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Abstract

Cognitive flexibility enables appropriate responses to a changing environment, and is associated 

with positive life outcomes. Adolescence, with its increased focus on transitioning to independent 

living, presents particular challenges for youth with autism spectrum disorder (ASD) who often 

struggle to behave in a flexible way when faced with challenges. This review focuses on brain 

mechanisms underlying the development of flexible cognition during adolescence, and how these 

neural systems are affected in ASD. Neuroimaging studies of task switching and set-shifting 

provide evidence for atypical lateral frontoparietal and midcingulo-insular network activation 

during cognitive flexibility task performance in individuals with ASD. Recent work also examines 

how intrinsic brain network dynamics support flexible cognition. These dynamic functional 

connectivity studies provide evidence for alterations in the number of transitions between brain 

states, as well as hyper-variability of functional connections in adolescents with ASD. Future 

directions for the field include addressing issues related to measurement of cognitive flexibility 

using a combination of metrics with ecological and construct validity. Heterogeneity of executive 

function ability in ASD must also be parsed in order to determine which individuals will benefit 

most from targeted training to improve flexibility. The influence of pubertal hormones on brain 

network development and cognitive maturation in adolescents with ASD is another area requiring 

further exploration. Finally, the intriguing possibility that bilingualism might be associated with 

preserved cognitive flexibility in ASD should be further examined. Addressing these open 

questions will be critical for future translational neuroscience investigations of cognitive and 

behavioral flexibility in adolescents with ASD.
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1. Cognitive flexibility: Assessment and neural mechanisms

The ability to flexibly adapt to novel circumstances is a critical feature of human cognition 

(1). Cognitive flexibility is the readiness with which one can selectively switch between 

mental processes to appropriately respond to environmental stimuli (2), and falls under the 

umbrella of executive function (EF), which refers to the set of abilities required to guide 

goal-directed behavior (3). Different aspects of EF such as updating, shifting, and inhibition 

are thought to be correlated, yet separable (4). EF ability and cognitive flexibility can be 

assessed using informant-report questionnaires, which typically have greater ecological 

validity, or laboratory-based measures, which can provide greater construct validity(5).

One such measure, the Behavior Rating Inventory of Executive Function (BRIEF), is an 

informant-report measure developed for parents and teachers to assess EF in 5–18 year-old 

children (6). Self-report and informant-report versions of the BRIEF (BRIEF-A) are also 

available for adults (7). Different subscales of the BRIEF are thought to index different EF 

components. The ‘shift’ and ‘emotional control’ subscales of the BRIEF load onto a factor 

that has been labeled ‘flexibility’ in young children (8). Similarly, the ‘shift’ scale of the 

BRIEF-A assesses the ability to move with ease from one situation to another as 

circumstances demand. Items on the ‘shift’ scale assess the ability to make transitions, 

tolerate change, problem-solve flexibly, switch attention, and change focus from one topic to 

another, thus providing an ecologically valid index of cognitive flexibility (9).

Several neuropsychological measures and test batteries have been developed to measure EF 

and cognitive flexibility. The Wisconsin Card Sort Task (WCST) measures the ability to 

infer the categories that should guide behavior, create an attentional set based on abstract 

categories, and switch attention and flexibly adjust behavior as task demands change (3). 

The Adolescent Brain and Cognitive Development (ABCD) consortium includes the 

Dimensional Change Card Sort (DCCS) task from the NIH Toolbox Cognition Battery to 

index cognitive flexibility (10). The DCCS asks participants to sort an object by either color 

or shape to match one of two other objects. After blocks of trials sorting solely on one 

dimension then another, participants alternate pseudo-randomly between sorting based on 

shape versus color (11). The Delis-Kaplan Executive Function System (D-KEFS) is a 

standardized set of tests for 8–89 year olds (12), and includes several subtests that load onto 

a factor labelled ‘conceptual flexibility’ (13). The NEPSY-II, specifically designed for use in 

3–16 year olds, also assesses flexibility as part of its EF and attention battery (14).

It is important to note that informant and self-report measures of real-world EF and 

laboratory performance-based neuropsychological measures do not always converge. The 

BRIEF correlates with other questionnaire measures, but not with laboratory-based measures 

of EF, suggesting that subjective and objective measures may not assess the same underlying 

constructs (15). More generally, self-report and behavioral measures of the same construct 
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are only weakly correlated, possibly due to the fact that behavioral measures tap responses 

during highly structured situations and typically index maximal performance, whereas self-

report assesses how individuals behave across unstructured real-life situations (5). It has 

been suggested that measures derived from experimental cognitive psychology may provide 

greater insights into impaired cognition in clinical conditions than neuropsychological 

measures (16).

The most commonly used cognitive neuroscience paradigms for studying cognitive 

flexibility are those that require task switching or set-shifting (17–20). Decades of functional 

neuroimaging work has delineated brain networks underlying EFs that contribute to 

cognitive flexibility (21,22), namely the executive control/lateral frontoparietal (L-FPN) and 

salience/midcingulo-insular networks (M-CIN) (23–25). Cortical regions within these 

networks most strongly implicated in cognitive flexibility are the inferior frontal junction 

(IFJ), involved in the updating of task rule representations (18,26), the ventrolateral 

prefrontal cortex (vlPFC) involved in resolving proactive interference, response set selection, 

and context monitoring (27,28), and the dorsal anterior insula (dAI), which detects 

behaviorally-relevant stimuli and coordinates dynamic switches between brain networks 

(29). These regions work in the context of broader EF networks with nodes in the 

dorsolateral prefrontal cortex (dlPFC), dorsal anterior cingulate cortex (dACC), and superior 

parietal lobule (SPL) which contribute to working memory (30), motor control (31,32), and 

attention (33), respectively (see (25) for review) (Figure 1). Other mechanistic models of 

flexibility further incorporate subcortical structures like the basal ganglia, implicated in 

updating reward-related context representations in the prefrontal cortices. According to these 

models, inflexibility results from dysregulation of dopamine circuits leading to rigid 

behavior that is not informed by learning (34,35).

Cognitive flexibility is important for promoting optimal outcomes during development, 

including academic achievement and employment success (36). Flexibility supports the 

transition to adulthood, which is associated with increased demands including navigation of 

new social relationships and independent living (37–39). As such, tracking the neural 

substrates of cognitive flexibility in typical adolescent development provides critical 

foundational knowledge for understanding atypical trajectories.

2. Brain network maturation underlying the development of cognitive 

flexibility

Cognitive flexibility emerges in early life, showing sharp increases between 7–9 years of 

age, then follows a protracted development throughout young adulthood, becoming largely 

mature by age 20 (40,41). However, this skill continues to improve throughout adolescence 

and adulthood, peaking between 21–30 years of age before declining in later life (40,42,43). 

Tasks typically used to study the neural systems supporting cognitive flexibility are 

summarized in Figure 2 (44–46). Several considerations must be taken into account when 

testing developmental populations, such as ensuring that working memory demands are not 

excessively high (25,47). Modifications to cognitive flexibility paradigms that render them 

Uddin Page 3

Biol Psychiatry. Author manuscript; available in PMC 2022 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



age-appropriate often result in reduced complexity compared with those developed for adults 

(46).

Reduced frontal lobe contributions are thought to underlie immature control processes in 

children, who activate posterior but not prefrontal regions during EF tasks (48). On a range 

of EFs including attentional control, goal setting, and cognitive flexibility, little 

differentiation was observed between adolescents (age 7–16) with frontal lesions and those 

with extra-frontal lesions, suggesting that adolescents utilize more distributed brain 

networks for executive skills than adults (49). Studies of the whole-brain functional 

connectome demonstrate a trend towards ‘segregation’ (decrease in correlation strength 

between anatomically close regions) and ‘integration’ (increase in correlation strength 

between anatomically distant regions) across development (50,51). Diffusion imaging 

studies examining structural connectivity in 8–22 year-olds support the network segregation-

with-age story, and further link this neurodevelopmental process with enhanced EF with age 

(52).

During a probabilistic reversal learning task requiring cognitive flexibility, the right anterior 

insular cortex (rAI) shows increased task-related responses to negative reward prediction 

errors in adolescents compared with adults (53). Effective connectivity work demonstrates 

greater causal outflow from the rAI to the L-FPN in adults compared with children (54). 

Findings from the task-based fMRI literature demonstrate that brain networks involved in EF 

are in place in children aged 8–14, with the dACC and rAI showing greater activation across 

more demanding task periods (55). Recent studies examining executive control networks 

demonstrate changes in network expression and variability with development, interpreted as 

increased flexibility of frontoparietal brain regions with age (56,57).

While the development of cognitive flexibility is a topic of considerable interest, links 

between brain network maturation and flexible behaviors are not yet firmly established. A 

recent study of over 2000 9–10 year olds from the ABCD dataset found that while individual 

differences in general cognitive ability could be predicted from functional connectivity 

patterns, whole brain connectomes could not reliably predict individual differences in 

flexibility (58). The relative immaturity of the basic science in this area is important to 

consider as translational research questions are addressed.

3. Cognitive flexibility deficits in autism: The importance of adolescence

Individuals with autism spectrum disorder (ASD) exhibit considerable heterogeneity in EF 

abilities (59). While a majority of those diagnosed with ASD experience difficulties with EF, 

a great deal of heterogeneity exists with respect to individual levels of impairment (60–62), 

and EF deficits can improve with age (63). In a meta-analysis, broad impairments across 

multiple EF domains were observed in children and adolescents with ASD assessed using 

neuropsychological measures. Deficits in cognitive flexibility decreased with age, and were 

observed in those with and without comorbid attention-deficit/hyperactivity disorder 

(ADHD) (64). Another meta-analysis including psychometric, experimental, and 

questionnaire-based measures of EF and a wider age range of participants also reported 
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broad dysfunction in ASD that is relatively stable across development. Here, effect sizes 

were found to be largest for studies using the BRIEF questionnaire (65).

Symptom severity for restricted and repetitive behaviors (RRBs), which are considered core 

deficits in the disorder, are associated with measures of cognitive inflexibility in ASD (66–

68). Cognitive flexibility deficits in early life can manifest as difficulties in transitioning to 

independent living and maintaining employment, and may contribute to the grim outcome 

that less than 20% of adults with ASD live independently and are fully employed (69). 

Despite reports of cognitive flexibility deficits in ASD (70,71), particularly in younger 

children (72,73), there are conflicting notions regarding the extent, nature, etiology, and 

neurobiology of these deficits (74).

Adolescence is a time of dramatic physical, emotional, and social change, and represents a 

particularly vulnerable developmental period for individuals with ASD. During this period 

of transition to adulthood, youth with ASD often desire independent living, employment, 

and social relationships, all of which can be challenging for them to achieve when dealing 

with persistent social, behavioral, and language deficits (75). Some children with ASD even 

experience deterioration in functioning in the years after the onset of puberty (76). Young 

adults with ASD are at increased risk for poor health outcomes, social isolation, financial 

adversity, and institutionalization (77).

The “two-hit” conceptual model of autism posits that early alterations in neurodevelopment 

lead to a “first hit”, while pubertal hormones, neural reorganization, and increasing social 

demands function as a “second hit” during adolescence that affects adaptive functioning and 

transitioning to adult roles (78). Cognitive flexibility deficits can exacerbate this difficult 

transition period, whereas relative sparing of flexibility may ameliorate some of the 

challenges typically encountered during adolescence. In youth with ASD (7–17 years), 

flexibility assessed by parent-report explained 22.2% of the variance in adaptive 

socialization skills (79), suggesting that the ability to function independently in everyday life 

is linked to flexibility. Longitudinal studies demonstrate that EF skills in childhood predict 

variance in autistic individuals’ adaptive behavior later in life (80,81). Taken together, this 

work highlights the need for more targeted investigation of the brain mechanisms supporting 

cognitive flexibility in ASD during this critical developmental stage.

4. Neural substrates of cognitive flexibility in autism: Brain activation

Despite the critical role of cognitive flexibility for supporting adaptive functioning in autism, 

few functional neuroimaging studies of cognitive flexibility in ASD have been conducted 

(Table 1). Based on the extensive cognitive neuroscience literature examining cognitive 

flexibility in neurotypical adults, one might expect to see differential responsivity in the L-

FPN and M-CIN during such tasks in individuals with ASD (24,25). Schmitz and colleagues 

reported greater inferior parietal brain activation in adults with ASD as they performed a 

cognitive flexibility task (82). Shafritz and colleagues found reduced activation in frontal, 

striatal, and parietal regions during shifting trials in young adults with ASD. They also 

reported a negative correlation between severity of RRBs and anterior cingulate and 

posterior parietal activation (83). Using a reversal learning paradigm to assess behavioral 
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flexibility, D’Cruz and colleagues found reduced activation in frontal cortex and striatum in 

adults with ASD (84).

Mixed findings have also been reported in younger cohorts. Yerys and colleagues found that 

7–14 year old children with ASD engaged frontal brain regions to a greater extent than 

typically developing (TD) peers during set-shifting (44). Examining extra-dimensional shifts 

in 7–14 year old children, Taylor and colleagues found an age by group interaction such that 

the right insula exhibited increasing activation with age in typical development, but 

decreasing activation with age in ASD (85). The rAI has been posited to be a locus of 

dysfunction in ASD (86), and functional and effective connectivity of this region and the 

broader M-CIN is associated with symptom severity in the domain of RRBs (87,88).

The task-based fMRI literature has not yet converged on the neural circuitry underlying 

cognitive flexibility in ASD (89), though atypical L-FPN and M-CIN activation is generally 

observed. This is not entirely surprising, as these tasks may require different forms of 

flexibility, placing differential demands on various components of shifting (eg. response sets 

vs. context monitoring). These differences could in part drive conflicting results in terms of 

brain regions implicated across studies. No studies to date have focused specifically on 

adolescents with ASD, despite the well-characterized maturation of EF circuitry in typical 

development (90,91). A few studies of adolescents with ASD have noted alterations in 

frontoparietal activity during paradigms invoking aspects of flexibility including cognitive 

control (92–94) and verbal fluency (95), yet much remains unknown about this specific 

developmental period.

5. Neural substrates of cognitive flexibility in autism: Brain dynamics

Complementary to task-based neuroimaging, resting state fMRI paradigms, with their 

decreased cognitive demands and potential for data reuse, are a promising approach for 

exploration of typical and atypical brain networks (96,97). Beyond revealing brain regions 

activated in response to specific task conditions, resting state functional connectivity 

approaches permit analysis of how cognition emerges from brain network interactions (98). 

Dynamic functional connectivity approaches further enable the study of moment-to-moment, 

or time-varying changes in functional coupling between brain regions (99–101), and are 

increasingly being applied to the study of neurodevelopmental disorders (102).

One method for computing dynamic functional connectivity is the “sliding-window” 

approach where functional connectivity strength is computed on the order of seconds rather 

than minutes (103). Sliding window analyses permit the quantification of metrics including 

“dwell time” (the amount of time spent in a particular functional connectivity state), 

“frequency of occurrence” (the number of times a particular functional connectivity state 

occurs), and “state transitions” (the number of times transitions between functional 

connectivity states occur). Another method relies on the identification of critical timepoints 

when the BOLD signal intensity surpasses a certain threshold, giving rise to multiple stable 

spatial patterns or co-activation patterns (CAPs) that can be obtained by clustering of critical 

time frames (104). CAP analysis relies on fewer model assumptions than the sliding window 

approach, and allows for the examination of state alterations closer to the temporal 
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resolution of individual time frames (105) (Figure 3). A comprehensive review of dynamic 

functional connectivity approaches is provided in (106).

Specific patterns of brain dynamics are associated with enhanced cognitive flexibility. 

Individuals who score higher on a card sort task exhibited whole-brain functional 

connectivity dynamics characterized by greater episodes of more frequently occurring brain 

states, and fewer episodes of less frequently occurring states associated with low vigilance 

and arousal (107). Older adults who performed more poorly on a battery of cognitive tests 

exhibited greater frequency of switching between dynamic brain states, whereas high 

performers exhibited a tendency to be in a state characterized by global coherence (108). 

Time-varying (but not static) functional connectivity of the M-CIN (109), as well as 

dynamics between the default mode/medial frontoparietal network (M-FPN) and L-FPN 

(110), has been shown to predict individual differences in cognitive flexibility. These works 

are beginning to reveal the links between brain dynamics and flexible cognition and 

behavior (111).

While several methodological issues have yet to be resolved (112), dynamic functional 

connectivity approaches are already revealing interesting patterns of brain dynamics that 

distinguish youth with ASD (Table 2). The first study of 8–18 year olds focused on the M-

FPN, M-CIN, amygdala and thalamus and examined standard deviation of the sliding 

window correlation, which indicates intra-individual variability over time. For multiple 

region-of-interest (ROI) pairs, reduced static functional connectivity in adolescents with 

ASD was related to increased temporal variability of the BOLD signal (113).

A study of 7–18 year old children from the Autism Brain Imaging Data Exchange (ABIDE) 

(114) found that those with ASD showed weaker whole-brain connectivity for a longer 

period of time compared with TD children (115). Another study using the entire available 

ABIDE sample (ages 6–58) found evidence for decreased state transitions in ASD (116). 

This finding of reduced transitions between brain states has been replicated in adults with 

autism (117).

Focusing on functional connectivity variance in 6–36 year-olds within ABIDE, greater 

variance of widespread long-range dynamic functional connections in ASD was reported, 

and linked with symptom severity indexed by the Autism Diagnostic Observation Schedule 

(ADOS) (118). Similar findings of hyper-variability of functional connections in ASD have 

been observed in studies focusing on the adolescent period (119,120). The only study to 

stratify participants into child, adolescent, and adult groups found evidence for greater 

hyper-variability of short-range functional connections that distinguished adolescents with 

ASD (121).

In a very large sample including 774 6–10 year-old children from the Generation R Study 

(122), higher levels of autistic traits and ASD diagnosis were associated with longer dwell 

times in a functional connectivity state characterized by global disconnection (123). These 

findings suggest that atypical brain dynamics in ASD may be present at earlier points in 

development than adolescence.
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Dynamic functional connectivity research has rapidly accelerated (124), in part due to the 

availability of data made possible through the ABIDE initiative (125–128). The studies 

reviewed here have utilized different subsets from the larger ABIDE datasets, with minimal 

sample overlap across studies (Table 2). The data thus far provides evidence for both 

alterations in the number of transitions between brain states, and hyper-variability of 

functional connections in adolescents with ASD. Limitations and inconsistencies in this 

literature could be attributed to variable MRI data acquisition parameters, participant 

demographics, and data analytic pipelines. Increased sample inhomogeneity due to data 

pooling across sites can introduce biases that must be considered. Efforts to overcome these 

limitations include cross-site replication or leave-one-site-out cross validation (118,129).

To date, no studies have explicitly explored the link between atypical brain dynamics and 

cognitive flexibility in ASD. The hope is that with greater methods development in the field 

of machine learning (130), these types of neuroimaging markers may eventually be used to 

parse heterogeneity, monitor treatment response, and predict individual outcomes in ASD 

(131).

6. Outstanding Issues and Future Directions

Ecological validity and measurement

Measurement issues still complicate the study of cognitive flexibility in ASD. Performance-

based measures such as the WCST can hone in on specific cognitive constructs (132), 

whereas more ecologically-valid measures such as the BRIEF are sensitive indices of real-

world behaviors (6) but may be subject to reporter bias. Although individuals with ASD 

appear behaviorally rigid in daily activities, neuropsychological and laboratory-based 

measures of cognitive flexibility provide mixed results with respect to patterns of EF deficits 

(74). Poor convergence between these two types of measures might influence findings of 

cognitive flexibility impairments in ASD and relationships with outcomes such as symptom 

severity and adaptive functioning. Measures with high reliability such as informant- or self-

report may better predict individual differences in real-life outcomes, whereas behavioral 

measures that are sensitive to within-person experimental manipulations may be important 

for studying processes that underlie task performance (5). A clearer neuroimaging story 

might emerge if cognitive neuroscientifically-derived measures are used alongside informant 

reports of cognitive flexibility in future studies.

In parallel to the identification of neural circuits involved in cognitive flexibility, 

standardized assessments of flexible behaviors in daily life that potentially have greater 

ecological validity must be developed and validated. The Flexibility Scale, based on data 

collected from 300 6–17 year olds, is an informant report that densely samples cognitive 

aspects of flexibility in everyday settings and has been shown to discriminate participants 

with ASD and controls. Exploratory factor analysis revealed evidence for five factors related 

to Routines/Rituals, Transitions/Change, Special Interests, Social Flexibility, and 

Generativity, and the scale demonstrated convergent and divergent validity with comparative 

domains in other measures including the ‘shift’ subscale of the BRIEF and D-KEFS 

performance (133). Once further validated, specific measures of cognitive flexibility such as 
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the Flexibility Scale could be used in future research to promote standardization and 

replicability in the field.

Neuroimaging of individual differences and heterogeneity

Children and adolescents with ASD may have difficulties with flexibility that can persist 

into adulthood (134). Understanding the neural basis of individual differences in cognitive 

flexibility in ASD will pave the way for development of more targeted early interventions to 

improve the lives of those affected. Specifically, young children exhibiting impaired EF 

abilities who are identified early in life may benefit from targeted training in this area. 

Unstuck and On Target (UOT) is an EF intervention designed for children with ASD that 

can be implemented in school and at home. UOT targets insistence on sameness, flexibility, 

goal-setting and planning through a cognitive-behavioral program involving self-regulatory 

scripts, guided practice, and cueing, and has been shown to be effective for improving 

classroom behavior, flexibility and problem-solving in children with ASD (135). The neural 

mechanisms associated with successful implementation of this intervention are yet 

unknown.

Importantly, not all children with ASD exhibit the same level and profile of EF deficits. 

While some studies provide evidence of uniform patterns of abilities across EF domains 

(60,61), others suggest that distinct EF subtypes exist (136). This heterogeneity of EF ability 

and underlying brain network organization makes accurate characterization of EF in ASD all 

the more challenging. Neuroimaging can provide a means for understanding neurobiological 

mechanisms underlying heterogeneous symptom presentation in ASD. Future directions 

include further attempts at stratifying youth with ASD based on EF profiles and individual 

connectomes (136–138).

Future studies must work to overcome the limited generalizability afforded by small sample 

sizes (139) and further consider females with ASD and individuals of varied socioeconomic 

status, who are largely under-represented in neuroimaging research. Co-occurring conditions 

that are associated with cognitive inflexibility have also not been adequately considered, 

despite initial evidence that EF impairment is more severe in children with comorbid ASD 

and ADHD (60).

Consideration of adolescence and puberty

As Table 1 and Table 2 demonstrate, very few neuroimaging studies have focused on the 

adolescent period specifically in ASD. Additionally, it is completely unknown how puberty, 

which marks the beginning of adolescence, influences the development of brain systems 

underlying cognitive flexibility in autism. Dissociable effects of pubertal hormones and age 

on the adolescent brain have been documented, suggesting that pubertal stage may be a 

better predictor of cognitive and behavioral maturity than chronological age (140). 

Hormonal effects on brain, behavior, and cognition constitute an active area of research 

(141) that must be incorporated into future cognitive neuroscience work on adolescent ASD.
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Alternative approaches for bolstering cognitive flexibility in ASD

The bilingual advantage refers to the phenomenon that individuals who speak two languages 

fluently often perform better on tasks of EF than monolingual individuals (142, but see 143). 

Despite the potential advantages that bilingualism may confer for EF, clinical practitioners 

commonly advise against providing children with developmental disabilities a bilingual 

environment (144), believing that concentrating on one language will better support 

language development (145). Yet, a growing body of work suggests there are no negative 

effects of being raised in a bilingual environment (146,147). A study of 6–16 year olds with 

average IQ levels suggests that second language exposure in children with ASD is associated 

with reduced clinical impact in the domains of functional communication and EF (148). 

Bilingualism may even mitigate set-shifting difficulties in children with ASD of average IQ 

(149). If bilingualism is indeed found to confer an EF advantage in ASD, then encouraging 

parents to speak two languages in the home may be one “natural intervention” strategy for 

bolstering cognitive flexibility in high-functioning autism.

Conclusion

Cognitive flexibility may facilitate optimal functioning in ASD during the volatile period of 

adolescence. Studies of the neural mechanisms underlying the development of flexible 

cognition and behavior in ASD provide initial evidence for altered brain activation and 

dynamics in diagnosed individuals. Moving forward, issues of measurement and sample 

heterogeneity must be adequately addressed in order to maximize ecological and construct 

validity in studies of cognitive flexibility in ASD. Development of interventions to enhance 

flexibility, and neuroimaging studies exploring the mechanisms underlying training effects, 

will be important future directions.
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Figure 1. Brain systems underlying cognitive flexibility.
Nodes critical for cognitive flexibility (red) operate within the context of broader lateral 

frontoparietal (L-FPN) and midcingulo-insular (M-CIN) networks (24) supporting executive 

functions (blue). The inferior frontal junction (IFJ) is involved in inhibition and response set 

updating, the ventrolateral prefrontal cortex (vlPFC) in resolving proactive interference, 

response set selection, and context monitoring, the dorsal anterior insula (dAI) in switching 

between other large-scale functional brain networks, the dorsolateral prefrontal cortex 

(dlPFC) in working memory, the dorsal anterior cingulate cortex (dACC) in response 

selection and motor responses, and the superior parietal lobule (SPL) in visuomotor 

integration and attention (adapted from (25)).
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Figure 2. Laboratory tasks for assessing cognitive flexibility in developmental populations.
A. Example set-shifting task. Instruction cues indicate spatial mapping to stimuli to response 

buttons. When the circle is presented on the right side of the instruction cue, a right-handed 

button press to circle trials is required (44). B. Example flexible rule switch task. On Color 

trials, participants are instructed to press one button for red stimuli and another for blue 

stimuli. On Direction trials, participants are instructed to press a left button for leftward 

facing stimuli and right button for rightward facing stimuli (45). C. Example flexible item 

selection task. During Flexibility trials, participants choose three successive pairs of cards 

that “go together in one way” (“Now you choose”). During Control trials, the correct card 

pairs are highlighted by a thick black border (“Follow along”) (46).
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Figure 3. Approaches for characterizing brain dynamics.
A. Example sliding window approach for computing dynamic functional network 

connectivity (dFNC). High-model order independent component analysis (ICA) creates 

functional parcellation of the brain, resulting in several independent components. B) 

Subject-specific timecourses are used to compute functional connectivity between pairwise 

components. Dynamic FNC analysis utilizes sliding windows (eg. 45 seconds in duration) to 

produce multiple correlation matrices for each subject (one per window). A concatenated 

data matrix is then subjected to k-means clustering, and the optimal k is identified using the 

elbow criterion (k=5 in this example). Each window is assigned to a dynamic state k 
regardless of subject assignment. Subject-specific medians are then back-reconstructed for 

each state k before they are averaged together to produce the final k dynamic states. Finally, 

group differences in dFNC metrics (eg. dwell time, state transitions) are computed (103). B. 

Example co-activation pattern (CAP) analysis. In conventional seed-based correlation 

analysis, functional connectivity patterns associated with a seed region-of-interest is 

estimated by the linear correlation between the timeseries of each gray matter voxel in the 

brain and the seed. The CAP method demonstrates that these patterns can be obtained by 

voxel-wise averaging the spatial maps of time frames when the seed signal intensity 

surpasses a given threshold. Temporal clustering of the extracted time frames based on their 

spatial similarity yields multiple spatial patterns reflecting functionally relevant CAPS 

across the whole brain at each individual time frame. Different colors indicate different 

CAPs in temporal clustering (adapted from (105)).
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Table 1.

fMRI studies of brain activation underlying cognitive flexibility in autism

Study by 
publication date

Sample Size Age Range, Years 
(mean, SD)

Cognitive 
Paradigm

Behavioral Results Neuroimaging Results

Schmitz et al., 
2005 (82)

ASD: 10
TD: 12

Combined: 18–52
ASD: 38±9 
TD:39±6

Set-shifting No significant group 
differences

ASD > TD activation in inferior and 
medial parietal cortex during switch 
trials

Shafritz et al., 2008 
(83)

ASD: 15
TD: 14

ASD: 22.3±8.7
TD: 24.3±6.2

Set-shifting ASD < TD 
accuracy, no 
significant group 
difference in RT

ASD < TD activation in dlPFC, ACC, 
IPS, BG during target-shift trials

Taylor et al., 2012 
(85)

ASD: 14
TD: 14

Combined: 7–14 Set-shifting No significant group 
differences

Age x Group interaction for shift trials: 
insula increase activation with age in 
TD, decrease activation with age in 
ASD; vlPFC increase activation with 
age in ASD, no change with age in TD

Yerys et al., 2015 
(44)

ASD: 20
TD: 19

Combined: 7–14
ASD: 11.32±1.84
TD: 11.36±1.54

Set-shifting ASD < TD 
accuracy, no 
significant group 
difference in RT

ASD > TD activation in ACC, superior, 
middle, and inferior frontal gyrus 
during switch trials

D’Cruz et al., 2016 
(84)

ASD: 17
TD: 23

ASD: 9–44; 
17.4±8.6
TD: 7–38;
18.6±8.4

Reversal 
learning

No significant group 
differences

ASD < TD activation in ventral 
striatum, ACC, premotor cortex, 
posterior parietal cortex, and dlPFC 
during reversal

ASD = autism spectrum disorder; TD = typically developing; dlPFC = dorsolateral prefrontal cortex; ACC = anterior cingulate cortex; IPS = 
intraparietal sulcus; BG = basal ganglia; vlPFC = ventrolateral prefrontal cortex

Biol Psychiatry. Author manuscript; available in PMC 2022 January 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Uddin Page 23

Table 2.

fMRI studies of brain dynamics in autism

Study by 
publication 
date

Sample Size, 
ABIDE or in house 
data

Age Range, Years 
(mean, SD)

Method for 
ssessing 
Dynamics

Behavioral Results Neuroimaging Results

Falahpour et al., 
2016 (113)

Study 1 (6 ABIDE 
sites)
ASD: 76
TD: 76
Study 2 (SDSU in 
house)
ASD: 32
TD: 32

Study 1
ASD: 7–29.9; 
16.1±4.9 TD: 8–
29.9;
15. 8±4.5
Study 2
ASD: 9.5–17.9;
14.3 ±2. 4
TD: 8–17.5;
13.5±2.7

Standard deviation 
of sliding window 
correlation 
between select 
ROIs (DMN, SN, 
amygdala, Thal)

N/A Study 1
ASD > TD SD-iFC several 
ROI pairs
Study 2
ASD > TD SD iFC one ROI 
pair

Yao et al., 2016 
(115)

ASD: 31
TD: 44 (ABIDE 
NYU site)

Combined: 7–18
ASD: 11.51±2.64
TD: 12.46±3.1

Sliding window 
correlation across 
whole- brain ICA- 
derived ROIs

N/A ASD > TD mean dwell time 
in weak FC state

de Lacy et al., 
2017 (116)

ASD: 423
TD: 461 (all ABIDE 
sites)

Combined: 6.5–58; 
16.23±7.1

Sliding window 
correlation across 
whole- brain ICA- 
derived ROIS

N/A ASD < TD transitions 
between brain states

Watanabe et al., 
2017 (117)

ASD: 24
TD: 26 (ABIDE 
Utah site primary, 
Indiana and Zurich 
site replication)

ASD: 18.4–38.9; 
25.3±5.5
TD: 18.2–39.3;
25.3±6.3

Energy- landscape 
analysis across 
seven functional 
brain systems

Transition frequency 
negatively correlated 
with ADOS

ASD < TD transitions 
between brain states

Chen et al., 
2017 (118)

ASD: 209
TD: 298 (all ABIDE 
sites)

ASD: 16.5±6.2 TD: 
16.8±6.2

Standard deviation 
of sliding window 
correlation 
between whole- 
brain ROIs

Hyper-variant FC 
positively correlated 
with ADOS

ASD > TD SD-iFC for 
almost all ROI pairs

Rashid et al., 
2018 (123)

Combined: 774; 560 
with SRS
ASD: 22 (Generation 
R Study)

Combined: 6–10; 
7.99±1

Sliding window 
correlation across 
whole- brain ICA- 
derived ROIs

N/A ASD traits indexed by SRS 
positively correlate with 
mean dwell time in globally 
disconnected state

Mash et al., 
2019 (119)

ASD: 62
TD: 57 (SDSU in
house)

Combined: 6–18
ASD: 13.7±2.5
TD: 13.1±2.9

Sliding window 
correlation across 
whole- brain ICA- 
derived ROIs

N/A ASD > TD SD-iFC for 
almost all ROI pairs

Li et al., 2019 
(120)

ASD: 62
TD: 63 (ABIDE 
SDSU, Trinity, 
NYU, Stanford sites)

ASD: 7.18–17.93; 
11.63±2.84
TD: 7.11–17.6; 
11.48±2.59

Sliding window 
correlation across 
whole- brain ROIs

SD-iFC between 
IFGoper positively 
correlated with SRS

ASD > TD SD-iFC for 
several ROI pairs; ASD > 
TD mean dwell time in 
globally hyper-connected 
state

Harlalka et al., 
2019 (121)

Child ASD: 26
Child TD: 26
Adolescent ASD: 28
Adolescent TD: 28
Adult ASD: 18
Adult TD: 18 
(ABIDE NYU site)

Child ASD: 7.15–
10.06; 9.51±1.12
Child TD: 6.47–
10.86; 9.10±1.32
Adolescent ASD: 
11.01–17.88; 
13.71±1.79
Adolescent TD: 
11.32–16.93; 
14.01±1.74
Adult ASD: 18.58–
39.1; 24.13±3.92
Adult TD: 
18.5931.78;
25.41±5.87

Sliding window 
correlation across 
whole- brain ROIs

DMN- Attention 
network SD- iFC 
positive correlation 
with ADOS

ASD > TD SD-iFC for 
almost all ROI pairs for 
children, adolescents, and 
adults
ASD > TD SD-iFC for short-
range connections in 
adolescents

Guo et al., 2019 
(125)

ASD: 209
TD: 298 (all ABIDE 
sites)

ASD: 16.5±6.2
TD: 16.8±6.2

Sliding window 
correlation 

Decreased dynamic 
FC between rAI and 
vmPFC negative 

ASD < TD FC between rAI 
and vmPFC/PCC in some 
states
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Study by 
publication 
date

Sample Size, 
ABIDE or in house 
data

Age Range, Years 
(mean, SD)

Method for 
ssessing 
Dynamics

Behavioral Results Neuroimaging Results

between rAI and 
whole brain

correlation with 
ADOS social

Fu et al., 2019 
(127)

ASD: 170
TD: 195 (all ABIDE 
sites)

ASD: 15.57±7.35
TD: 16.02±5.9

Sliding window 
correlation 
between thalamic 
ROIs and whole 
brain

Increased dynamic 
FC between 
hypothalamus and 
sensory region 
positive correlation 
with ADOS

ASD > TD FC between
hypothalamus and sensory 
regions in some states
ASD < TD meta-state 
dynamism measures

Guo et al., 2020 
(126)

ASD: 105
TD: 102 (all ABIDE 
sites)

Combined: 7–12
ASD: 10.15±1.26
TD: 10.02±1.38

Sliding window 
correlation and 
FCD mapping 
across whole- 
brain

Aberrant temporal 
variability of 
contralateral 
dynamic FCD 
predicted ADOS 
communication 
scores

Global alterations in 
dynamic FCD variability and 
atypical dynamics of intra- 
and interhemispheric FCD 
variability in ASD

ABIDE = Autism Brain Imaging Data Exchange; ADOS = autism diagnostic observation schedule; ASD = autism spectrum disorder; DMN = 
default mode network; FCD = functional connectivity density; ICA = independent component analysis; NYU = New York University; rAI = right 
anterior insula; ROI = region of interest; SD-iFC = standard deviation of intrinsic functional connectivity; SN = salience network; SRS = social 
responsiveness scale; Thal = thalamus; SDSU = San Diego State University; TD = typically developing;
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