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Abstract

Transcriptional regulatory networks control context-specific gene expression patterns and play 

important roles in normal and disease processes. Advances in genomics are rapidly increasing our 

ability to measure different components of the regulation machinery at the single-cell and bulk 

population level. An important challenge is to combine different types of regulatory genomic 

measurements to construct a more complete picture of gene regulatory networks across different 

disease, environmental, and developmental contexts. In this review, we focus on recent 

computational methods that integrate regulatory genomic data sets to infer context specificity and 

dynamics in regulatory networks.
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Introduction

Transcriptional regulatory networks specify the connections between regulatory proteins and 

target genes and control the context-specific expression of genes. These networks play 

important roles in diverse disease, developmental, environmental, and evolutionary contexts 

[1,2]. The structure of regulatory networks involves many components including but not 

limited to cis-regulatory elements (CREs), transcription factors, and chromatin remodelers 

[3] that interact through processes such as three-dimensional organization of the genome 

[2,4], chromatin modifications [5], and genome accessibility [6]. Advances in next-

generation sequencing tools have greatly expanded our ability to measure different aspects 

of the regulatory machinery. For instance, transcription factor (TF) binding and histone 

modifications (ChIP-seq [7]), transcription (RNA-seq [8]), chromatin accessibility (DNase-
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seq, ATAC-seq [6]), and genome-wide three-dimensional organization (chromosome 

conformation capture [9]) have been measured across individuals [10], diseases [11], 

developmental stages [12], and environments [13] in both bulk populations and single cells 

[14].

Using these diverse readouts of the cellular state and regulatory landscape (Figure 1A), there 

are two major approaches to model gene regulatory networks [15]. The first approach 

predicts regulatory proteins, for example, TFs, chromatin remodelers, and signaling proteins 

that determine a gene’s expression level (Figure 1B). The second approach identifies CREs 

affecting gene expression levels (Figure 1C), that is, TF binding sites in or near the 

promoter, or distal enhancers interacting with the promoter through chromatin looping [2]. 

In this review, we discuss advances from the last two years in these two types of 

computational approaches addressing three main challenges: inferring genome-scale 

context-specific transcriptional regulatory networks to predict regulatory proteins of 

individual or groups of genes, predicting target genes of CREs, and integrating single-cell 

multiomics data sets for gene regulatory network inference.

Integrating data to infer genome-scale context-specific transcriptional regulatory networks

A context-specific regulatory network is defined as a network that captures interactions 

between regulatory proteins and target genes in a particular context, such as a developmental 

stage, tissue, disease, or environment (Figure 1B and 2A). While there are a large number of 

mathematical formalisms to represent regulatory networks [16], we focus on statistical 

models, which include information-theoretic methods [17], dependency networks [18,19], 

Bayesian networks [20], and Gaussian graphical models [21]. Given a particular modeling 

formalism, a simple approach to infer a context-specific regulatory network is to use 

sequence-specific motifs on gene promoters to first define a comprehensive set of possible 

regulatory edges and then prune out edges with low statistical support using context-specific 

expression as evidence. Statistical support is assessed by Pearson’s correlation or by 

regressing candidate regulators to the expression of a target gene. The motif-derived edges 

can be filtered by requiring the presence of context-specific ATAC-seq or DNase-seq peak 

overlapping the motif instance [22-26]. This approach identified the regulatory network for 

Huntington disease [22] and early brain development [26] and predicted key regulators in 

neurodegenerative diseases which were experimentally validated, for example, SMAD3 [22] 

and POU3F2 [26]. Although straightforward to implement, this approach can only add edges 

between TFs and targets with known motifs and may miss regulators with unknown 

specificity, and accessible motifs are not sufficient to comprehensively capture true 

regulatory interactions.

Incorporating prior to constrain network structure and estimate regulator activity

To enable more comprehensive network inference, sequence-specific motif-derived edges 

can be incorporated as prior knowledge to encourage the network inference algorithm to 

include edges from the prior. Prior-based regulatory network inference can use either a 

structure prior approach [18,20] or parameter prior approach [24]. With the structure-based 

prior, one puts a prior probability distribution on the graph structure, such that an edge with 

motif support is more likely to be included in the regulatory network model. For example, 
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Chasman et al. [23] used DNase-seq filtered motifs as a structure prior for a network 

inference algorithm [18] and context-specific gene expression data of hindbrain and spinal 

cord development to infer a regulatory network in neuroepithelial stem cells. The parameter 

prior framework has been used within a regularized regression setting [24], which learns a 

sparse network by penalizing edge addition while optimizing prediction of a target’s 

expression level. The prior can be used to reduce the penalty for addition of an edge in the 

network [24].

Newer methods have used the prior network to additionally estimate hidden TF activity 

(TFA) to overcome the assumption that mRNA levels must correlate with the regulator’s 

protein activity on a gene’s promoter [24,27]. TFA estimation takes in an initial, noisy 

regulatory network and expression and models the expression as a product of the hidden 

TFAs and a refined network structure [27]. The TFA can be estimated independently 

followed by network inference, for example, mLASSO-StARS [24], or in a single iterative 

algorithm, for example, NetRex [27]. mLASSO-StARS [24] learns a dependency network 

by solving a set of independent LASSO regression problems, one per gene. Both mRNA and 

TFA are used as potential predictors of a target gene’s expression. NetRex [27] jointly 

estimates both the TFA and the network to explain the expression data by using 

regularization to penalize the mismatch in the number of edges of the inferred and prior 

networks. NetRex updates the prior network until the rewired network and the estimated 

TFA optimally explains the expression data. Both NetRex and mLASSO-StARS need to 

specify the hyperparameters to obtain a final network structure. mLASSO-StARS uses 

StARS to select the hyperparameters by controlling the average instability of edges. NetRex 

uses a grid search over hyperparameters and obtains the final result from the consensus of 

multiple nearly optimal settings. NetRex has additional constraints that can better capture 

coregulatory relationships in gene modules but can make network inference computationally 

expensive. These approaches were shown to improve the quality of inferred networks and 

were useful for identifying key regulators and targets in mammalian [23,24] and insect [27] 

systems.

Network inference across multiple contexts

Often data from multiple contexts are available and a key question is to define regulatory 

networks for each context and identify similarities and differences. Although one approach 

would be to infer networks for each context independently [28], examining multiple contexts 

simultaneously could improve the quality of the inferred networks [21,29], make 

comparisons easier [30,31], and help in scenarios with low sample sizes [32]. To enable 

simultaneous network inference across multiple conditions, several approaches have used 

multi-task learning (MTL) (Figure 2A) [33]. In MTL, related tasks are jointly solved while 

sharing the information across tasks. In one class of methods, a regulatory network is 

modeled as a Gaussian graphical model (GGM), which represents the genome-wide 

expression levels of genes as a multivariate Gaussian and the network structure by a 

precision matrix. One GGM approach, JRmGRN [21], models each condition’s network as 

sum of two sparse precision matrices, one for condition-specific components and the second 

for shared component across all conditions. JRmGRN additionally regularized the shared 

network to favor more hub genes and was more effective at identifying shared hubs and 
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context-specific network components than existing approaches. While JRmGRN models 

each condition with one precision matrix, another GGM-based approach, NETI2 [31], 

additionally models the intrasample heterogeneity, which is common in tumor samples 

because they represent a mix of cancerous and noncancerous cells. NETI2 infers cancer 

subtype–specific networks and a network for noncancerous cells shared across the subtypes. 

The proportion of cancerous and noncancerous cells for each sample is known; however, the 

expression of each cell type is not known and is estimated using an expectation–

maximization algorithm. On TCGA data [34] for different breast cancer subtypes, NETI2 

captured subtype-specific gene hubs that exhibited reduced connections in the noncancerous 

network.

Regulatory networks across multiple conditions have also been modeled using dependency 

networks [35] and structural equation models (SEMs) [29]. Compared with GGMs, these 

models can capture directed edges and are therefore more suitable for representing 

regulatory networks. In addition, dependency networks are computationally faster and often 

outperform GGMs [19]. One approach, FSSEM [29], uses SEMs to infer a regulatory 

network for two conditions from gene expression and genetic variation, available in 

expression quantitative trait locus data sets to better identify the effect of TFs on target 

genes. SEMs are a class of statistical models that represent observed measurements as a 

linear combination of other observed or latent variables. To enable sharing, FSSEM uses a 

penalized framework to minimize the difference in the network between the two conditions. 

Inferelator-AMuSR [35] is a dependency network-based approach that uses MTL with a 

block-sparse penalty to encourage similarity between networks while learning overall sparse 

networks. The regression weight of a regulator across conditions is considered a block, and 

the sparsity criteria select a small number of conserved blocks, while allowing some 

regulators to be condition specific. Both FSSEM and Inferelator-AMuSR inferred more 

accurate networks than when inferring networks independently, suggesting a benefit of joint 

inference across multiple conditions.

Often the number of samples for a given condition may be too few to predict the regulators 

of individual genes. To overcome the small sample size, it is better to group genes based on 

expression levels and model regulatory relationships at the group level at the expense of 

losing gene-level regulatory information [32]. PSIONIC [32] is an example of this 

framework that learns patient-specific TF regression weights in multiple cancers using an 

approach called grouping and overlapping in MTL [36]. In PSIONIC, ATAC-seq–filtered TF 

motifs from enhancers and promoters associated with a gene are used to predict gene 

expression. Instead of learning a regression vector for each patient profile independently, 

PSIONIC’s grouping and overlapping in MTL approach decomposes the matrix of 

regression vectors into lower dimensional latent regulatory programs and tumor-specific 

weights representing the contribution of each regulatory program to the expression of each 

sample. PSIONIC was significantly better at predicting expression in test samples than a 

single task model, suggesting that sharing information across tumors while learning 

regulatory programs is advantageous.

To summarize, current methods for genome-scale regulatory network inference have used 

prior knowledge to constrain the network structure and estimate hidden regulator activity 
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[24,37]. Across multiple contexts, MTL-based approaches have improved network 

inference, especially for the shared components [21,29]. The type of network inference 

algorithm depends upon the number of gene expression samples and the availability of 

sequence-specific motifs and matched ATAC-seq measurements for each context of interest.

Data integration for predicting CREs controlling expression of target genes.

Identification of CREs that regulate a gene’s context-specific expression, proximally or 

distally, is a grand challenge in gene regulation [3-5]. A number of approaches exist (refer 

the study by Xu et al. [38] for a comprehensive review); here, we review recent methods that 

integrate multiple types of regulatory genomic data to predict such interactions. These 

methods can be grouped into (Figure 1C) (a) gene-centric approaches, which predict the 

regulatory elements by learning a model for each gene [39-41], and (b) global approaches, 

which learn a single model for all gene–element pairs [42,43].

Gene-centric methods to predict cis-regulatory interactions

Gene-centric methods leverage gene expression and a small number of regulatory signals 

from multiple conditions to explain the expression level of a gene as a function of the 

regulatory activity of CREs. Current methods have used regularized regression [40,44] or 

mutual information [41] to link elements to genes (Figure 2B, [38]). These methods also 

vary in the size of the neighborhood around a gene to search for regulatory elements, the 

specific regulatory signal used to correlate or predict expression, and the number of cell lines 

examined. In particular, FOCS and Vijayabaskar et al. [40,44] used regression to select 

CREs for a gene within the 100 Kb and 500 Kb region, respectively, around the transcription 

start site (TSS). Instead, MICMIC [41] used conditional mutual information to predict which 

regulatory elements, defined by CpG methylation levels, within the 300 Kb window of a 

gene’s TSS explain the expression of the gene. MICMIC is suitable for large-scale studies 

that have matched RNA and DNA methylation measurements, for example, in cancer [45]. 

The activity-by-contact (ABC) model [39] predicted enhancer–gene connections assuming 

that an en-hancer’s quantitative effect on a gene’s expression de-pends on its strength 

(activity), weighted by the contact count of the enhancer. The activity is estimated from 

H3K27ac and DNaseI accessibility for the element and count from a Hi-C or related 

experiment. The ABC score is the relative effect of an element on a gene’s expression and 

accurately captured the measurements of CRISPRi-FlowFish experiments, which perturb en-

hancers and quantify the effects on gene expression. The ABC model is conceptually the 

simplest model and does not have any parameters; however, it might need more careful 

calibration compared with regression-based or information-theoretic approaches.

Global methods to infer cis-regulatory interactions

Global methods in contrast learn a single predictive model of interaction presence or 

strength by leveraging cell type–specific measurements such as gene expression, histone 

modifications, and TF binding. These approaches vary depending upon the input data types 

and whether they use a classification or regression framework (Figure 2B). Recent 

classification-based approaches have relied on sequence as the input features to predict 

interactions (e.g, SPEID [46]) and accessible sequences (e.g., DeepTACT [47]), while others 

have used sequence conservation and chromatin marks (e.g, EPIP [48]). A variety of 
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classification algorithms have been used including AdaBoost (EPIP [48]) and deep neural 

networks (DeepTACT [47], SPEID [46]). Methods that rely on sequence are broadly 

applicable across many contexts but might be limited in capturing cell line–specific 

information compared with methods that incorporate additional data sets such as 

accessibility and chromatin marks.

Classification approaches rely on a training set of true enhancer–promoter interactions and 

could be susceptible to the definition of the positive label set. Recent approaches have 

attempted to predict the contact count directly using regression instead of discriminating 

between interactions and noninteractions. For example, HiC-Reg [42] trains a random forest 

regression model to predict Hi-C contact counts by integrating published high-resolution Hi-

C data sets with epigenomic marks and architectural proteins. Another approach, 

3DPredictor, predicted Hi-C contact counts with gradient boosting and features derived from 

RNA-seq and CTCF ChIP-seq data [43]. While HiC-Reg predicts counts for all pairs of 

genomic loci, including pairs with nonpromoter regions, 3DPredictor focuses on enhancer–

promoter pairs. Regression-based approaches have the advantage that they do not need 

positive labels of interactions, and their outputs can be used to identify topologically 

associating domains.

To summarize, the advantage of gene-centric approaches is that they are specific to each 

gene and can model multiple enhancer elements per gene. However, most of these 

approaches learn a single model for all contexts and require sufficient samples for model 

learning. Global approaches can predict interactions in a single biological context but 

typically model only one enhancer per gene and require multiple measurements for the same 

context. Selection of a specific tool for predicting CREs of a gene should be guided by (a) 

the number of available samples with gene expression and regulatory signals, (b) availability 

of Hi-C or similar measurements, and (c) need to identify interaction pairs or examine 

higher-order organizational units.

Methods to learn regulatory networks from single-cell omics data types

Single-cell techniques are rapidly increasing our ability to measure multiple types of omic 

profiles, such as transcriptomes [49], epigenomes [50], methylomes [51], and 3D genome 

organization [52] for individual cells. Several methods have been developed [53] and 

benchmarked for inferring gene regulatory networks from scRNA-seq data [54]. More 

recently, the availability of scRNA-seq and scATAC-seq data from the same underlying 

subpopulations (but not necessarily from the same cells) offers an exceptional opportunity to 

infer cell type–specific gene regulatory networks (Figure 2C).

A key challenge with integrating scRNA-seq and scATAC-seq data is the lack of 

correspondence between cells as they come from different populations. To address this issue, 

one strategy is to cluster or project the scRNA-seq and scATAC-seq data separately and then 

integrate the clusters. Bravo González et al. [55] leveraged the spatial information of cell 

types in the Drosophila eye-antennal disc tissue to integrate scRNA-seq and scATAC-seq 

data. Briefly, cell types are defined using the scRNA-seq and scATAC-seq measurements 

independently, followed by assigning each cell a pseudotime based on their position on the 

distal–proximal (antennal cells) or anterior–posterior (eye cells) axis. Each cell was also 
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mapped onto a spatial map of virtual cells based on the cell type annotations and their 

relative position in pseudotime. Once mapped, transcriptomic and epigenomic profiles are 

available for the same virtual cell, which was used to derive links between enhancers and 

genes using random forest regression to predict expression based on accessibility at 

candidate regions in a gene-centric manner.

In contrast, SOMatic [56] integrated scATAC-seq and scRNA-seq data with self-organizing 

maps (SOMs), which are based on neural networks and used for dimensionality reduction 

and visualization of high-dimensional data on a 2D map. SOMs were first trained on 

scATAC-seq and scRNA-seq data separately; then, SOM units, each representing a cluster of 

genes or regulatory regions, were grouped into metaclusters so that SOM units nearby on the 

2D map remain close in the cluster. A linking function was used to link genes and genomic 

regions into Linked SOM metaclusters of regulatory regions around the TSS that also 

overlap with ATAC-seq peaks. Linked SOM metaclusters with enriched motifs were used to 

construct a regulatory network. Compared with Gonzalez-Blas et al., SOMatic does not 

require additional spatial information to integrate the scRNA-seq and scATAC-seq data. 

However, it is dependent on the ability to reliably link a scATAC-seq cluster with a scRNA-

seq cluster. SOMatic also does not predict enhancer–promoter interactions.

While SOMatic and González-Blas et al. both first define clusters and then link them, DC3 

[57] uses an alternative approach by jointly factoring the scRNA-seq and scATAC-seq data 

by integrating single-cell or bulk HiChIP data available for the same condition. The HiChIP 

data enable DC3 to incorporate long-range interactions between enhancers and genes. DC3 

uses a joint non-negative matrix factorization (NMF) approach where the scRNA-seq and 

scATAC-seq data sets are each represented by an NMF decomposition term but the NMF 

factors are coupled to maximize the concordance with HiChIP. Importantly, DC3 is flexible 

to incorporate single-cell or bulk RNA-seq, ATAC-seq, and HiChIP. The output of DC3 

provides the gene expression, accessibility, and long-range interaction profile for each 

subpopulation, which can be used to identify important regulators based on differential 

expression, accessibility, and regulatory networks based on the enhancer–gene interaction 

profile.

To summarize, recent integrative methods for regulatory network inference from single-cell 

data sets use dimensionality reduction or clustering to define cell populations independently 

[55,56] or jointly [57] from scRNA-seq and scATAC-seq data. Methods that independently 

define clusters use additional postprocessing to link the clusters but do not require additional 

long-range data sets (e.g., HiChIP or Hi-C). On the other hand, methods such as DC3 align 

cell type–specific gene expression patterns to accessibility patterns by incorporating long-

range interaction profiles. Regulatory networks are defined by identification of CREs 

associated with scATAC-seq clusters linked to scRNA-seq clusters.

Conclusion

In this review, we covered recent approaches to integrate regulatory genomic data sets to 

predict sequence or protein regulators of context-specific gene expression from bulk and 

single-cell data sets (Supplementary Table 1). Despite the availability of several promising 
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methods, network inference remains challenging and we envision development in several 

areas going forward. One area is to develop methods that can combine both cis and trans 
regulatory information to define context-specific regulatory networks, while accounting for 

both distal and proximal interactions of CREs. In addition to being more comprehensive, 

such integrated regulatory networks would help determine the role of noncoding variation in 

gene expression modules and pathways in complex traits [58]. Another emerging area is to 

integrate single-cell and bulk data sets to gain insights into cell type–specific regulatory 

networks [57] and to extract cell type–specific signatures from complex patient samples 

[59], where single-cell assays might be difficult or expensive. Such approaches could 

significantly advance our understanding of cell type–specific regulatory networks derived 

from disease samples. A third challenge is to develop systematic benchmarks for evaluation 

of regulatory networks in mammalian systems. This would require a concerted effort from 

experimental and computational researchers to test model-driven predictions in a high-

throughput manner. Recent technological advances such as Perturb-Seq [60] and Perturb-

ATAC [61] offer powerful tools to perturb and monitor transcriptional state and enable high-

throughput validation of network predictions. Such benchmarks would be important for the 

development and application of regulatory network-based methods for examining normal 

and disease processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

SR acknowledges the support of an NIH grant (R01GM117339), the James McDonell Foundation Grant 
(#3194-133-349500-4-AAB5159), and UW Data Science Foundation grant. BB is supported by the Genomic 
Sciences Training Program (NHGRI 5T32HG002760) and an NIH grant (R01HG010045). JS was additionally 
supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) 
funded by the Ministry of Education (2019R1A6A3A12033291).

References

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

1. van der Lee R, Correard S, Wasserman WW: Deregulated regulators: disease-causing cis variants in 
transcription factor genes. Trends Genet 2020, 36:523–539. [PubMed: 32451166] 

2. Spitz F, Furlong E: Transcription factors: from enhancer binding to developmental control. Nat Rev 
Genet 2012, 13: 613–626. [PubMed: 22868264] 

3. The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human 
genome. Nature 2012, 489:57–74. [PubMed: 22955616] 

4. van Steensel B, Furlong EEM: The role of transcription in shaping the spatial organization of the 
genome. Nat Rev Mol Cell Biol 2019, 20:327–337. [PubMed: 30886333] 

5. Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693–705. [PubMed: 
17320507] 

6. Klemm SL, Shipony Z, Greenleaf WJ: Chromatin accessibility and the regulatory epigenome. Nat 
Rev Genet 2019, 20: 207–220. [PubMed: 30675018] 

Baur et al. Page 8

Curr Opin Syst Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Furey TS: ChIP–seq and beyond: new and improved methodologies to detect and characterize 
protein–DNA interactions. Nat Rev Genet 2012, 13:840–852. [PubMed: 23090257] 

8. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 
2009, 10:57–63. [PubMed: 19015660] 

9. Kempfer R, Pombo A: Methods for mapping 3D chromosome architecture. Nat Rev Genet 2020, 
21:207–226. [PubMed: 31848476] 

10. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, Mohammadi P, Park Y, Parsana P, Segrè AV, 
et al.: Genetic effects on gene expression across human tissues. Nature 2017, 550:204–213. 
[PubMed: 29022597] 

11. Li M, Santpere G, Kawasawa YI, Evgrafov OV, Gulden FO, Pochareddy S, Sunkin SM, Li Z, Shin 
Y, Zhu Y, et al.: Integrative functional genomic analysis of human brain development and 
neuropsychiatric risks. Science 2018:362.

12. Xiang G, Keller CA, Heuston E, Giardine BM, An L, Wixom AQ, Miller A, Cockburn A, Sauria 
MEG, Weaver K, et al.: An integrative view of the regulatory and transcriptional landscapes in 
mouse hematopoiesis. Genome Res 2020, 30: 472–484. [PubMed: 32132109] 

13. Yus E, Lloréns-Rico V, Martínez S, Gallo C, Eilers H, Blötz C, Stülke J, Lluch-Senar M, Serrano 
L: Determination of the gene regulatory network of a genome-reduced bacterium highlights 
alternative regulation independent of transcription factors. Cells 2019, 9:143–158.

14. Chappell L, Russell AJC, Voet T: Single-cell (Multi)omics technologies. Annu Rev Genom Hum 
Genet 2018, 19:15–41.

15. Thompson DA, Regev A: Fungal regulatory evolution: cis and trans in the balance. FEBS Lett 
2009, 583:3959. [PubMed: 19914250] 

16. Kim HD, Shay T, O’Shea EK, Regev A: Transcriptional regulatory circuits: predicting numbers 
from alphabets. Science 2009, 325:429–432. [PubMed: 19628860] 

17. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A: 
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian 
cellular context. BMC Bioinf 2006, 7:S7.

18. Siahpirani AF, Roy S: A prior-based integrative framework for functional transcriptional regulatory 
network inference. Nucleic Acids Res 2017, 45 2221–2221. [PubMed: 27899626] 

19. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P: Inferring regulatory networks from expression 
data using tree-based methods. PloS One 2010, 5:e12776. [PubMed: 20927193] 

20. Werhli AV, Husmeier D: Reconstructing gene regulatory networks with bayesian networks by 
combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 
2007, 6, 15.

21. Deng W, Zhang K, Liu S, Zhao PX, Xu S, Wei H: JRmGRN: joint reconstruction of multiple gene 
regulatory networks with common hub genes using data from multiple tissues or conditions. 
Bioinformatics 2018, 34:3470–3478. [PubMed: 29718177] 

22. Ament SA, Pearl JR, Cantle JP, Bragg RM, Skene PJ, Coffey SR, Bergey DE, Wheeler VC, 
MacDonald ME, Baliga NS, et al.: Transcriptional regulatory networks underlying gene expression 
changes in Huntington’s disease. Mol Syst Biol 2018, 14:e7435. [PubMed: 29581148] 

23. Chasman D, Iyer N, Fotuhi Siahpirani A, Estevez Silva M, Lippmann E, McIntosh B, Probasco 
MD, Jiang P, Stewart R, Thomson JA, et al.: Inferring regulatory programs governing region 
specificity of neuroepithelial stem cells during early hindbrain and spinal cord development. Cell 
Syst 2019, 9: 167–186. [PubMed: 31302154] 

24•. Miraldi ER, Pokrovskii M, Watters A, Castro DM, De Veaux N, Hall JA, Lee J-Y, Ciofani M, 
Madar A, Carriero N, et al.: Leveraging chromatin accessibility for transcriptional regulatory 
network inference in T Helper 17 Cells. Genome Res 2019, 29:449–463. [PubMed: 30696696] 
This approach uses a dependency network learning framework to combine gene expression with 
ATAC-seq data to reconstruct genome-wide regulatory networks. In addition to using ATAC-seq 
data to define a structure prior, this approach estimates TF activity that enables an improved 
regulatory network prediction.

25. Mallm J-P, Iskar M, Ishaque N, Klett LC, Kugler SJ, Muino JM, Teif VB, Poos AM, Großmann S, 
Erdel F, et al.: Linking aberrant chromatin features in chronic lymphocytic leukemia to 
transcription factor networks. Mol Syst Biol 2019, 15:e8339. [PubMed: 31118277] 

Baur et al. Page 9

Curr Opin Syst Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Pearl JR, Colantuoni C, Bergey DE, Funk CC, Shannon P, Basu B, Casella AM, Oshone RT, Hood 
L, Price ND, et al.: Genome-scale transcriptional regulatory network models of psychiatric and 
neurodegenerative disorders. Cell Syst 2019, 8 122–135.e7. [PubMed: 30772379] 

27. Wang Y, Cho D-Y, Lee H, Fear J, Oliver B, Przytycka TM: Reprogramming of regulatory network 
using expression uncovers sex-specific gene regulation in Drosophila. Nat Commun 2018, 9:1–10. 
[PubMed: 29317637] 

28. Zhang J, Zhu W, Wang Q, Gu J, Huang LF, Sun X: Differential regulatory network-based 
quantification and prioritization of key genes underlying cancer drug resistance based on time-
course RNA-seq data. PLoS Comput Biol 2019, 15:e1007435. [PubMed: 31682596] 

29••. Zhou X, Cai X: Inference of differential gene regulatory networks based on gene expression and 
genetic perturbation data. Bioinformatics 2020, 36:197–204. [PubMed: 31263873] FSSEM learns 
directed edges by integrating gene expression and natural perturbation data (eQTL, FSSEM 
learns directed edges by integrating gene expression and natural perturbation data (eQTL, CNV, 
etc) for a pair of conditions. The method imposes sparsity of the individual GRNs and the 
sparsity of the differences between them. FFSEM was shown to outperform single condition 
SEM.

30. Bhuva DD, Cursons J, Smyth GK, Davis MJ: Differential coexpression-based detection of 
conditional relationships in transcriptional data: comparative analysis and application to breast 
cancer. Genome Biol 2019, 20:236. [PubMed: 31727119] 

31•. Tu J-J, Ou Yang L, Yan H, Zhang X-F, Qin H: Joint reconstruction of multiple gene networks by 
simultaneously capturing inter-tumor and intra-tumor heterogeneity. Bioinformatics 2020, 
36:2755–2762. [PubMed: 31971577] NETI2 is a sparse Gaussian Graphical Model approach to 
learn context-specific networks. NETI2 can model within sample heterogeneity as well as 
between sample heterogeneity by learning context-specific and shared networks. NETI2 was 
applied to breast cancer subtype data and inferred cancer subtype specific networks as well as a 
shared network that was common to all subtypes representing noncancerous cells.

32••. Osmanbeyoglu HU, Shimizu F, Rynne Vidal A, Alonso Curbelo D, Chen H-A, Wen HY, Yeung 
T-L, Jelinic P, Razavi P, Lowe SW, et al.: Chromatin-informed inference of transcriptional 
programs in gynecologic and basal breast cancers. Nat Commun 2019, 10:1–12. [PubMed: 
30602773] PSIONIC uses a multi-task learning approach to integrate TF motifs, ATAC-seq and 
tumor expression data to learn patient-specific regression weights that reflect the activities of TFs 
in multiple cancers. PSIONIC can integrate information from multiple cancer types and was 
shown to outperform single task approaches.

33. Caruana R: Multitask learning. Mach Learn 1997, 28:41–75.

34. Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. 
Nature 2012, 490:61–70. [PubMed: 23000897] 

35•. Castro DM, Veaux NR de, Miraldi ER, Bonneau R: Multi-study inference of regulatory networks 
for more accurate models of gene regulation. PLoS Comput Biol 2019, 15:e1006591. [PubMed: 
30677040] Inferelator-AMuSR is a dependency network learning approach that uses multi-task 
learning with structured sparsity to encourage similarity between networks from each context. 
Inferelator-AMuSR can incorporate additional data as context-specific priors. This approach was 
applied to learn species-specific regulatory networks in S. cerevisiae and B. subtilis and was 
shown to outperform ensemble-based or batch correction-based approaches to integrate data for 
network inference.

36. Kumar A, Daumé H: Learning task grouping and overlap in multi-task learning. In proceedings of 
the 29th international coference on international conference on machine learning Omnipress 
2012:1723–1730.

37. Wang J, Zibetti C, Shang P, Sripathi SR, Zhang P, Cano M, Hoang T, Xia S, Ji H, Merbs SL, et al.: 
ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related 
macular degeneration. Nat Commun 2018, 9:1364. [PubMed: 29636475] 

38. Xu H, Zhang S, YI X, Plewczynski D, Li MJ: Exploring 3D chromatin contacts in gene regulation: 
the evolution of approaches for the identification of functional enhancer-promoter interaction. 
Comput Struct Biotechnol J 2020, 18: 558–570. [PubMed: 32226593] 

Baur et al. Page 10

Curr Opin Syst Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, Grossman SR, Anyoha R, 
Doughty BR, Patwardhan TA, et al.: Activity-by-contact model of enhancer–promoter regulation 
from thousands of CRISPR perturbations. Nat Genet 2019, 51:1664–1669. [PubMed: 31784727] 

40. Vijayabaskar MS, Goode DK, Obier N, Lichtinger M, Emmett AML, Abidin FNZ, Shar N, Hannah 
R, Assi SA, Lie-A-Ling M, et al.: Identification of gene specific cis-regulatory elements during 
differentiation of mouse embryonic stem cells: an integrative approach using high-throughput 
datasets. PLoS Comput Biol 2019, 15:e1007337. [PubMed: 31682597] 

41. Tong Y, Sun J, Wong CF, Kang Q, Ru B, Wong CN, Chan AS, Leung SY, Zhang J: MICMIC: 
identification of DNA methylation of distal regulatory regions with causal effects on 
tumorigenesis. Genome Biol 2018, 19:73. [PubMed: 29871649] 

42. Zhang S, Chasman D, Knaack S, Roy S: In silico prediction of high-resolution Hi-C interaction 
matrices. Nat Commun 2019, 10:1–18. [PubMed: 30602773] 

43. Belokopytova PS, Nuriddinov MA, Mozheiko EA, Fishman D, Fishman V: Quantitative prediction 
of enhancer–promoter interactions. Genome Res 2020, 30:72–84. [PubMed: 31804952] 

44. Hait TA, Amar D, Shamir R, Elkon R: FOCS: a novel method for analyzing enhancer and gene 
activity patterns infers an extensive enhancer–promoter map. Genome Biol 2018, 19:56. [PubMed: 
29716618] 

45. Weinstein JN, Collisson EA, Mills GB, Shaw KM, Ozenberger BA, Ellrott K, Shmulevich I, 
Sander C, Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet 2013, 45: 
1113–1120. [PubMed: 24071849] 

46. Singh S, Yang Y, Póczos B, Ma J: Predicting enhancer-promoter interaction from genomic 
sequence with deep neural networks. Quant Biol 2019, 7:122–137.

47. Li W, Wong WH, Jiang R: DeepTACT: predicting 3D chromatin contacts via bootstrapping deep 
learning. Nucleic Acids Res 2019, 47 e60–e60. [PubMed: 30869141] 

48. Talukder A, Saadat S, Li X, Hu H: EPIP: a novel approach for condition-specific enhancer–
promoter interaction prediction. Bioinformatics 2019, 35:3877–3883. [PubMed: 31410461] 

49. Tanay A, Regev A: Single cell genomics: from phenomenology to mechanism. Nature 2017, 
541:331–338. [PubMed: 28102262] 

50. Shema E, Bernstein BE, Buenrostro JD: Single-cell and single-molecule epigenomics to uncover 
genome regulation at unprecedented resolution. Nat Genet 2019, 51:19–25. [PubMed: 30559489] 

51. Karemaker ID, Vermeulen M: Single-cell DNA methylation profiling: technologies and biological 
applications. Trends Biotechnol 2018, 36:952–965. [PubMed: 29724495] 

52. Ramani V, Deng X, Qiu R, Lee C, Disteche CM, Noble WS, Shendure J, Duan Z: Sci-Hi-C: a 
single-cell Hi-C method for mapping 3D genome organization in large number of single cells. 
Methods 2020, 170:61–68. [PubMed: 31536770] 

53. Bonnaffoux A, Herbach U, Richard A, Guillemin A, Gonin-Giraud S, Gros P-A, Gandrillon O: 
WASABI: a dynamic iterative framework for gene regulatory network inference. BMC Bioinf 
2019, 20:220

54. Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM: Benchmarking algorithms for gene 
regulatory network inference from single-cell transcriptomic data. Nat Methods 2020, 17:147–154. 
[PubMed: 31907445] 

55•. Bravo González Blas C, Quan X, Duran-Romaña R, Taskiran II, Koldere D, Davie K, Christiaens 
V, Makhzami S, Hulselmans G, Waegeneer M, et al.: Identification of genomic enhancers 
through spatial integration of single-cell transcriptomics and epigenomics. Mol Syst Biol 
2020:16.ScoMAP is an approach that first defines scATAC-seq and scRNA-seq cell clusters and 
then uses this information and pseudo time to map single cells with scATAC-seq and scRNA-seq 
measurements to virtual cells that are organized to mimic a 2D representation of the tissue. Using 
the virtual map, enhancers are linked to target genes with regression trees that predict gene 
expression based on candidate region accessibility. When applied to the Drosophilia eye-antennal 
disc, most regions regulating gene expression were in non-promoter regions. For genes that 
showed cell-type specific expression, promoter accessibility correlated poorly with gene 
expression indicating the importance of more distal enhancers.

56•. Jansen C, Ramirez RN, El-Ali NC, Gomez-Cabrero D, Tegner J, Merkenschlager M, Conesa A, 
Mortazavi A: Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked 

Baur et al. Page 11

Curr Opin Syst Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Self Organizing Maps. PLoS Comput Biol 2019, 15: e1006555. [PubMed: 31682608] SOMatic 
leverages a self-organizing maps (SOMs) to cluster scRNA-seq and scATAC-seq separately. Each 
cluster represents genes and genomic regions with similar scRNA-seq or scATAC-seq profiles. A 
linking function based on the presence of regulatory regions in gene promoters is used to link the 
scRNA-seq clusters to the scATAC-seq clusters. When applied to mouse pre-B cell differentiation 
with Ikaros over-expression (a regulator of lymphocyte differentiation), the method was able to 
recover known and potentially novel targets of Ikaros.

57••. Zeng W, Chen X, Duren Z, Wang Y, Jiang R, Wong WH: DC3 is a method for deconvolution and 
coupled clustering from bulk and single-cell genomics data. Nat Commun 2019, 10:1–11. 
[PubMed: 30602773] A non-negative matrix factorization approach to integrate scATAC-seq and 
scRNA-seq and HiChIP data to infer cell-type specific regulatory programs. HiChIP data is used 
to link scATAC-seq clusters to scRNA-seq clusters in a cell-type specific manner. The algorithm 
is versatile in that can be applied for the integration of any combinations of these three data types 
whether they originate from single cell or bulk samples.

58. Chakraborty A, Ay F: The role of 3D genome organization in disease: from compartments to single 
nucleotides. Semin Cell Dev Biol 2018, 10.1016/j.semcdb.2018.07.005.

59. Wang X, Park J, Susztak K, Zhang NR, Li M: Bulk tissue cell type deconvolution with multi-
subject single-cell expression reference. Nat Commun 2019, 10:380. [PubMed: 30670690] 

60. Dixit A, Parnas O, Li B, Chen J, Fulco C, Jerby-Arnon L, Marjanovic N, Dionne D, Burks T, 
Raychowdhury R, et al.: Perturb-seq: dissecting molecular circuits with scalable single-cell RNA 
profiling of pooled genetic screens. Cell 2016:167. [PubMed: 27368103] 

61. Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, Mumbach MR, Ji AL, Kim DS, Cho SW, 
et al.: Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene 
regulatory networks. e17 Cell 2019, 176:361–376.

Baur et al. Page 12

Curr Opin Syst Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Data types used in integrative approaches for two main types of regulatory networks:
(a) Input data for inferring regulatory networks can be categorized into context-specific and 

static data sets. Context-specific gene regulatory events are measured across different layers 

of gene regulation using various genomic technologies. DNase-seq or ATAC-seq measure 

open regions of the chromatin and can be leveraged to identify regulatory elements. 

Chromosome conformation capture (3C) techniques such as Hi-C, HiChIP, and ChIA-PET 

allow global mapping of 3D genome organization. ChIP-seq and protein binding assays are 

used for detecting transcription factor (TF) binding to DNA. Transcriptomic assays measure 

expression levels of regulators and target genes under different conditions. Static databases 

often used in integrative inference of regulatory networks are DNA-binding motif collections 

such as JASPAR and CIS-BP, predefined signaling networks, and protein–protein 

interactions (PPIs). Databases of functional gene annotations and pathways are used for 

evaluating gene regulatory networks but can also be used as another source of data for 

integration. (b) Regulatory networks that capture the relationship between regulatory 

proteins, such as transcription factors and signaling proteins, and target genes. Gene 

expression measured with RNA-seq or microarrays is the primary data type for inferring 

these networks. Integrative inference approaches integrate other data types with gene 

expression such as sequence motifs, filtered by available accessibility (DNAse-seq, ATAC-

seq) measurements, TF ChIP-seq, and gene perturbation data. (c) Cis-regulatory networks 

represent the noncoding regulatory sequences such as enhancers that regulate genes. These 
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networks can be inferred either by learning a gene-centric model that predicts gene 

expression based on the chromatin state and/or accessibility of candidate enhancers across 

multiple conditions or a global model that learns predictive rules of enhancer–promoter 

interactions based on chromatin marks, architectural proteins, RNA-seq, and chromosome 

conformation (3C) data.
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Figure 2. Classes of problems in gene regulation that integrate diverse data types and 
computational approaches to address these problems.
For each class of problems, the input data, outputs, and the algorithmic components used are 

shown. (a) Inference of genome-scale regulatory networks in a specific condition or across 

multiple conditions. These methods learn the structure of the network by predicting 

relationships between TFs and target genes and integrate gene expression with static data 

from public databases and context-specific data from ChIP-seq and ATAC-seq experiments. 

Methods use a variety of approaches to infer networks, including Gaussian graphical models 

(GGMs), dependency networks, mutual information (MI). Context-specific networks are 

learned by joint inference of networks across multiple conditions. Multi-task learning is a 

popular framework to enable information sharing across different contexts. (b) Predicting 

target genes of regulatory sequence elements. These methods use regulatory genomic data 

sets such as ChIP-seq, ATAC-seq, and 3D genome organization assays to identify targets of 

cis-regulatory elements. Regression and classification approaches have been developed to 
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either predict counts or discriminate between an interacting and noninteracting pair. (c) 
Integration of different types of single-cell omic measurements to identify cell type–specific 

gene regulatory networks. These methods leverage single-cell RNA-seq (scRNA-seq) and 

scATAC-seq and occasionally bulk data sets. Methods typically use clustering and 

dimensionality reduction, for example, via matrix factorization, to define data set–specific 

clusters followed by linking the clusters. Some methods focus on genic regions, while others 

can incorporate auxiliary data sets such as HiChIP to link to genes. GGM: Gaussian 

graphical model; SEM: structural equation model; TF: transcription factor.
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