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ABSTRACT: We devised a low-cost mobile electronic nose (e-nose) system
using a quartz crystal microbalance (QCM) sensor array functionalized with
various polymer-based thin active films (i.e., polyacrylonitrile, poly-
(vinylidene fluoride), poly(vinyl pyrrolidone), and poly(vinyl acetate)). It
works based on the gravimetric detection principle, where the additional
mass of the adsorbed molecules on the polymer surface can induce QCM
resonance frequency shifts. To collect and process the obtained sensing data
sets, a multichannel data acquisition (DAQ) circuitry was developed and
calibrated using a function generator resulting in a device frequency
resolution of 0.5 Hz. Four prepared QCM sensors demonstrated various
sensitivity levels with high reproducibility and consistency under exposure to
seven different volatile organic compounds (VOCs). Moreover, two types of
machine learning algorithms (i.e., linear discriminant analysis and support
vector machine models) were employed to differentiate and classify those tested analytes, in which classification accuracies of up to
98 and 99% could be obtained, respectively. This high-performance e-nose system is expected to be used as a versatile sensing
platform for performing reliable qualitative and quantitative analyses in complex gaseous mixtures containing numerous VOCs for
early disease diagnosis and environmental quality monitoring.

1. INTRODUCTION

Electronic nose (e-nose) technology has been developed by
scientists worldwide and greatly used in many application fields
by mimicking and advancing the olfactory function of human
beings,1 e.g., in medical care for noninvasive early disease
diagnosis,2−4 food industry for product quality assurance,5−8

environmental monitoring for continuously online/in situ
hazardous gas detection,9 and agriculture for plant protec-
tion10−12 via monitoring and classification of volatile organic
compounds (VOCs). An e-nose system consists normally of
some or many gas sensors that are assembled into an array
targeting different analytes, a so-called sensor array. Due to
their broad selectivity and availability, commercial gas sensors
based on metal-oxide semiconductors (MOSs) have often been
utilized by many researchers as the main part of the e-nose
sensor array.13−15 However, these sensors consume relatively
high power (few hundreds of milliwatt) as they need to be
activated at high temperatures during operation, limiting their
implementation in a portable system. Moreover, they are
normally sealed in a fixed housing. Hence, their active layer
surfaces cannot be flexibly modified to adjust the sensitivity
and selectivity toward target gases.16,17

Lately, low-power microlight plates have been developed
using gallium nitride (GaN) light-emitting diode (LED)
technology as photoactivated micropower gas sensors,18

where they could result in microwatt-range power con-
sumption when combined with zinc oxide (ZnO) nano-
particles as an active material for selective NO2 monitor-
ing.19,20 Moreover, an innovative way toward efficient self-
heating gas sensors was made by involving vertical GaN
nanowire architectures that can be made in both two- and
three-terminal device configurations.21−25 Despite their
successful ultra-low-power demonstrations down to a few
tens of microwatt, the sensors required complicated three-
dimensional (3D) cleanroom fabrication processes including
many material deposition, filling, and etching steps, which led
to higher device production costs. Thus, currently, highly
selective and sensitive gas detectors with low power
consumption, easy surface modification, and low fabrication
costs are still demanded by sensor communities to be
integrated into the e-nose system.
As an alternative to conductometric sensing (e.g., by

chemoresistive sensors and field-effect transistors (FETs)),
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gravimetric detection has been continuously used and
advanced taking advantage of device resonance frequency
shifts induced by the additional mass of the adsorbed target
analytes. Compared to the other dynamic gravimetric sensors
like silicon resonant piezoresistive microcantilevers and vertical
nanowire arrays that are very brittle,26−31 quartz crystal
microbalance (QCM) platforms are preferable to be employed
as gas sensors because they offer robust architecture, easy
handling, a large sensing area, low power consumption, real-
time detection, and low-cost fabrication.32−37 Furthermore, a
QCM sensor can be easily functionalized by different coating
methods (i.e., drop-casting, spin coating, electrospinning,
chemical vapor deposition, and molecular imprinting) to
tune its selectivity and sensitivity toward specific analytes.38−46

In terms of the active materials, both inorganic (e.g., metal
oxides (ZnO, TiO2, and CuO), graphene, and carbon
nanotubes) and organic materials (e.g., polymers and
polystyrene beads) have been employed as QCM sensing
layers.47−54 Among these options, polymers (e.g., polyacryloni-
trile (PAN), poly(vinyl acetate) (PVAc), poly(vinylidene
fluoride) (PVDF), poly(vinyl pyrrolidone) (PVP), and their
combinations) have attracted more attention due to their
highly flexible adjustment of chemical and physical properties.
Such substances can be made as either thin films by spin
coating or nanofibrous mats by electrospinning. Here, although
the nanofibers can offer a higher surface area to volume ratio
than thin layers for sensing, a high voltage power supply (e.g.,
5−20 kV) is still required to be involved during the fiber
membrane creation, which is definitely not favorable if low
power consumption has been a concern for the whole chain of
sensor production and usage. The superiority of polymer as a
gas-sensing layer is supported by the fact that its surface
hydrophobicity and sensitivity can easily be modified by
introducing other organic materials or dopants (e.g., chitosan
and acids).42−44 This has led to an opportunity for such
polymer-coated QCMs to be used for sensing either humidity

(water molecule) or different gasses (e.g., safrole, alcohol,
benzene, toluene, xylene, and ammonia).42,46,47 From our
previous studies, PAN sensors were able to obtain high
sensitivity and selectivity toward safrole, which is often found
in alcoholic drinks and psychoactive recreational drugs
(ecstasy).42 Meanwhile, PVAc-functionalized QCMs were
used to measure the concentration of toxic gases such as
benzene, toluene, and xylene.47 Furthermore, chitosan-
modified cellulose acetate membranes were demonstrated to
detect acetic anhydride, which is a carboxylic acid anhydride
employed as an acetylating agent for alcohols.44

All these advantages have therefore attracted several e-nose
developers to use QCM sensor arrays in their built-in
systems.55−61 However, it is worth mentioning that previous
research focused more on the optimization of the active layers;
hence, the created setup still involved large and bulky tools
such as conventional frequency counters and outsized
chambers. Furthermore, a question on the feasibility of
creating a handheld low-cost e-nose system with reliable
qualitative and quantitative analysis capability and high
classification performance has not been answered, as these
devices were often deteriorated, caused by interferences (i.e.,
operating condition changes and hardware failures).62 In terms
of data acquisition (DAQ) for QCM, a commercial device has
already been offered by OpenQCM, Novaetech, Italy.63−65

However, it is limited only to a single-channel system. Thus, it
is not suitable to be used directly for the e-nose device, where
several QCM sensors in an array have to be brought into
operation simultaneously.66,67

To circumvent all of the above issues, in this work, we
developed a completely portable low-cost e-nose system by
integrating a hybrid polymer-coated QCM sensor array with a
custom-built calibrated multichannel DAQ circuitry and
machine learning-based data analysis. Four different spin-
coated polymer thin films (i.e., PAN, PVAc, PVDF/PVAc, and
PVP) were used resulting in different sensitivities toward

Figure 1. Frequency measured by four developed frequency counters (i.e., boards 1−4) (a) before and (b) after calibrations. The calibrated board
1 could obtain frequency resolutions of up to (c) 0.5 and (d) 0.1 Hz using gate times of 1 and 5 s, respectively.
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various VOCs. Furthermore, to discriminate the obtained
sensing data sets, two artificial intelligence models (i.e., linear
discriminant analysis (LDA) and support vector machine
(SVM)) were investigated during data analysis resulting in
accurate analyte discrimination and classification.

2. RESULTS AND DISCUSSION

2.1. Data Acquisition System Characteristics. Accuracy
is one of the most important characteristics of an instrument.
To ensure the accuracy of our developed mobile e-nose

system, it was first calibrated using a function generator (GW
Instek AFG-2125) prior to sensing characterizations. A 10
MHz square wave with a DC bias of 1.65 V was supplied as an
input to the frequency counter developed for e-nose. We
investigated four different Arduino Due boards (i.e., boards 1−
4) to evaluate their accuracies. From the conducted frequency
measurements using a 10 MHz input signal (Figure 1a), they
yielded different measured frequencies. The frequency differ-
ences of up to 34, 50, 59, and 63 Hz were found for boards 1−
4, respectively, which indicated the inhomogeneity of the

Table 1. Characteristics of the Proposed E-Nose Data Acquisition (DAQ) System Compared to Previously Reported Devices

reference measuring device dimension (w × l × h) (mm3) weight (g) channel number (#) fmax (MHz) resolution (Hz)

60 QCM200 (270 × 1829 × 51) 907 1 5 1.0
69 QCA 922 (260 × 230 × 88) 200 4 10 0.1
59 NI-6602 (PCI) 8 80 1.0
70 ASIC 8 11 1.0
68 XC95108XL 2 10 1.0
71 OpenQCM (Arduino Micro) (56 × 48 × 34) 55 1 10 1.0
67 PIC16F628A 4 10 1.0
this work Arduino Due (70 × 100 × 45) 110 4 21 0.5

Figure 2. Frequency shifts of QCM sensors functionalized with (a, b) PAN and (c, d) PVDF/PVAc thin films under exposure to different volatile
organic compounds (VOCs, i.e., methanol, ethanol, propanol, butanol, benzene, toluene, and xylene) at increasing concentrations of up to 20 and
40 mg/L for alcohol and BTX samples, respectively. Full-cycle dynamic responses of the QCM sensors functionalized with (e) PAN and (f)
PVDF/PVAc thin films under influence of various VOCs at a concentration of 1 mg/L. These QCMs belong to the sensor array inside the e-nose
system.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c04433
ACS Omega 2020, 5, 29492−29503

29494

https://pubs.acs.org/doi/10.1021/acsomega.0c04433?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c04433?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c04433?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c04433?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c04433?ref=pdf


developed frequency counters. This inaccuracy issue might be
attributed to different timer clocks of these four Arduino Due
boards, which could then vary their time gating. The timer
clock by default was set to the Arduino Due internal frequency
that is 82 MHz divided by two (i.e., 42 MHz). However, the
internal frequency of Arduino Due could have deviations of up
to ±1.26 kHz due to its crystal tolerance or ambient
conditions. This would result in imprecise time gating.
Furthermore, to generate accurate 1 s time gating with an

exact timer clock of 42 MHz, TCLK8 was needed to count
42 000 000 clocks. However, due to the deviation of internal
frequency, the counter was required to count more or fewer
clocks depending on the real timer clock. To overcome this
problem, we measured the exact timer clock frequency and
adjusted the minimum entailed clocks for TCLK8 for
producing the most accurate time-gating results. Moreover,
the temperature effect from the board was also investigated

with respect to the frequency deviation (Figure S1 in the
Supporting Information). After being calibrated, the measured
frequencies of all four boards exhibit similar values to the given
input frequency (see Figure 1b). Hence, the developed
frequency counters have become reliable to measure the
QCM frequencies. To further increase the counter accuracy,
the built-in crystal could be replaced by a temperature-
compensated crystal oscillator (TCXO).68 From this point
forward, the data shown in this paper are based on already-
calibrated board 1.
Besides device accuracy, we investigated the resolution of

the developed frequency counter (board 1) using a 10 MHz
square wave to investigate the lowest possible limit of
detection (LOD). In this case, device frequency resolutions
of up to 0.5 and 0.1 Hz were achieved when gate times of 1
and 5 s were employed, respectively (see Figure 1c,d). Despite
the resulting better resolution (0.1 Hz), the gate time of 5 s

Figure 3. (a) Sensitivities of four QCM sensors coated with different polymers (i.e., PAN, PVDF/PVAc, PVP, and PVAc) exposed to various
VOCs. (b) Area under the curve (AUC) profiles of sensing responses obtained with the QCM-based e-nose system. (c) Classification of seven
different VOCs by the e-nose system using a linear discriminant analysis (LDA) model. Confusion matrix of the QCM-based e-nose performance
using (d) LDA and (e) support vector machine (SVM) algorithms. The SVM-based decision region plots for (f) PC1 versus PC2 and (g) PC2
against PC3.
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was not preferable for practical use. Therefore, from further
investigation, we used 1 s gate time with a device resolution of
0.5 Hz. A direct comparison of different gate times tested on
the system can be seen in Figure S2. Table 1 lists several
previously reported systems to be compared with the
frequency counter developed in this work. It is obvious that
our device can provide a high-performance multichannel
frequency counter with a relatively small dimension and
demonstrates better resolution among others. Moreover, with
the 42 MHz timer clock, our system is compatible with various
QCM platforms having a maximum fundamental frequency
( fmax) of up to 21 MHz. This specification opens the
possibility of the device to be used in several different
applications (i.e., gas sensors, humidity sensors, and e-nose
systems).
2.2. Mobile Electronic Nose Performance. To inves-

tigate the performance of the developed e-nose system, we
tested the integrated sensor array consisting of four QCMs
with different coating polymer materials (i.e., PAN, PVDF/
PVAc, PVP, and PVAc). To obtain a high-performance system,
different sensitivity levels toward analytes have to be obtained
from each QCM sensor. The frequency shifts of all QCM
sensors under the influence of various volatile organic
compounds (VOCs) were monitored in a sensing system
containing a sealed chamber equipped with a custom-made
controlling program to record and transfer the measured data
from the sensors to a personal computer.72,73 The concen-
trations of injected VOCs (both alcohol (i.e., methanol,
ethanol, propanol, and butanol) and BTX samples (i.e.,
benzene, toluene, and xylene)) inside the chamber were
calculated in mg/L using their corresponding densities, purity
percentages, and volumes. The ambient air was employed to
refresh the chamber and desorb the analyte from the sensing
layers.
Figure 2a−d shows the typical resonance frequency shifts of

the QCM sensors coated with PAN and PVDF/PVAc under
exposure to various analytes. It is obvious that larger frequency
shifts were yielded with increasing vapor concentrations for all
samples. The sensors were tested for alcohol and BTX-based
VOCs at concentrations of up to 20 and 40 mg/L, respectively.
Hence, 10 measurement data points could be obtained for all
vaporized analytes. To acquire quantitative assessments, each
measurement was repeated three times (n = 3) resulting in low
standard deviation values (0.2−6.7 Hz), indicating that the
produced devices possessed high sensing repeatability. More-
over, both sensors also revealed good linearity owing to their
high determination coefficient (up to R2 = 0.999). In terms of
device sensitivity toward VOCs, the PVDF/PVAc-coated
sensor exhibited the highest and lowest sensitivities of 4.1
and 0.6 Hz mg/L among other prepared QCMs, when exposed
to butanol and methanol vapors, respectively. Meanwhile, the
PAN-functionalized device reached the lowest sensitivity value
of 0.4 Hz mg/L when tested with benzene vapor, implying that
the sensors demonstrated different sensitivity levels depending
on the employed active polymer layers. The measurement
results of the other two sensors coated with PVP and PVAc
show similar linear trends (see Figure S3 in the Supporting
Information).
During full dynamic gas measurements, the sensor behavior

was continuously monitored not only during its reaction to the
injected vapors but also during its recovery when the chamber
had been completely purged with air. Hence, both sensor
response and recovery times could be identified. Figure 2e,f

depicts full dynamic frequency cycles of two QCMs (i.e., PAN
and PVDF/PVAc) under the influence of various tested
analytes with the same concentration of 1 mg/L. After the
chamber was purged, the sensors could be fully recovered,
which was indicated by the return of their resonance
frequencies to the initial value. The response and recovery
times of 6.3 and 9.3 s, respectively, were demonstrated by the
PAN-coated QCM when exposed to butanol vapors. Following
the same procedure, 210 data sets were produced in total by
four different QCM sensors (Figure S3 in the Supporting
Information). These data were gathered from their responses
to seven different VOCs, where the measurements of each
analyte were repeated 30 times. The slight shape difference of
the dynamic response curves depicted by all these four
different materials could possibly be attributed to the altered
homogeneities and surface conditions of the spin-coated
polymers, which then affected the gas molecule adsorption
and desorption processes. Moreover, it is well known that
ambient temperature and relative humidity (rH) can interfere
with the gas sensor performance (i.e., resulting in undesirable
QCM frequency shift).45,46 However, during VOC character-
izations, these two parameters were kept at relatively stable
values, in which typical changes of temperature and rH
measured within 15 min were <1 °C and <1 rH%, respectively.
Thus, it was expected that they did not significantly influence
the VOC measurements.
The sensitivities of all four sensors toward different VOCs

are displayed in Figure 3a. Among them, the highest sensitivity
of 20 Hz mg/L was exhibited by PVAc-coated QCM when
exposed to butanol vapors. From our previous studies, a high
affinity between the active polymer layer and the target analyte
was found to be responsible for such highly sensitive polymer-
based QCM sensors. The interaction between the active
polymer thin films and vaporized analyte molecules (VOCs)
could occur based on intermolecular interaction (e.g.,
hydrogen bonding, dipole−dipole interaction, and van der
Waals adhesion).74−76 For instance, PVP has been widely used
as a sensing and capping agent material, which is assumed to
be a hydrogen acceptor.74 While each ethanol molecule
includes one −OH group, the PVP molecules possess
numerous CO groups. Thus, when these ethanol and PVP
molecules interact with each other, they could act as proton
donors and receptors, respectively. A similar mechanism was
applied to other polymers (e.g., PVAc films), where each
subunit of the PVAc molecule has a carbonyl group that carries
two oxygen atoms acting as a hydrogen acceptor. Each alcohol
molecule consists of at least one hydroxyl functional group
(−OH), which can interact with a CO group in PVAc.
Thus, again, the alcohol and PVAc molecules could act as
proton donors and receptors, respectively, during their
interaction. Besides intermolecular interaction, the ability of
the analyte molecules to condense more naturally at a certain
temperature might determine the sensing response. When the
target molecules are easier to condense, they are adsorbed
more on the film surfaces, resulting in a higher sensing signal.
In other words, the VOC vapor pressures could also influence
the sensitivity of polymer-based gas sensors.77,78 Moreover, as
the integrated QCM sensors provided different degrees of
sensitivity to the tested VOCs, they could be advantageous
during their usage as a sensor array in the e-nose system.
According to their area under the curve (AUC) signals in
Figure 3b, the four QCM sensors have varied responses to
different analytes, in which the lowest and highest profiles of
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26.63 and 353.81 were obtained by the benzene and butanol
vapors, respectively. The sensitivity differences among
response signals of each QCM sensor indicate that the QCM
e-nose system has a good capability to discriminate different
analytes.
Furthermore, supervised multivariate statistical methods

(i.e., LDA and SVM) were used to verify system performance
and to classify the vaporized samples. However, prior to this,
an unsupervised learning algorithm of PCA was initially
attempted to analyze and visualize the data distributions (see
Figure S4 in the Supporting Information), in which, as a result,
two large clusters can be identified (i.e., alcohol- and
nonalcohol-based vapors). After all of the matrix data sets
had been obtained, they were classified using LDA in Figure
3c, where three discriminant functions (LD1, LD2, and LD3)
were investigated to evaluate the QCM-based e-nose perform-
ance. They explained 99.9% of the original data variability (i.e.,
54.6, 30.2, and 15.1% for LD1, LD2, and LD3, respectively).
They show that ethanol, propanol, methanol, butanol, and
xylene have a clear discrimination area, while benzene and
toluene are close to each other. Therefore, a cross-validation
procedure (i.e., 10-fold cross-validation method) was then
applied for evaluating the LDA model-based classification, in
which its results are depicted in the e-nose confusion matrix
(see Figure 3d). It obtained a mean accuracy of 0.98 and a
standard deviation of 0.03. Various tested analytes including
ethanol, propanol, methanol, butanol, and xylene have 100%
accuracy, while benzene and toluene samples exhibit three miss
prediction cases. As a comparison, the SVM algorithm was also
investigated for analyzing the QCM e-nose performance. The
optimum SVM model of QCM e-nose was attained using
hyperparameter tuning, where the C values of 0.01, 0.1, 1.0,
10.0, 100.0, and 1000.0 were set with the γ values of 0.001,
0.01, 0.1, 1.0, 10.0, 100.0, and 1000.0, respectively. The kernel
function was adjusted to linear and radial basis function (RBF).
A 10-fold cross-validation method was again applied to reduce
the overfitting issue, in which a C value of 10.0 was selected
with a linear kernel function, resulting in a confusion matrix, as
shown in Figure 3e. Differentiating with those of the LDA
model, higher mean accuracy and its standard deviation values
of the SVM model could reach up to 0.99 and 0.01,
respectively. In other words, the SVM model has demonstrated
a high discrimination rate of up to 100% except for one data
prediction mistake (i.e., between the true label of toluene and
the predicted label of benzene). This has also emphasized that
the LDA method was basically used as a baseline model to be
compared with the SVM technique, which was the proposed
classification method. Again, from Figure 3d,e, it is obvious
that the SVM method delivers better results.

However, it should be noted that SVM cannot visualize the
decision region for too many sensors. This is because the
dimensions are exaggerated, resulting in the impossibility of
visualizing a four-dimensional surface. Therefore, we used PCA
score plots to illustrate the SVM decision regions (i.e., the
decision functions used by SVM to determine the outcome of
new data input), as shown in Figure 3f,g. In principle, PCA was
employed for dimensionality reduction, in which it aimed at
finding the directions of maximum variance in the high-
dimensional collected data and projecting them onto a new
subspace with either equal or fewer dimensions than the
original one. Using orthogonal transformation, different
variables of principal components (PCs) can be defined. The
PCs represent all of the variables. PC1 has the highest
variability value, which indicates the most relevant information
related to the raw data. This value of PC1 is followed by the
lower values of the second (PC2) and third (PC3) variables,
respectively.79 All of these express maximum margin between
hyperplanes to obtain an intuitive understanding of their
respective expressive power. Again, a clear separation was
made among all samples by this SVM algorithm with a
discrimination rate of 99% (10-fold cross-validation).
To further compare the two machine learning models

employed (i.e., LDA and SVM models), Table 2 lists three
important performance parameters, i.e., true positive rate
(TPR), true negative rate (TNR), and F1-score for all VOCs.
It is obvious that ethanol, propanol, methanol, butanol, and
xylene have perfect TPR, TNR, and F1-score for both models.
Meanwhile, for benzene and toluene, these parameters reached
slightly higher values when e-nose was processed with the
SVM model instead of the LDA model. Besides, to verify a
significant level of both models, we used the 5 × 2CV t-test
statistic method, in which a significant threshold of α = 0.05
was chosen for rejecting the null hypothesis. From the data
calculation, a t-statistic value of −2.449 was obtained with a p-
value of 0.058. This has indicated that the null hypothesis
cannot be rejected because p has a slightly higher value than α.
As a result, it can be determined that both models can be
employed in our e-nose as they have similar performances to
discriminate seven different analytes. From the experimental
results, regardless of the further possible sensitivity enhance-
ment of the sensors by involving nanostructures as active
layers, the currently developed system supported by simple
machine learning algorithms could already answer the raised
questions related to the feasibility of having a low-cost mobile
e-nose but with smart analysis and highly accurate gas
classification.

Table 2. Performance Measurement Parameters (i.e., True Positive Rate (TPR), True Negative Rate (TNR), F1-Score, and
Overall Accuracy) of the LDA and SVM Models Used by E-Nose to Classify the VOC Samples

parameter method benzene butanol ethanol methanol propanol toluene xylene

TPR LDA 0.93 1.00 1.00 1.00 1.00 0.97 1.00
SVM 1.00 1.00 1.00 1.00 1.00 0.97 1.00

TNR LDA 0.99 1.00 1.00 1.00 1.00 0.99 1.00
SVM 0.99 1.00 1.00 1.00 1.00 1.00 1.00

F1-score LDA 0.95 1.00 1.00 1.00 1.00 0.95 1.00
SVM 0.98 1.00 1.00 1.00 1.00 0.98 1.00

overall accuracy LDA 0.98
SVM 0.99
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3. CONCLUSIONS

A low-cost mobile electronic nose (e-nose) has been
successfully devised by integrating a polymer thin-film-coated
QCM sensor array and a customized Arduino Due data
acquisition (DAQ) system. Four different coating materials
(i.e., polyacrylonitrile (PAN), poly(vinylidene fluoride)
(PVDF), poly(vinyl pyrrolidone) (PVP), and poly(vinyl
acetate) (PVAc)) used as QCM active layers have resulted
in different sensor sensitivities toward various volatile organic
compounds (VOCs). From its performance evaluation, the e-
nose system could provide high accuracy values of up to 98
and 99% to discriminate seven different types of VOC analytes
when linear discriminant analysis (LDA) and support vector
machine (SVM) models were employed, respectively. To
further increase the sensitivity and selectivity of the sensors,
their active layers can be modified as nanostructures like
nanofibers for the next device generation, in which other
membrane fabrication methods (e.g., electrospinning and
molecular imprinting) can be opted. Despite the required
performance optimization, the developed portable e-nose
system exhibits a great potential for circumventing the issues
faced by conventional bulky e-nose equipment (e.g., large size,
static operation, poor analyte classification, and nonflexible
sensor design); hence, this platform can be used in various
odor monitoring applications where complex gas mixtures are
involved.

4. MATERIALS AND METHODS

4.1. Mobile Electronic Nose System. For the developed
mobile e-nose system, the proposed DAQ circuitries consist of
two main parts (i.e., an oscillator and a frequency counter).
The oscillator part comprises a crystal oscillator driver
(SN74LVC1GX04),71 QCM array, and several passive
components (i.e., capacitors and resistors). The oscillator
circuit produces a square wave signal output that follows and
tracks the QCM resonance frequency shift. The frequency
counter was built using an Arduino Due development board
embedded in a SAM3X8E microcontroller. It is basically a 32-
bit timer counter with an adaptable microcontroller timer clock
of up to 42 MHz, which can result in a frequency measurement
capability of up to 21 MHz. Thus, various QCM platforms

having a fundamental resonance frequency of ≤21 MHz are
compatible with the proposed e-nose system. Additionally,
nine independent timer/counter channels are offered (i.e.,
TCLK0−TCLK8), leading to the feasibility of creating a
multichannel frequency counter system.
Four pairs of frequency oscillators and counters were built in

the proposed DAQ system, and their connections are
illustrated in Figure 4a. The output signal produced from an
oscillator was supplied to its corresponding frequency counter
consisting of two timer channels, which are employed to count
both falling and rising edges of the oscillator output signals.
The linkage between the oscillator and the timer/counter
channel was made possible by software (i.e., for counters 1, 3,
and 4) and physical connection (i.e., for counter 2). Frequency
measurements were performed by counting the total rising and
falling edges that occurred during the gate time, in which the
obtained value was then divided by a gate time and a constant
value of two. The gate time was generated in the counter
channel 8 (TCLK8) based on the timer clock of the
microcontroller (i.e., 42 MHz).
The odor delivery system was created in a dynamic flow

arrangement with two gas sampling bags having different
volumes of 10 and 5 L to generate both reference and sample
vapors, respectively (see Figure 4b). Initially, these bags were
filled with dry air from the oil-less compressor. Then, analytes
with a certain volume were exclusively injected into the 5 L
sampling bag; hence, a concentration of 5 mg/μL of the
analyte vapor could be reached. Both sampling bags were then
placed in a normal room at a room temperature of (30 ± 1) °C
for 5 min to ensure complete analyte evaporation. The sample
and reference vapors were alternately introduced into the
sensor chamber using a vacuum pump (0.28 L/min). The
vapor selection was made feasible by a three-way solenoid
valve. During the gas measurement, the QCM resonance
frequency value measured by DAQ was sent to the computer
in real time in 1 s intervals.
Figure 4c−e depicts the photographs of our developed

mobile QCM-based e-nose equipped with a DAQ system,
which is seen from the side and top views. The circuitries
designed for controlling the four oscillators were jointly placed
on a single printed circuit board (PCB), the so-called “Arduino
shield”. This compact design resulted in its convenient

Figure 4. (a) Electronic schematic of the used oscillator circuit. (b) Gas measurement setup for characterizing the developed e-nose system. (c−e)
Photographs of a mobile quartz crystal microbalance (QCM)-based electronic nose (e-nose) equipped with a data acquisition (DAQ) system.
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connection to the Arduino Due board. An HC49U QCM
holder was used to support the flexibility of QCM replacement.
A temperature and humidity sensor (Sensirion SHT31) was
also added to real-time monitor the environmental parameters.
Furthermore, a sensor chamber was custom-built using a
stereolithography 3D printer, in which two pneumatic
connectors were integrated into it as the chamber inlet and
outlet. For the last parts, 10 bolt screws and a 1 mm thick
rubber sheet were employed to assemble the PCB with the
chamber and to ensure their proper airtight connection,
respectively.
4.2. Hybrid Polymer-Functionalized QCM Sensor

Array. Four different polymers of polyacrylonitrile (PAN,
molecular weight (Mw) = 150 000 g/mol), poly(vinylidene
fluoride) (PVDF, Mw = 534 000 g/mol), poly(vinyl pyrroli-
done) (PVP, Mw = 1 300 000 g/mol), and poly(vinyl acetate)
(PVAc, Mw = 140 000 g/mol) were purchased from Sigma-
Aldrich, Germany. The solvents (i.e., N,N-dimethylformamide
(DMF) and acetone) were also obtained from Sigma-Aldrich,
Germany. The tested analytes (i.e., methanol, ethanol,
propanol, butanol, benzene, toluene, and xylene) were
purchased from Merck, Germany. Benzene, toluene, and
xylene are often abbreviated as BTX and considered hazardous
compounds.80 The materials were used as received without any
further purification process. The QCM sensors having ∼10
MHz operating frequencies and gold electrodes were acquired
from OpenQCM, Novaetech, Naples, Italy. They were
equipped with HC 49-U QCM holders. Before being used in
experiments, the QCM chips were precleaned using acetone
and sonicated for 5 min, followed by a drying process inside an
electronic dry box for 30 min.
The polymer solution was synthesized by dissolving the

polymer powder at a specific concentration (see Table 3). It

was then stirred at a temperature of 60 °C and a stirring speed
of 1000 rpm for 2 h, resulting in a homogenous solution. From
four different prepared polymers, three of them (i.e., PAN,
PVP, and PVAc) were dissolved in dimethylformamide (DMF)
solvent, while PVDF/PVAc sample was treated in a mixture of
DMF/acetone with a ratio of (1/1) v/v. The thin-film
fabrication process was performed by a two-step spin coating
method utilizing a compact spin coater VTC−100. The first
and second spin speeds are denoted as ω1 and ω2, respectively,
while their durations are denoted as t1 and t2, respectively (see
Table 3). The parameters were chosen based on the
optimization. Prior to their use in exposure assessments, the
polymer-coated QCMs were stored inside an electronic dry
box for 24 h.
4.3. Machine Learning. The signal data matrix consisting

of four different QCM sensor signals was generated by the e-
nose with a data rate of 1 Hz. In this case, 280 time series data

were produced from each sensor with delay, sampling, and
purging times of 10, 120, and 150 s, respectively. Thus,
considering all four integrated QCMs, a total number of 1120
data values were available as the initial matrix data set for
further processing. A feature extraction method of the area
under the curve (AUC) was applied to the raw data matrix in a
preprocessing procedure to improve the accuracy of a
multivariate statistical model. Hence, important information
can be extracted from the signals, while redundant data can be
reduced. For i-sensor and j-sample, AUC values can be
described as follows

∫= [ − ]
=

=
f f t tAUC (0) ( ) di j

t a

t b

i j i j, . , (1)

where f i,j(0), f i,j(t), a, and b are the baseline frequency, the
time-dependent frequency, the initial boundary set time (at the
10 s time series), and the final boundary set time (at the 110 s
time series), respectively.
After preprocessing, the final matrix data set consisted of

four sensors with 210 AUC values for all assays (i.e., 7 different
analytes with 30 data for each of them). A resampling method
of k-fold cross-validation was used to evaluate the model
performance for predicting the unseen data. With k = 10, 10%
of the data were employed for internal validation purposes, in
which the overfitting issue was minimized. During their
implementation, data were scaled and centered.
First, a supervised multivariate statistical method of linear

discriminant analysis (LDA) was applied for evaluating signal
data gathered by the QCM e-nose to classify seven different
analytes. For machine learning and pattern-classification
applications, the LDA model was normally employed as a
technique for dimensionality reduction and classification at the
preprocessing stage. In addition to the LDA model, an SVM
algorithm was also applied to QCM e-nose data processing as a
comparison, in which this machine learning technique was
suitable for handling linear and nonlinear data with complex
pattern recognition problems.10 SVM uses a quadratic
hyperplane optimization to discriminate the classes and a
kernel function to optimize its performance based on a linear,
polynomial, or radial basis function. A grid search procedure
with a 10-fold cross-validation method was applied for
hyperparameter tuning. The procedure finds the most
optimum SVM parameters (i.e., cost (C) and γ values) to
maximize performance and reduce overfitting issues. For
evaluation purpose, an accuracy metric was used that was
calculated as

= +
+ + +

accuracy
TP TN

TP TN FP FN (2)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively.
For evaluating the performance of both LDA and SVM

models, a statistical method of 5 × 2cv paired t-test, which was
previously proposed by Dietterich,81 was applied. The data set
was randomly divided into two parts (i.e., training data (50%)
and testing data (50%)) and then rotated between train and
test. This procedure was unsystematically repeated five times.
Applying t-statistic, it approximately follows a t-distribution
with 5 degrees of freedom. The p-value can be computed using
t-statistic and compared with a previously chosen significance
level (e.g., α = 0.05). If the p-value is larger than α, the null
hypothesis cannot be rejected, unless these two models have
equal performance or exhibit only a slight difference. In terms

Table 3. Parameters of Fabricated QCM Sensors with Their
Frequency Shifts after Thin Polymer Film Depositions

spin parameters
(rpm:s)

material
concentration
(w/w %) ω1:t1 ω2:t2

frequency shift
after loading

(Hz)

PAN 2 500:10 3000:30 3168
PVDF/PVAc (5/2) 4000:5 6000:15 9303
PVP 3 5000:5 6000:30 4532
PVAc 16 1500:10 6000:60 9314
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of the developed software, a block diagram shown in Figure S5
can explain the flow of the developed chemometric method
used in our e-nose. Here, it is clear that the LDA was used as
the baseline model. Meanwhile, the proposed classification
model of SVM was employed after the data were first
processed with principal component analysis (PCA) to
investigate their variability. In the end, evaluation using 10-
fold cross-validation was applied to the results from both LDA
and SVM to obtain and compare their accuracy scores.
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