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Abstract

Parkinson’s disease (PD) is a severe incurable neurological disorder. It is mostly character-

ized by non-motor symptoms like fatigue, dementia, anxiety, speech and communication

problems, depression, and so on. Electroencephalography (EEG) play a key role in the

detection of the true emotional state of a person. Various studies have been proposed for

the detection of emotional impairment in PD using filtering, Fourier transforms, wavelet

transforms, and non-linear methods. However, these methods require a selection of basis

and are confined in terms of accuracy. In this paper, tunable Q wavelet transform (TQWT) is

proposed for the classification of emotions in PD and normal controls (NC). EEG signals of

six emotional states namely happiness, sadness, fear, anger, surprise, and disgust are stud-

ied. Power, entropy, and statistical moments based features are elicited from the highpass

and lowpass sub-bands of TQWT. Six features selected by statistical analysis are classified

with a k-nearest neighbor, probabilistic neural network, random forest, decision tree, and

extreme learning machine. Three performance measures are obtained, maximum mean

accuracy, sensitivity, and specificity of 96.16%, 97.59%, and 88.51% for NC and 93.88%,

96.33%, and 81.67% for PD are achieved with a probabilistic neural network. The proposed

method proved to be very effective such that it classifies emotions in PD and could be used

as a potential tool for diagnosing emotional impairment in hospitals.

Introduction

Parkinson’s Disease (PD) is a severe non-curable neurological disorder. The symptoms mainly

include deficits of motor movement, fatigue, depression, anxiety, dementia, speech communi-

cation problems, pain, cognitive problems, etc. Worldwide more than 10 million people are

living with PD. The probability of incidence of PD increases with age [1]. The research study
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shows that the social and cognitive deficits of people due to PD are alarmingly increasing [2,

3]. The dysfunctioning of social cognitive appears before motor disruptions in PD [4]. With

the progression in PD, about 50% of the newly diagnosed patients show disruption in the pro-

cessing of emotional states [5–7]. Therefore, there is an urgent need for the detection of emo-

tional disturbances in patients for proper medication and to improve their social-life behavior

of the PD and also their caretakers. Several methods have been proposed to detect emotions in

PD such as facial expressions, speech, gestures, and biosignals. Facial expressions based emo-

tions detection proved to be promising but its performance can be deliberately altered by

intensional changes in facial expressions [8–10]. To overcome these limitations of emotion

recognition based on facial expressions, electroencephalogram (EEG) signals can be utilized.

EEG signals provide a non-invasive solution as electrical activities of the brain cannot be

altered deliberately. Also, EEG signals have been widely used in the analysis of drowsiness,

schizophrenia, focal, motor imagery tasks, etc [11–15].

Various research studies have been explored for the identification of emotions based on

EEG signals. The feature extracted from the filtered data has been discriminated using t-test

analysis in [16]. The multiple features extracted from EEG signals have been classified by the

decision tree classification method in [17]. The analysis of delta (< 4 Hz), theta (4-8 Hz), alpha

(8-12 Hz), beta (13-30 Hz), and gamma (> 30 Hz) rhythms have been studied widely to detect

the emotions in PD. In [18], the delta, theta, alpha, and beta power, and [19, 20], the rhythmic

study of power spectral density has been analyzed with analysis of variance (ANOVA) test. In

[21], several entropy measures were extracted from the rhythms of EEG signals. The features

selected by carrying out the statistical analysis to judge the discrimination ability of these fea-

tures have been classified with a probabilistic neural network (PNN) and K-nearest neighbors

(KNN) algorithm. The power spectral density obtained from filtered rhythms has been classi-

fied with KNN and support vector machine (SVM) [22]. In [23], higher-order spectral features

elicited from the rhythms of filtered EEG signals have been classified with KNN and SVM.

Non-linear features extracted from the rhythms of left side-affected, right side-affected, and

healthy controls have been classified with KNN and SVM [24]. Recurrent quantification analy-

sis has been used to extract the features from the rhythms of EEG signals. These features have

been classified with extreme learning machine (ELM) [25]. Filtering and higher-order statistics

have been used to extract various features. These features have been classified with a decision

tree (DT), fuzzy K-nearest neighbor (FKNN), KNN, naive Bayes (NB), PNN, and SVM [26].

The feature extraction and selection are based on filtering, cross-correlation, and the genetic

algorithm used in [27]. Later, the selected features have been classified with artificial neural

networks. The feature extraction and classification method based on partial directed coherence

and machine learning have been used in [28]. The utility of fast Fourier transform (FFT) has

been explored in [29]. The frequency-domain features elicited by FFT have been classified

with NB. Further, statistical analysis of the leading frequency, the full-width on the half-maxi-

mum of the peak in the spectrogram, the bandwidth, and the number of wave trains per sec-

ond have been studied to find the emotions in PD [30]. In [31], inter-channel similarity

features, correlation coefficients and linear predictive coefficients have been classified with

SVM. The features extracted by single value decomposition have been classified with KNN in

[32]. In [33], empirical mode decomposition has been used to extract meaningful information.

The features extracted from intrinsic mode functions have been classified with deep belief net-

works and SVM. The utility of empirical wavelet transform and empirical packet wavelet

transform has been used to extract the features from the subbands. These features are then

classified with KNN, PNN, and ELM in [34]. In [35], the power spectrum, wavelet packet, and

nonlinear dynamical analysis have been used to extract different features sets. The dimension-

ality of these features has been reduced with independent component analysis and classified

PLOS ONE Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography

PLOS ONE | https://doi.org/10.1371/journal.pone.0242014 November 19, 2020 2 / 17

Funding: This work is financially supported by

Kuwait Foundation for the Advancement of

Sciences (KFAS), Kuwait. Grant Number: PR18 -

13 MM – 08 received by Prof. Murugappan

Murugappan. The funders had no role in study

design, data collection and analysis, decision to

publish, preparation of manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0242014


with a different kernel of SVM. Freezing of Gait features has been extracted using component

analysis entropy boundary minimization, S-transform, and Bayesian neural networks in [36].

In [37], correlation, coherence, and phase synchronization index methods have been used for

the extraction of features and classified with SVM. Coherence analysis of brain activities of the

interhemispheric region has been analyzed to study the behavioral changes in PD and healthy

control in [38]. The behavioral changes and analysis of delta responses have been studied

using ANOVA in [39]. In [40], emotions have been recognized using optimized variational

mode decomposition and ELM based feature extraction and classification method. The analy-

sis of emotions has been accomplished with a deep learning method in [41, 42].

The methods used in this literature involves an analysis of EEG signals using statistical tests,

direct feature extraction from the signals, filtering techniques, rhythmic analysis, FFT, S-trans-

form, wavelet transform, empirical wavelet transform, empirical mode decomposition and sin-

gular value decomposition. Statistical tests measure the discrimination ability of two states.

Methods based on rhythms and filtering require a choice of sharp filter boundaries. S-trans-

form and FFT suffer localization issues. Empirical mode decomposition is purely experimental

and lacks mathematical modeling [15]. Wavelet-based methods require a choice of mother

wavelet selection and appropriate levels of decomposition. However, the experimental selec-

tion of these parameters results in information loss and decreases system performance. Hence,

there is an urgent requirement for independent decomposition based on the nature of EEG

signals. Tunable Q wavelet transform (TQWT) is one such technique that does not require the

selection of wavelet function. TQWT has been widely used in the study and analysis of physio-

logical and pathological applications of EEG signals [43, 44]. However, no TQWT based emo-

tion identification in Parkinson’s disease has ever been applied. Moreover, a rigorous analysis

of emotions is done with the aid of several machine learning methods.

Methodology

This section consists of a dataset, tunable Q wavelet transform, feature extraction and selec-

tion, and classification techniques. The flowchart of the proposed methodology is shown in

Fig 1.

Dataset

The dataset of twenty right-handed non-demented patients (10 males and 10 females) suffer-

ing from PD and twenty right-handed normal control (11 females and 9 males) is selected. It

was recorded in UKM medical hospital in Kuala Lumpur, Malaysia. Ethics statement from

University Kebangsaan Malaysia (UKM) medical center, Malaysia ethics committee for

human research (Ref. number: UKM1.5.3.5/244/FF-354-2012) was obtained. Also, the written

consent from all the participants in the study was obtained. The details of the dataset is avail-

able online in [18, 19, 23, 35, 37]. The mean age of the subjects was 58.7 years and the average

duration of the disease is 5.75±3.52 years. The formal education of PD patients was 10.45±4.86

years and of normal control was 11.05±3.34 years. EEG recordings of six emotional states

namely sadness, fear, disgust, happiness, surprise, and anger have been recorded. The 14 chan-

nel wireless(2.4 GHz band) Emotiv EPOC neuroheadset has been used to record the EEG data.

The sampling frequency has been set to 128 Hz. The data have been recorded by maintaining

the international 10-20 system, referenced to linked ears.

Tunable Q wavelet transform

Tunable-Q factor wavelet transforms (TQWT) is designed for analyzing oscillatory signals

using flexible and fully discrete wavelet transform (DWT) [45]. This wavelet transform is
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flexible due to its adjustable input parameters. The Q-factor (Q), rate of over-sampling r, and

levels of the decomposition J, the flexibility in wavelet function is achievable. J levels of decom-

position of an input signal x[n] results into J + 1 sub-bands. It is performed by iteratively

applying two-channel filter banks. Similar to DWT, the two-channel filter banks are applied to

the low-pass sub-band. In each stage, x[n] is decomposed into c0[n] and d1[n]. Here, c0[n] and

d1[n] is the low and high-pass sub-bands sampling frequency is scaled by a factor αfs and βfs.
The low and highpass scaling factors are denoted by α and β, and fs is the sampling frequency

of x[n]. Low-pass frequency response G0(ω) along with low-pass scaling, α is applied to gener-

ate c0[n], while d1[n] is obtained by high pass frequency response G1(ω) and high-pass scaling,

Fig 1. The proposed Emotion detection method.

https://doi.org/10.1371/journal.pone.0242014.g001
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β. The TQWT characteristic equation can be expressed as follows:
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In order, α and β have to obey the relations: 0< α< 1, 0< β,� 1, and α + β,> 1 to ensure

perfect reconstruction and avoid redundancy. Fig 2 shows the block diagrams depicting the

decomposition of input signal x[n] using TQWT up to jth level to produce cj[n] and dj[n].

Gj
0ðoÞ and Gj

1ðoÞ are the equivalent frequency response generated after j-level for low and

high pass sub-bands.

The selection of parameters in TQWT determines the performance of TQWT in getting

adequate information about the emotional state changes from EEG signals in normal control

(NC) and PD.

1. Q-factor: In TQWT, the value of Q defines the oscillatory behavior of the signals. In specific,

EEG signals are highly oscillatory and have a larger amount of Q. The Q-factor is theoreti-

cally defined as Q = (2 − β)/β and α = 1 − (β/r). As it reflects the oscillatory behavior of the

wavelet, the value of the Q-factor can be selected based on input signal behavior. If the pro-

posed Q wavelet matched with the characteristics of the input signal, then it can effectively

extract the meaningful information about the input signal. In this work, EEG signals of

three different frequency bands (alpha, beta, and gamma-band) of NC and PD have ana-

lyzed over six basic emotions (happiness, sadness, anger, fear, disgust, and surprise). There-

fore, the value of the Q factor is tuned from 1 to 6 through a heuristic approach to identify

the best suitable value of Q for getting a higher emotion recognition rate in PD and NC.

The value of α and β are calculated based on the value of Q and r.

2. Maximum number of levels (Jmax): The selection of Jmax depends on number of samples of

input signal (N), and the scaling parameters (α and β) and is defined as: Jmax = log(βN/8)/log

Fig 2. Signal decomposition using TQWT.

https://doi.org/10.1371/journal.pone.0242014.g002
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(1/α). In this study, the maximum level J is 11. Hence, a total of 12 sub-bands, including

one low pass sub-band, are considered. The total number of samples studied in this work is

768 (6s windowed EEG data).

3. Redundancy parameter (r): The redundancy factor r controls the excessive ringing to local-

ize the wavelet in time without affecting its shape. Here, it is defined as r = β/(1 − α). The

specific value r = 3 has been previously recommended while processing biomedical signals

[39]. Hence, the redundancy parameter r = 3 is selected throughout the analysis in this

work.

There are a few advantages to using the TQWT technique. Firstly, for the signal with little

or no oscillatory behavior, the wavelet transforms should have a low Q-factor. On the contrary,

a higher Q-factor is desirable for the analysis and processing of oscillatory signals. However,

apart from continuous wavelet transform, most wavelet transforms are incapable of tuning

their Q-factor. TQWT resolves this problem by allowing to regulate the Q-factor. Secondly,

TQWT has been widely used for the study of various physiological signals in [44, 46, 47].

Thirdly, the filters are computationally efficient due to the rational transfer functions and

hence give direct representation in the frequency domain.

Feature extraction

In this work, the following eleven statistical features are extracted from each sub-bands (J = 1

to 8) from the value of Q (Q = 1 to 6). Because, there was no changes in emotion classification

rate observed after J = 8 and Q = 6. Also, higher value of J gives more redundant information

in wavelet coefficients and require more computational memory. Thereby, this work mainly

focused to investigate the features extracted from TQWT for J from 1 to 8 and Q from 1 to 6.

These features are the most predominant features in EEG signal classification in literature: (i)

Mean (ii) Kurtosis (Ku) (iii) Skewness (Sk) (iv) Energy (En) (v) Power (Pw) (vi) Approximate

entropy (AE) (vii) Tsallis entropy (TE) (viii) Fuzzy entropy (FE) (ix) Sample entropy (SE), (x)

Shannon entropy (ShE), and (xi) Variance (Vr). Among the eleven features, six features are

selected based on their significance in extracting meaningful information from EEG signals

for achieving higher emotion classification rate in PD and NC. The details of these features are

available in [48, 49].

Pw ¼
PN

i¼1
x½n�2

N
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where N is the number of samples, μ is the mean, Ci is the probability of unique appearances in

the signal, K is the constant, q is the constant, and mi is the membership function.

Classification

In this work, six machine learning algorithms are used for emotional impairment detection in

PD. TQWT features are classified into six emotions using six machine learning algorithms,

namely, k nearest neighbor (KNN), probabilistic neural network (PNN), random forest (RF),

decision tree (DT), extreme learning machine (ELM), and support vector machine (SVM).

The details of these classifiers are available in [50–52]. KNN is a non-probabilistic learning

algorithm which is used to classify an unknown test data based on the majority of similar data

among the k-nearest neighbors that are closest to test/anonymous data. Decision Tree (DT) is

a supervised machine learning algorithm, and it principally works on the concept of statistical

prediction and modeling. This classifier can understand the definitive decision making knowl-

edge from the training data. Probabilistic neural network (PNN) is one of the most popular

machine learning algorithms used for classification and pattern recognition applications. Ran-

dom forests classifier is ensemble learning methods used for classification, regression, and pat-

tern recognition applications. The basic principle of this classifier is built on constructing the

decision during training time based on the characteristics of the data and gives the output

based on the characteristics of testing data, which matches training. The extreme learning

machine (ELM) is a feed-forward network with a single hidden layer compared to conven-

tional neural network architecture. ELM uses layered architecture for speeding up the compu-

tation due to this, it is computationally fast compared to other machine learning methods. The

support vector machine is a nonlinear and supervised learning method used for several appli-

cations in biomedical and image processing fields. In general, SVM is developed for the two-

class problem, and the provision of kernel functions extend the application of SVM in multi-

class problems.

Results and discussion

In this paper, the analysis of six emotional states in PD and normal controls are considered.

For effective analysis of a signal, it is required to be decomposed into multi-components.

Hence, tuned Q wavelet transform (TQWT) is implemented in this work with a value of Q var-

ies from 1 to 6, and the number of decomposition sub-bands varies from 1 to 8. Based on the

experimental results, the accuracy of emotion classification in normal controls (NC) and PD

do not improve above the value of Q = 6 and J = 8. The value of r (embedded dimension) is

considered as three in the literature works. Eleven features are extracted from each subband of

TQWT for different values of Q (1 to 6). It is noteworthy to mention that the parameter q and

K is taken to be 2. Eleven features based on power, energy, entropy, and statistical moments

are extracted from the subbands. To select the most discriminant features, box-plot and one-

way analysis of variance are used. Based on the probabilistic values of chi, the six most discrim-

inant features are selected. These features are power, energy, approximate entropy, fuzzy

entropy, Tsallis entropy, and variance, respectively.

The input features are fed into a k fold cross-validation method with a k value of 5 to split

the features into training and testing set. In this, fourfold of equal size are used for training,

and the remaining one is used for testing. This is iterated five times with a different set of train-

ing and testing features. The average performance over five folds is reported in the results sec-

tion. These cross-validated features are used to classify six basic emotions using machine

learning algorithms. In the KNN classifier, the most common and popular type of distance

measures that can be used to measure the distance between the test data and each of the
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training data are Manhattan, Euclidean, Minkowski, and Chebyshev. The efficacy of classifica-

tion in KNN is mainly dependent on the type of distance measure used. In PNN, the value of

standard deviation (sigma—σ) is varied with a step value of 0.01 in the ranges of 0.01 to 0.9.

The performance of the random forest classifier is based on the number of trees used for classi-

fication. In this work, the number of trees varies from 20—600 with an increment of 20, and

the value of the maximum number of trees at which the classifier gives the high accuracy is

reported in this work. In this work, Radial Basis Function (RBF) and Multi-Layer Perceptron

(MLP) kernels of ELM are used. In MLP, four different activation functions (sigmoid, tanh,

hardlim, and Gaussian) in the output layer are analyzed for performance comparison. The

grid search method is performed to find the optimal value of RBF width (RBFW) in the ranges

of 0.01 to 0.1 with a step value of 0.01 and the hidden neurons of 1000—2500 with a step value

of 100. Four different kernel functions such as linear, Gaussian, Radial Basis Function, and

polynomial (order 2) are used for SVM. Besides, the performance of the classifier depends on

the value of cost function (c) and kernel factor (gamma—γ) kept at 2−15. In TQWT, five differ-

ent classifiers namely Decision Tree, K Nearest Neighbor, Probabilistic Neural Network, Ran-

dom Forest, and Extreme Learning Machine are used to classify six features extracted from six

different values of Q (1—6) over eight sub-bands (J1—J8) with a constant value of r (r = 3). It

is noteworthy to mention that all the parameters are selected empirically. In this analysis, the

SVM classifier is not considered for emotion classification due to: (i) The maximum mean

classification rate of SVM classifiers with different kernels of six features is around 70%, and it

is too less compared to other classifiers. (ii) the execution time required for classification is

very high. Table 1 shows the classification accuracy of the TQWT feature, which gives the max-

imum mean emotion classification rate and individual classification rate in NC and PD for

Q1. The approximate entropy feature and subband (SB) 2 is found to be most discriminant.

Sad emotion is the most informative among other emotions and PNN provides the best classi-

fication over other classifiers. The accuracy in NC for emotional states of Sadness (S), Happi-

ness (H), Fear (F), Disgust (D), Surprise (Su), and Anger (A) is 98.06%, 97.20%, 95.63%,

95.49%, 94.72%, and 95.92% while in PD accuracy is 96.96%, 93.89%, 92.50%, 93.42%, 92.48%,

and 94.08%, respectively. The maximum average classification accuracy in NC is 96.16% and

93.88% in PD. This indicates that PD subjects have some impairment in recognizing emotions

compared to NC.

The classification accuracy of emotions for a quality factor of 2 is shown in Table 2. KNN

classifier with Minkowski kernel is best for the classification of emotions in PD. Approximate

entropy and subband 5 are most informative for PD. The individual class accuracy for S, H, F,

D, Su, and A is 94.46%, 91.37%, 93.37%, 92.24%, 92.2%, and 95.77%, with a maximum mean

accuracy of 93.23%. The individual class accuracy for S, H, F, D, Su, and A in NC is 95.02%,

95.12%, 92.03%, 93.06%, 91.22%, and 93.07%. The highest mean accuracy obtained for NC is

provided by PNN with approximate entropy in subband 1 is 93.25%. Subband 3 and subband

5 provided the least mean accuracy of 85.45% and 86.24% with DT for NC and PD.

Table 3 shows the classification accuracy of individual emotion and mean accuracy for a

quality factor of three. The approximate entropy feature and subband 5 are found to be most

informative. The least accurate separation is provided by DT for NC and PD with an average

accuracy of 88.36% and 85.9%, respectively. The highest classification accuracy provided for

NC and PD is 95.41% and 93.87% with PNN. The individual accuracy of S, H, F, D, Su, and A

is 97.03%, 96.7%, 94.53%, 95.3%, 93.91%, and 94.97% for NC while for PD the accuracy is

96.58%, 94.13%, 92.31%, 93.32%, 93.02%, and 93.84%.

The classification accuracy obtained with TQWT features using a quality factor of Q = 4 is

shown in Table 4. The average maximum accuracy obtained in NC and PD is obtained for

approximate entropy and power feature for subband 1. An accuracy of 90.23% and 88.39% for
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NC and PD is obtained using the Euclidean kernel of KNN and random forest classifier. The

classwise accuracy of S, H, F, D, Su, and A is 92.9%, 91.18%, 88.61%, 89.53%, 87.83%, and

91.3% for NC and an accuracy of 91.74%, 88.82%, 88.21%, 87.15%, 86.35%, and 88.11% is

obtained for PD. The average minimum accuracy obtained for NC and PD is 82.75% and

81.92% for subband 4 with DT and hard limit kernel of ELM.

The accuracy obtained for Q = 5 is shown in Table 5. As evident from the Table, Energy

and Tsallis entropy proved to be best for NC and PD. Subband 4 and subband 2 provided the

highest average accuracy of 89.1% and 88.38% with random forest classifier. The individual

accuracy of 91.06%, 88.85%, 88.58%, 89.43%, 86.82%, and 89.88% is obtained in NC while in

PD the accuracy is 91.94%, 88.65%, 87.93%, 87.08%, 8.51%, and 88.19% for S, H, F, D, Su, and

A, respectively. The least accuracy obtained in NC and PD is 81.93% and 80.62% with DT and

ELM classifier for energy and fuzzy entropy features.

The accuracy obtained for TQWT features using a quality factor of Q = 6 is shown in

Table 6. The subband 3 and subband 2 is best among others. The variance and Tsallis entropy

features are proved to be a promising choice proving the highest accuracy of 89.07% and

88.51% in NC and PD. The random forest classifier provides the highest separability while DT

and ELM classifiers with the hard limit kernel are the worst performers. The minimum average

accuracy is 81.85% and 81.05% for NC and PD, respectively.

As evident from Tables 1–6, PNN provides the best performance for Q = 1, 2,, and 3, for

Q = 4, RF, and Euclidean This indicates that PD subjects have some impairment in recognizing

Table 1. Results of maximum classification rate using TQWT with Q1 value (in %).

Classifier Type Network Parameters SB Feature Individual Class Accuracy ACC

S H F D Su A

DT NC Default SB-2 AE 92.43 91.11 88.65 88.85 87.38 89.15 89.59

PD Default SB-2 AE 90.73 86.60 86.93 87.69 86.20 86.96 87.52

KNNC NC NN = 6 SB-5 AE 97.34 96.42 95.02 93.96 93.89 95.07 95.28

PD NN = 6 SB-3 AE 96.51 93.06 91.86 91.84 91.18 92.78 92.87

KNNE NC NN = 6 SB-2 AE 97.83 96.88 95.38 95.23 94.27 95.29 95.86

PD NN = 11 SB-2 AE 96.41 93.32 92.26 92.64 91.77 93.37 93.29

KNNM NC NN = 5 SB-2 AE 97.50 96.79 95.35 94.88 93.85 95.03 95.57

PD NN = 10 SB-2 AE 96.39 93.14 92.08 92.01 91.13 93.26 93.00

KNNMin NC NN = 6 SB-2 AE 97.74 96.70 95.50 94.86 94.06 95.43 95.72

PD NN = 6 SB-3 AE 96.70 93.19 92.29 92.52 91.89 93.16 93.29

RF NC NE = 650 SB-2 AE 97.67 96.61 95.07 95.02 94.05 95.54 95.66

PD NE = 600 SB-2 AE 96.32 93.61 92.81 93.02 92.14 93.39 93.55

PNN NC Sigma = 0.08 SB-2 AE 98.06 97.20 95.63 95.49 94.72 95.92 96.16

PD Sigma = 0.08 SB-2 AE 96.96 93.89 92.50 93.42 92.48 94.08 93.88

ELMT NC NHN = 1100 SB-2 AE 97.47 96.72 94.95 94.60 93.96 95.36 95.51

PD NHN = 1000 SB-2 AE 96.67 93.51 92.85 93.14 92.17 93.33 93.61

ELMS NC NHN = 1050 SB-4 AE 97.15 96.79 95.38 94.93 94.76 95.30 95.71

PD NHN = 1250 SB-2 AE 96.46 93.72 92.71 93.35 91.84 93.14 93.54

ELMG NC NHN = 1350 SB-2 AE 97.14 96.56 95.31 94.62 94.58 95.33 95.59

PD NHN = 1200 SB-2 AE 96.63 93.78 93.09 93.75 91.96 93.21 93.74

ELMH NC NHN = 1400 SB-2 AE 93.80 93.56 91.58 90.76 89.08 91.74 91.75

PD NHN = 1450 SB-2 AE 93.45 88.77 89.34 90.05 88.13 89.18 89.82

NHN: No of Hidden Neurons; RBFW: RBF Width; NE: No of Estimators; NN: No of Neighbors; DT: Decision Tree; ELMS: ELM Sigmoid; ELMG: ELM Gaussian;

ELMH: ELM Hardlim; ELMT: ELM Tanh; PNN: Probabilistic Neural Network; RF: Random Forest; KNNMin: KNN Minkowski; KNNM: KNN Manhattan; KNNE:

KNN Euclidean; KNNC: KNN Chebyshev.

https://doi.org/10.1371/journal.pone.0242014.t001
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Table 2. Results of maximum classification rate using TQWT with Q2 value (in %).

Classifier Type Network Parameters SB Feature Individual Class Accuracy ACC

S H F D Su A

DT NC Default SB-3 AE 86.84 86.86 84.41 85.64 82.92 86.04 85.45

PD Default SB-5 AE 86.63 85.26 85.75 83.11 85.31 91.39 86.24

KNNC NC NN = 5 SB-4 AE 92.92 93.44 90.35 92.64 90.92 91.41 91.94

PD NN = 6 SB-5 AE 93.77 90.75 92.38 91.63 91.84 95.34 92.61

KNNE NC NN = 5 SB-1 AE 94.97 94.60 91.67 92.92 90.61 92.78 92.92

PD NN = 9 SB-5 AE 94.46 91.42 93.16 92.24 92.19 95.77 93.21

KNNM NC NN = 10 SB-1 AE 94.98 94.72 91.20 92.36 90.57 92.76 92.76

PD NN = 8 SB-5 AE 94.10 91.32 92.86 92.20 92.41 95.71 93.10

KNNMin NC NN = 6 SB-1 AE 95.24 94.51 91.48 92.80 90.40 93.00 92.90

PD NN = 5 SB-5 AE 94.46 91.37 93.37 92.24 92.20 95.77 93.23

RF NC NE = 550 SB-5 AE 94.10 94.24 91.74 92.08 91.60 92.57 92.71

PD NE = 450 SB-5 AE 94.95 91.88 90.89 91.39 90.02 91.55 91.77

PNN NC Sigma = 0.1 SB-1 AE 95.02 95.12 92.03 93.06 91.22 93.07 93.25

PD Sigma = 0.06 SB-5 AE 94.58 92.14 94.03 92.86 92.99 96.11 90.79

ELMT NC NHN = 1200 SB-1 AE 92.08 92.92 90.82 92.08 89.31 91.86 91.51

PD NHN = 1200 SB-5 AE 91.48 90.03 90.73 89.83 91.46 94.38 91.32

ELMS NC NHN = 1050 SB-1 AE 92.48 92.66 90.66 91.94 89.57 91.86 91.53

PD NHN = 950 SB-5 AE 91.82 90.80 91.35 90.33 91.86 94.72 91.81

ELMG NC NHN = 1200 SB-1 AE 92.03 92.64 90.50 91.46 89.76 91.94 91.39

PD NHN = 950 SB-5 AE 91.86 90.40 91.20 89.72 90.50 94.41 91.35

ELMH NC NHN = 1400 SB-1 AE 87.76 87.88 86.32 87.45 85.03 87.36 86.97

PD NHN = 1450 SB-5 AE 87.22 86.25 87.66 85.02 86.41 91.94 87.41

https://doi.org/10.1371/journal.pone.0242014.t002

Table 3. Results of maximum classification rate using TQWT with Q3 value (in %).

Classifier Type Network Parameters SB Feature Individual Class Accuracy ACC

S H F D Su A

DT NC Default SB-5 AE 91.04 89.79 87.47 88.82 85.94 87.12 88.36

PD Default SB-5 AE 89.46 85.00 85.56 85.49 84.43 85.49 85.90

KNNC NC NN = 10 SB-5 AE 95.90 95.76 93.19 94.41 92.71 93.51 94.25

PD NN = 10 SB-5 AE 95.16 93.06 91.51 91.82 90.89 95.15 92.43

KNNE NC NN = 10 SB-5 AE 96.27 96.35 93.78 94.44 93.73 94.48 94.84

PD NN = 10 SB-5 AE 96.28 93.78 92.03 92.50 91.67 93.18 93.24

KNNM NC NN = 10 SB-5 AE 96.34 95.97 93.59 94.91 93.49 94.38 94.78

PD NN = 10 SB-5 AE 95.94 93.35 91.34 92.41 91.68 93.23 92.99

KNNMin NC NN = 10 SB-5 AE 96.22 96.25 93.99 94.65 93.32 93.84 94.71

PD NN = 10 SB-5 AE 95.56 93.00 92.00 92.57 91.22 92.64 92.83

RF NC NE = 500 SB-5 AE 96.86 95.97 94.20 94.62 93.28 94.62 94.92

PD NE = 650 SB-5 AE 96.01 93.54 92.41 92.80 92.29 93.40 93.41

PNN NC Sigma = 0.06 SB-5 AE 97.03 96.70 94.53 95.30 93.91 94.97 95.41

PD Sigma = 0.08 SB-5 AE 96.58 94.13 92.31 93.32 93.02 93.84 93.87

ELMT NC NHN = 900 SB-5 AE 94.46 94.95 93.02 93.73 92.07 93.65 93.65

PD NHN = 1150 SB-5 AE 95.49 91.88 91.20 91.81 90.94 91.82 92.19

ELMS NC NHN = 1200 SB-5 AE 95.14 94.76 93.23 93.68 92.55 94.22 93.93

PD NHN = 1000 SB-5 AE 95.38 92.24 91.56 92.22 91.11 92.90 92.57

ELMG NC NHN = 1000 SB-5 AE 93.65 94.41 92.60 93.75 92.14 93.11 93.24

PD NHN = 950 SB-5 AE 95.31 91.56 91.44 91.60 90.68 92.33 92.15

ELMH NC NHN = 1450 SB-5 AE 89.86 91.27 89.39 90.57 87.83 89.24 89.69

PD NHN = 1400 SB-5 AE 89.10 86.16 86.58 86.98 85.85 87.31 87.00

https://doi.org/10.1371/journal.pone.0242014.t003
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Table 4. Results of maximum classification rate using TQWT with Q4 value (in %).

Classifier Type Network Parameters SB Feature Individual Class Accuracy ACC

S H F D Su A

DT NC Default SB-4 AE 84.39 83.70 81.93 83.32 79.98 83.18 82.75

PD Default SB-1 AE 84.98 83.13 81.25 80.97 80.16 81.70 82.03

KNNC NC NN = 7 SB-4 AE 89.18 89.86 87.48 88.98 86.77 89.32 88.60

PD NN = 9 SB-4 AE 91.41 87.27 86.09 86.11 85.68 87.40 87.33

KNNE NC NN = 8 SB-1 AE 92.90 91.18 88.61 89.53 87.83 91.30 90.23

PD NN = 16 SB-4 AE 91.60 88.18 86.28 86.86 85.83 88.44 87.86

KNNM NC NN = 6 SB-1 AE 92.85 91.08 89.06 89.43 87.26 90.95 90.10

PD NN = 9 SB-4 AE 91.15 88.28 85.52 87.10 85.83 88.13 87.67

KNNMin NC NN = 5 SB-1 AE 92.55 90.78 88.25 88.84 87.15 90.69 89.71

PD NN = 8 SB-4 AE 91.68 87.88 86.49 86.70 86.25 88.56 87.93

RF NC NE = 600 SB-1 AE 92.01 90.17 89.17 89.64 87.73 90.21 89.82

PD NE = 400 SB-1 Pw 91.74 88.82 88.21 87.15 86.35 88.11 88.39

PNN NC Sigma = 0.1 SB-1 AE 93.02 90.92 88.72 89.38 87.59 91.39 90.17

PD Sigma = 0.08 SB-4 AE 92.41 88.77 86.65 86.98 87.41 89.55 87.65

ELMT NC NHN = 1050 SB-1 AE 90.99 89.29 87.24 87.83 86.48 89.84 88.61

PD NHN = 900 SB-4 AE 88.91 86.20 84.11 85.64 84.17 86.60 85.94

ELMS NC NHN = 1200 SB-1 AE 91.16 88.92 87.41 88.26 86.98 90.07 88.80

PD NHN = 1000 SB-4 AE 89.93 86.41 85.19 85.89 85.17 87.07 86.61

ELMG NC NHN = 950 SB-1 AE 91.46 89.70 87.53 87.80 87.10 89.70 88.88

PD NHN = 1000 SB-4 AE 88.66 86.20 84.62 85.64 84.22 86.22 85.93

ELMH NC NHN = 1350 SB-1 AE 87.33 84.60 83.28 84.03 82.59 84.81 84.44

PD NHN = 1450 SB-4 AE 83.59 82.86 80.66 81.04 81.39 82.01 81.92

https://doi.org/10.1371/journal.pone.0242014.t004

Table 5. Results of maximum classification rate using TQWT with Q5 value (in %).

Classifier Type Network Parameters SB Feature Individual Class Accuracy ACC

S H F D Su A

DT NC Default SB-4 En 84.95 81.30 80.78 81.94 79.36 83.26 81.93

PD Default SB-4 En 85.33 82.22 81.28 80.28 79.93 81.79 81.81

KNNC NC NN = 15 SB-5 AE 86.84 87.48 85.14 85.43 83.32 87.31 85.92

PD NN = 7 SB-5 FE 87.83 83.89 82.20 82.20 83.13 82.80 83.67

KNNE NC NN = 12 SB-5 AE 88.61 88.32 86.30 87.24 85.35 88.52 87.39

PD NN = 6 SB-5 FE 88.89 84.88 83.06 84.06 85.33 84.97 85.20

KNNM NC NN = 13 SB-1 AE 89.46 88.61 86.68 86.49 84.44 87.40 87.18

PD NN = 5 SB-1 FE 89.43 85.68 83.44 84.08 83.8 84.62 85.17

KNNMin NC NN = 12 SB-1 AE 89.95 88.44 86.39 86.20 84.83 87.19 87.16

PD NN = 9 SB-1 FE 89.22 85.02 83.18 83.73 84.24 84.72 85.02

RF NC NE = 700 SB-4 En 91.06 88.85 88.58 89.43 86.82 89.88 89.10

PD NE = 500 SB-2 TE 91.94 88.65 87.93 87.08 86.51 88.19 88.38

PNN NC Sigma = 0.1 SB-5 AE 88.65 88.14 86.53 87.48 84.29 88.52 87.26

PD Sigma = 0.1 SB-1 FE 89.13 85.36 82.99 84.34 85.16 85.17 85.36

ELMT NC NHN = 1150 SB-1 AE 88.70 86.39 85.09 85.66 83.77 86.61 86.04

PD NHN = 1250 SB-1 FE 88.18 84.93 82.73 82.73 83.56 83.47 84.27

ELMS NC NHN = 950 SB-1 AE 88.82 86.34 84.86 85.42 84.17 87.14 86.12

PD NHN = 1150 SB-1 FE 88.65 85.33 82.53 83.11 82.95 83.09 84.28

ELMG NC NHN = 1300 SB-1 AE 88.87 86.68 84.64 85.21 84.36 86.39 86.02

PD NHN = 1200 SB-4 FE 88.40 85.14 82.78 83.61 83.75 82.57 84.38

ELMH NC NHN = 1400 SB-1 AE 84.65 82.99 82.33 82.01 80.42 83.26 82.61

PD NHN = 1200 SB-1 FE 84.44 81.11 79.64 80.36 78.96 79.20 80.62

https://doi.org/10.1371/journal.pone.0242014.t005
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emotions compared to NC. kernel of KNN classifier is best while for Q = 5 and 6, RF is the

best. To get more information about the proposed method, sensitivity, and specificity is evalu-

ated for NC and PD. Table 7 summarizes the maximum classification accuracy chart and eval-

uated sensitivity and specificity for the proposed method. Specificity provided by NC for Q = 1

to 6 is 97.70%, 95.95%, 97.24%, 94.14%, 93.46%, and 93.44% while for PD it is 96.33%, 80.57%,

96.32%, 93.04%, 96.03%, and 93.11%, respectively. Sensitivity provided by NC and PD for

Q = 1 is highest having a value of 88.51% and 81.67% while the lowest sensitivity is obtained

for Q = 6 in NC with 67.22% and in PD it is 65.16% for Q = 5.

Further, the effectiveness of the proposed methodology is proved by comparing it with the

existing state-of-the-art using the same dataset. The comparison is based on method, type of

features, a number of features, and the classifiers used. Table 8 shows the accuracy comparison

of the proposed method with the existing state-of-the-art. In [30], bispectrum analysis of

Table 6. Results of maximum classification rate using TQWT with Q6 value (in %).

Classifier Type Network Parameters SB Feature Individual Class Accuracy ACC

S H F D Su A

DT NC Default SB-3 Pw 84.69 82.03 80.97 82.19 79.25 81.98 81.85

PD Default SB-3 Pw 85.99 82.73 80.17 80.66 80.10 82.74 82.07

KNNC NC NN = 10 SB-1 AE 89.74 88.35 85.87 86.55 84.39 87.74 87.11

PD NN = 10 SB-1 AE 87.45 83.28 82.88 82.29 82.24 84.25 83.73

KNNE NC NN = 11 SB-1 AE 91.61 90.40 87.43 87.50 86.25 89.20 88.73

PD NN = 10 SB-1 AE 88.58 85.36 85.17 84.20 83.72 86.16 85.53

KNNM NC NN = 11 SB-1 AE 91.44 90.54 87.73 87.45 86.13 89.18 88.74

PD NN = 10 SB-4 FE 90.14 86.06 83.40 84.24 84.03 84.95 85.47

KNNMin NC NN = 10 SB-1 AE 91.39 90.10 87.92 87.66 85.80 89.08 88.66

PD NN = 14 SB-1 AE 88.52 85.23 84.67 83.21 83.63 85.02 85.05

RF NC NE = 600 SB-3 Vr 91.34 88.84 88.44 89.17 86.88 89.79 89.07

PD NE = 700 SB-2 TE 92.03 88.87 88.04 87.01 86.53 88.59 88.51

PNN NC Sigma = 0.1 SB-1 AE 91.93 90.28 87.31 88.51 86.44 89.22 88.94

PD Sigma = 0.1 SB-4 FE 89.18 84.81 82.81 84.77 85.64 85.42 85.44

ELMT NC NHN = 1200 SB-1 AE 89.90 88.54 86.75 87.08 85.56 88.66 87.74

PD NHN = 1050 SB-1 AE 86.48 84.24 83.73 83.30 83.75 84.03 84.25

ELMS NC NHN = 900 SB-1 AE 90.40 88.33 85.97 85.90 85.87 88.84 87.55

PD NHN = 1450 SB-5 FE 88.39 85.09 82.17 83.19 83.65 82.93 84.24

ELMG NC NHN = 1050 SB-1 AE 90.14 88.19 86.55 86.74 85.09 87.81 87.42

PD NHN = 1350 SB-1 FE 88.26 85.05 83.23 82.74 83.23 83.21 84.29

ELMH NC NHN = 1350 SB-1 AE 86.09 84.13 82.76 83.52 81.61 83.19 83.55

PD NHN = 1300 SB-1 AE 83.04 81.08 80.43 80.43 80.87 80.43 81.05

https://doi.org/10.1371/journal.pone.0242014.t006

Table 7. Performance Measures (in %) using TQWT.

Q and J value Feature Classifier ACC ± STD Specificity Sensitivity

NC PD NC PD NC PD

Q1 J2 (NC & PD) AE PNN 96.16 ± 0.79 93.88 ± 1.58 97.70 96.33 88.51 81.67

Q2 J1 (NC)

Q2 J5 (PD)

AE PNN 93.25 ± 1.82 93.78 ± 1.16 95.95 80.57 79.76 80.69

Q3 J5 (NC & PD) AE PNN 95.40 ± 0.44 93.86 ± 1.17 97.24 96.32 86.22 81.60

Q4 J1 (NC & PD) AE, Pw KNNE, RF 90.22 ± 1.55 88.39 ± 0.99 94.14 93.04 70.68 65.19

Q5 J4 (NC)

Q5 J2 (PD)

En, TE RF 89.10 ± 0.69 88.38 ± 1.87 93.46 96.03 67.31 65.16

Q6 J3 (NC)

Q6 J2 (PD)

Vr, TE RF 89.07 ± 0.69 88.51 ± 1.93 93.44 93.11 67.22 65.54

https://doi.org/10.1371/journal.pone.0242014.t007
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higher-order statistics (HoS) has been explored for the extraction of features. These features

have been classified as SVM and KNN classifiers. The accuracy obtained with SVM is 93.26%

and 83.71% for NC and PD while with KNN, the accuracy obtained for NC and PD is 91.51%

and 81.31%. Another method used brain functional connectivity (BFC) method that studied

correlation, coherence, and phase synchronization index [37]. The features obtained with BFC

using the phase synchronization index achieved the best separation of emotions for NC and

PD. The total features managed to provide an accuracy of 66.8% for NC and 52.97% for PD

while with a reduced feature set accuracy of 71.79% and 51.66% has been achieved for NC and

PD when classified with SVM. Hybrid feature extraction method proposed in [35] for the sepa-

ration of emotions in NC and PD. Bispectrum, power spectrum, wavelet packet, and non-lin-

ear dynamic methods have been used for the extraction of features. Bispectrum features

provided better separation of emotions in NC with an accuracy of 74.31% and an accuracy of

72.96% has been obtained in PD by using an SVM classifier. Recently, recurrent quantification

analysis has been used for the extraction of features in [5]. Three higher-order statistical fea-

tures selected using statistical analysis have been classified with ELM. This method managed

to provide 89.17% and 84.5% accurate separation of emotions in NC and PD. In the proposed

work, entropy, power, energy, and variance features are extracted from the subbands of

TQWT. These features are then classified with five benchmark classification techniques. The

best accuracy is obtained with approximate entropy feature when classified with PNN. An

accuracy of 96.16% and 93.88% is obtained for NC and PD. As evident from Table 8, the pro-

posed work proved to be well ahead of all the previously used state-of-the-art in terms of classi-

fication of emotions.

Conclusion

People suffering from Parkinson’s disease deficits the capability of emotions. This makes it dif-

ficult to identify the emotions in Parkinson’s disease in comparison to normal controls. The

Table 8. Comparison of the proposed methodology.

Method Feature Type Classifier Type ACC (in %)

Bipectrum [30] HoS SVM NC 93.26

PD 83.71

KNN NC 91.51

PD 81.31

BFC [28] Bispectrum SVM NC 66.8

PD 52.97

NC 71.79

PD 51.66

Hybrid [34] Bispectrum SVM NC 74.31

PD 72.96

Power Spectrum SVM NC 68.19

PD 65.62

Wavelet Packet SVM NC 63.96

PD 55.97

Non-linear SVM NC 73.17

PD 67.61

RQA [5] HoS ELM NC 89.17

PD 84.5

TQWT Pw, Entropy, En and Vr PNN NC 96.16

PD 93.88

https://doi.org/10.1371/journal.pone.0242014.t008
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tunable Q wavelet transform provides a step ahead for the detection of emotion in patients

with Parkinson’s disease. It extracts more informative modes that enhance system perfor-

mance drastically. The classification ability of features with lower quality factors and lower

sub-bands proved to be effective. The segregation ability of the approximate entropy feature is

higher over other features. Probabilistic neural network proved to be effective for the lower Q

value while for higher quality factor random forest classifier outperforms other. It can be con-

cluded that the combination of the smaller quality factor, approximate entropy feature, and

probabilistic neural network is proved to be a promising choice for the successful and accurate

identification of emotions with Parkinson’s disease. However, this method has some limita-

tions like a limited number of samples, focussed only on machine learning algorithms, evalua-

tion with fewer performance parameters. In the future, automating the parameters of TQWT,

the use of deep learning methods, and evaluation of the method with more performance

parameters can be explored for improving the efficiency of the system.
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