior, a goal that appears to be less daunting and
more practical to achieve in the short term.
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Appendix. Excerpts from relevant documents

A.1. Definition of close contacts from national health institutes

Here we report a number of definitions of ‘‘close contact’’ from
the official documents of several English speaking national health
institutions. Note that most of these document extend the definition
with specific provisions for, i.e., households or partners, which we
do not report here as they are easy to detect without the need of a
mobile phone app. The definitions may also change with time, as more

evidence is accumulated on the way the virus spreads.

17
The US Center for Disease and Control Prevention identifies a close
contact as Individual who has had close contact (< 6 ft) for a prolonged
period of time and specifies in notes that19:

Factors to consider when defining close contact include proximity, the
duration of exposure (e.g., longer exposure time likely increases exposure
risk), whether the individual has symptoms (e.g., coughing likely increases
exposure risk) and whether the individual was wearing a facemask (which
can efficiently block respiratory secretions from contaminating others and
the environment).

Data are insufficient to precisely define the duration of time that consti-
tutes a prolonged exposure. Recommendations vary on the length of time of
exposure from 10 min or more to 30 min or more. [. . . ] Brief interactions
are less likely to result in transmission; however, symptoms and the type of
interaction (e.g., did the person cough directly into the face of the individual)
remain important.

According to the Australian guidelines a close contact is a ‘‘face-to-
face contact in any setting with a confirmed or probable case, for greater
than 15 min cumulative over the course of a week [. . . ] sharing of a closed
space with a confirmed or probable case for a prolonged period (e.g. more
than 2 h) in the period extending from 48 h before onset of symptoms in
the confirmed or probable case’’.20

For the Irish Health institution a close contact is defined as Any in-
dividual who has had greater than 15 min face-to-face (<2 meters distance)
contact with a case, in any setting.21

The state of Alberta (CA) provides the following definition: individ-
uals that lived with or otherwise had close prolonged contact (i.e., for more
than 15 min and within two meters) with a case without consistent and
appropriate use of PPE [Personal Protection Equipment] and not isolating 22

A.2. EU privacy guidelines

The mentioned EU Privacy Guidelines [17] contain the following
guidelines:

The systematic and large scale monitoring of location and/or contacts
between natural persons is a grave intrusion into their privacy. It can only
be legitimized by relying on a voluntary adoption by the users for each of the
respective purposes. This would imply, in particular, that individuals who
decide not to or cannot use such applications should not suffer from any
disadvantage at all.

[. . . ] contact tracing apps do not require tracking the location of individ-
ual users. Instead, proximity data should be used; as contact tracing appli-
cations can function without direct identification of individuals,appropriate
measures should be put in place to prevent re-identification; the collected
information should reside on the terminal equipment of the user and only
the relevant information should be collected when absolutely necessary.

[. . . ] procedures and processes including respective algorithms imple-
mented by the contact tracing apps should work under the strict supervision
of qualified personnel in order to limit the occurrence of any false positives
and negatives. In particular, the task of providing advice on next steps should
not be based solely on automated processing.

False positives will always occur to a certain degree. As the identification
of an infection risk probably can have a high impact on individuals, such as
remaining in self isolation until tested negative, the ability to correct data
and/or subsequent analysis results is a necessity. This, of course, should
only apply to scenarios and implementations where data is processed and/or
stored in a way where such correction is technically feasible and where the
adverse effects mentioned above are likely to happen.

19 See https://www.cdc.gov/coronavirus/2019-ncov/php/public-health-
recommendations.html.

20 See https://www1.health.gov.au/internet/main/publishing.nsf/Content/
cdna-song-novel-coronavirus.htm.

21 https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/
guidance/contacttracingguidance/National%20Interim%20Guidance%20for%
20contact%20tracing.pdf

22
 See https://open.alberta.ca/publications/coronavirus-covid-19.
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https://open.alberta.ca/publications/coronavirus-covid-19
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Any server involved in the contact tracing system must only collect the
ontact history or the pseudonymous identifiers of a user diagnosed as
nfected as the result of a proper assessment made by health authorities and
f a voluntary action of the user. Alternately, the server must keep a list of
seudonymous identifiers of infected users or their contact history only for
he time to inform potentially infected users of their exposure, and should
ot try to identify potentially infected users.
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