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Toxicity of humidifier disinfectant polyhexamethylene guanidine 
hydrochloride by two-week whole body-inhalation exposure in rats
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Abstract: The use of polyhexamethylene guanidine hydrochloride (PHMG·HCl) as a humidifier disinfectant caused an outbreak of 
pulmonary disease, leading to the deaths of pregnant women and children in South Korea. However, limited information is available 
on the inhalation toxicity of PHMG·HCl. Therefore, this study aimed to characterize the subacute inhalation toxicity of PHMG·HCl 
by whole-body exposure in rats. F344 rats were exposed to 0 mg/m3, 1 mg/m3, 5 mg/m3, or 25 mg/m3 of PHMG·HCl for 6 h/day, 5 
days/week for two weeks via whole-body inhalation. Emaciation and rale were observed in rats in the 25 mg/m3 PHMG·HCl group. 
Significant changes in body weight, hematology, serum chemistry and organ weight were observed in all PHMG·HCl-exposed groups. 
Gross lesions showed ballooning or red focus in the lungs of rats in the PHMG·HCl-exposed groups. In histopathological examination, 
most of histological lesions (including degeneration, atrophy, ulcer, inflammatory cell infiltration, inflammation, and fibrosis in nasal 
cavity, larynx, trachea, and lungs) indicated tissue damage by PHMG·HCl in all PHMG·HCl-exposed groups. Additionally, atrophy 
of the spleen, thymus, and reproductive organs; immaturity of the testes; and cell debris in the epididymides were affected by the 
reduction in body weight in PHMG·HCl-exposed groups. In conclusion, two-week repeated whole-body inhalation exposure of rats 
to PHMG·HCl reveled toxic effects on the respiratory system and secondary effects on other organs. The results of this study indicate 
that the no observable adverse effect level (NOAEL) for PHMG·HCl is below 1 mg/m3. (DOI: 10.1293/tox.2020-0043; J Toxicol Pathol 
2020; 33: 265–277)
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Introduction

Polyhexamethylene guanidine (PHMG) is a deriva-
tive of the polymeric guanidine family and known to be 
a potent bactericide, virucide, and fungicide1–3. It is color-
less, odorless, and non-corrosive4, and highly soluble in 
water5. PHMG has been widely used in fabric softeners, 
paints, detergents, and swimming pools and especially, as 
household humidifier disinfectants in South Korea 3, 5–7. 
In 2011, mist from humidifier disinfectants caused an out-
break of pulmonary disease, which leads to the deaths of 
pregnant women and children in South Korea7. The pul-
monary injury of the patients was confirmed as acute in-
terstitial pneumonia and fibrosis8, reported to be mainly 
associated with users of humidifier disinfectants contain-
ing PHMG·phosphate (PHMG·P), oligo (2-(2-ethoxy) eth-
oxyethyl guanidinium(PGH), a mixture of chloromethyl-

isothiazolinone and methylisothiazolinone(CMIT/MIT)7. 
However, to a lesser extent, another derivative of PHMG, 
PHMG hydrochloride (PHMG·HCl) was also involved in 
the outbreak8.

The toxicity of PHMG·HCl has been rarely document-
ed in humans or in in vitro and in vivo tests. PHMG·HCl has 
been reported to have low toxicity to humans9, 10. However, 
more than 12,500 patients in Russia who drank illegally 
manufactured vodka with 0.10–0.14% PHMG·HCl were re-
ported to have suffered from acute cholestatic hepatitis11, 12

. 
PHMG·HCl induces cellular toxicity through the production 
of intracellular reactive oxygen species (ROS) and gene ex-
pression profile alteration resulting in the progression to cell 
death and the down-regulation of antioxidants and detoxi-
fying enzymes in human alveolar epithelial A549 cells13. 
Acute oral toxicity studies have shown that the median le-
thal dose (LD50) of 600 mg/kg is accompanied by signs of 
neurotoxicity, but a dose of 0.036 mg/kg is not associated 
with mortality or clinical signs of toxicity even though mid 
hepatocyte degeneration and tubular hydropic change may 
be observed14.

Only a few studies so far have reported so far on the 
oral toxicity of PHMG·HCl and the inhalation toxicity of 
PHMG·HCl has not yet been confirmed in the outbreak of 
humidifier disinfectant, Therefore, this study aimed to char-
acterize the subacute inhalation toxicity of PHMG·HCl by 
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whole-body exposure in rats.

Materials and Methods

Generation, Analysis, and Inhalation Chamber  
Monitoring

PHMG·HCl was obtained from Beyond Industry Co., 
Ltd. (Shanghai, China) through the Ministry of Environ-
ment. Filtered tap water was used as vehicle. PHMG·HCl 
was dissolved in water as 0.2 and 0.5% (w/v).

The PHMG·HCl aerosol was generated using an ul-
trasonic mist-generator in a whole body chamber (Cham-
ber volume: 1 m3, SIS-20RG, Shibata, Saitama, Japan). The 
phase of PHMG·HCl aerosol was produced as mist in the 
inhalation chamber. The concentration of PHMG·HCl was 
measured using a personal sampler (Airchek XR 5000, SKC 
Inc., Eighty Four, PA, USA) with 25-mm micro glass fiber 
filters (Pallfex Membrane Filters, Pall Co., Charlotte, NC, 
USA). The mass median aerodynamic diameter (MMAD) 
and geometric standard deviation (GSD) were measured us-
ing a cascade impactor (nanoMOUDI Impactor, MSP Co., 
Shoreview, MN, USA). Samples were collected from the 
middle part of the port at a flow rate of 1 L/min. During 
the exposure period, the mass concentrations of the aero-
sols in the chamber were measured at least three times daily. 
The total airflow for each chamber was set at 20 L/min to 
achieve 1 L/min flow/rat. Chamber conditions including 
temperature, relative humidity, pressure, and air flow rate 
were automatically measured (ICS-20RG).

Animal husbandry and maintenance
Six-week-old specific-pathogen-free F344 rats of both 

sexes were purchased from Japan SLC, Inc. (Shizuoka, 
Japan) and acclimated for one week. The room was main-
tained at a temperature of 22 ± 3°C, relative humidity of 
50 ± 20%, 12:12 h light:dark cycle, and fresh air ventilation 
(10–15 changes per hour). Rats were housed singly in stain-
less steel wire mesh cages (W 220 mm × L 750 mm × H 180 
mm) and had free access to UV-irradiated rodent pellet diet 
(Teklad Global 18% Protein Rodent Diet, Harlan Laborato-
ries, Inc., Indianapolis, IN, USA) and filtered tap water. The 
animal protocol was approved by the Institutional Animal 
Care and Use Committee at Occupational Safety and Health 
Research Institute (IACUC-1718).

Experimental design
A total of 40 rats (20 males and 20 females) were as-

signed randomly to one of four groups (5 per sex per group; 
0 mg/m3, 1 mg/m3, 5 mg/m3, or 25 mg/m3) and exposed for 6 
h/day, 5 days/week for two weeks. The PHMG·HCl concen-
trations used were selected on the basis of an acute toxicity 
study performed previously (data not shown) using a scale 
factor of three. Exposures were conducted in accordance 
with test No. 412 (Subacute Inhalation Toxicity, 2009) by 
the Organization for Economic Co-operation and Develop-
ment (OECD)15. Inhalation exposures were conducted from 
10:00 to 16:00. All rats were euthanized after two weeks of 

inhalation.

Clinical observations and body weight
All animals were examined twice daily for mortality 

and clinical signs, and weighed individually on day 1, 3, 6, 
and 13 of inhalation exposure.

Hematology and serum biochemistry
In hematology, all animals were fasted overnight before 

necropsy and blood collection. Blood samples were taken 
from the abdominal aorta using a syringe with a 24-gauge 
needle under isoflurane anesthesia (Hana Pharm, Kyonggi-
Do, Korea) and collected into vacutainers containing EDTA-
2K (Becton Dickinson, Franklin Lakes, NJ, USA). The ab-
solute or relative number in the following parameters were 
determined in this study: total erythrocyte (RBC), hemo-
globin concentration (HGB), hematocrit (HCT), mean cell 
volume (MCV), mean cell hemoglobin (MCH), mean cell 
hemoglobin concentration (MCHC), reticulocytes (RET), 
platelets (PLT), whole leukocytes (WBC), neutrophils 
(NEU), eosinophils (EOS), basophils (BAS), lymphocytes 
(LYM) and monocytes (MON). In serum chemistry, blood 
samples were centrifuged at 1,811×g at 4°C for 10 min-
utes within 90 minute of collection. The following serum 
chemistry parameters were evaluated using an automated 
analyzer (TBA-120FR, Toshiba Medical Systems, Tochigi, 
Japan): total protein (TP), albumin (ALB), blood urea nitro-
gen (BUN), creatinine (CREA), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), alkaline phos-
phatase (ALP), glucose (GLU), total cholesterol (T-CHO), 
and triglycerides (TG).

Gross exanimation and histopathology
Gross examinations of organs in the cranial, thoracic, 

and abdominal cavities of the rats were conducted. The 
absolute and relative (organ-to-body) weights of the brain, 
lungs, heart, liver, spleen, and kidneys were measured. The 
following tissues were removed from each animal at nec-
ropsy: liver, kidneys, heart, brain, spleen, trachea, tracheo-
bronchial lymph node, larynx, lungs and nasal cavity; in 
males, seminal vesicle, prostate, testes, and epididymides; 
in female, ovaries, uterus, and vagina. The nasal cavity was 
sectioned at four levels: 1, posterior to the upper incisors; 2, 
incisive papilla; 3, second palatine crest; and 4, first molar 
teeth. The organs were preserved in 10% neutral buffered 
formalin. All organs were embedded in paraffin, sectioned 
at 3–4 μm, stained with hematoxylin and eosin (H&E), and 
examined microscopically at low and high power fields.

Data analyses
Differences among groups in the various parameters 

were determined using SPSS (ver. 18.0, IBM, Chicago, 
IL, USA) software. The homogeneity of variance was ana-
lyzed by Levene’s test, followed by either one-way analysis 
of variance for samples with homogenous variance or the 
Kruskal-Wallis test for samples with heterogeneous vari-
ance. Scheffe or Dunnett’s multiple range test was used to 
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compare the result of each experimental group with that of 
the control group if the first statistical result was significant.

Results

Chamber monitoring
The ranges of chamber conditions were 19.6–21.9°C, 

49.5–74.8% relative humidity, −66.8–−58.1 mmH2O pres-
sure, and 220.1–278.2 L/min flow rate. The average concen-
trations of PHMG·HCl during the study were 1.20.1 ± 0.21 
mg/m3, 5.12 ± 0.56 mg/m3, and 23.81 ± 1.54 mg/m3 for 1, 5, 
and 25 mg/m3 PHMG·HCl groups, respectively (Fig. 1). The 
MMAD was 0.602, 0.877, and 1.073 μm, and the GSD 2.42, 
1.84, and 1.66 mg/m3 for 1, 5, and 25 mg/m3 PHMG·HCl 
groups, respectively (Table 1).

Clinical signs
No deaths were observed in any groups. Emaciation 

and rale were observed in males and females exposed to 25 
mg/m3 (Table 2).

Body weight
Body weights decreased significantly in males and fe-

male exposed to 25, 5, and 1 mg/m3 from day 3, 6, and 13 
onward, respectively (Fig. 2).

Hematology
RBC, HCT, and HGB showed increasing trend or sig-

nificant increases in males and females exposed to 1, 5, 
and 25 mg/m3. MCHC increased significantly in males and 
female exposed to 25 mg/m3. In contrast, MCH and MCV 
decreased significantly in males exposed to 5 and 25 mg/
m3 and females exposed to 25 mg/m3. Additionally, RET 
and RET% decreased significantly in males and females ex-
posed to 5 and 25 mg/m3. PLT showed decreasing trends 
or significant decrease in males and females exposed to 25 
mg/m3. MON, MON%, and NEU increased significantly in 
males and females exposed to 25 mg/m3. NEU% increased 
significantly in males exposed to 25 mg/m3 and females 
exposed to 5 and 25 mg/m3. However, LYM% showed de-
creasing trend or significant decrease in males exposed to 
25 mg/m3 and females exposed to 5 and 25 mg/m3. EOS and 
EOS% decreased significantly in females exposed to 25 mg/
m3 (Table 3).

Serum biochemistry
ALT showed increasing trends or significant increase 

in males exposed to 25 mg/m3 and females exposed to 5 
and 25 mg/m3. Additionally, AST increased significantly in 
males and females exposed to 25 mg/m3. BUN showed in-
creasing trends or significant increases in males and females 

Fig. 1.	 PHMG·HCl concentrations in the inhalation chamber during 
the study.

Table 1.	 Particle Size Distribution

Group
Mass median

Aerodynamic diameter
(μm)

Geometric standard
deviation

1 mg/m3 0.602 2.42
5 mg/m3 0.877 1.84
25 mg/m3 1.073 1.66

Table 2.	 Summary of Clinical Signs

Sex Group No. of 
rats Clinical sign

Days
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Male 0 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
25 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0

Rale 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4
Emaciation 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5

Female 0 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
25 mg/m3 5 No observed 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0

Rale 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3
Emaciation 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5
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Fig. 2.	 Changes in body weight during the study. Significant differences compared with the control: *p<0.05, **p<0.01.

Table 3.	 Summary of Hematological Parameters

Sex
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5

Male RBC (×10³/µL) 8.42 ± 0.32 9.18 ± 0.34** 9.87 ± 0.28** 10.34 ± 0.24**
HGB (g/dL) 15.44 ± 0.58 16.66 ± 0.68* 17.56 ± 0.42** 18.48 ± 0.33**
HCT (%) 46.42 ± 1.96 50.64 ± 1.72** 52.28 ± 1.39** 53.3 ± 0.66**
MCV (fL) 55.08 ± 0.36 55.18 ± 0.48 52.96 ± 0.42** 51.54 ± 0.67**
MCH (pg) 18.32 ± 0.08 18.18 ± 0.23 17.82 ± 0.13** 17.84 ± 0.05**
MCHC (g/dL) 33.28 ± 0.35 32.94 ± 0.52 33.62 ± 0.29 34.64 ± 0.32**
PLT (×10³/µL) 921.2 ± 87.5 919 ± 49.69 674 ± 262.78 521 ± 123.33**
WBC (×10³/µL) 3.7 ± 1.08 4.17 ± 1.21 4.39 ± 0.89 3.57 ± 0.59
NEU (×10³/µL) 1.03 ± 0.21 1.28 ± 0.25 1.48 ± 0.33 1.74 ± 0.31**
NEU% (%) 28.88 ± 6.02 31.66 ± 5.13 33.64 ± 2.62 49.32 ± 8.87**
EOS (×10³/µL) 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.02 0.02 ± 0.01
EOS% (%) 0.64 ± 0.13 0.62 ± 0.25 0.62 ± 0.31 0.64 ± 0.32
BAS (×10³/µL) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
BAS% (%) 0.22 ± 0.11 0.18 ± 0.08 0.28 ± 0.13 0.14 ± 0.09
MON (×10³/µL) 0.06 ± 0.02 0.08 ± 0.02 0.09 ± 0.04 0.13 ± 0.04*
MON% (%) 1.8 ± 0.31 1.92 ± 0.31 1.96 ± 0.42 3.66 ± 0.81**
LYM (×10³/µL) 2.54 ± 0.94 2.75 ± 0.99 2.74 ± 0.55 1.63 ± 0.55
LYM% (%) 67.82 ± 5.85 64.84 ± 5.37 60.4 ± 4.09 45.06 ± 9.08**
RET (×109/µL) 332.14 ± 40.27 360.48 ± 56.64 172.98 ± 38.23** 51.1 ± 28.16**
RET% (%) 3.94 ± 0.42 3.92 ± 0.55 1.75 ± 0.39** 0.49 ± 0.26**

Female RBC (×10³/µL) 8.64 ± 0.26 9.16 ± 0.08* 9.94 ± 0.41** 10.42 ± 0.19**
HGB (g/dL) 16 ± 0.49 16.94 ± 0.13 18.16 ± 0.76** 18.9 ± 037**
HCT (%) 47.22 ± 1.41 49.9 ± 0.19 53.16 ± 2.38* 54.24 ± 1.19**
MCV (fL) 54.63 ± 0.55 54.46 ± 0.65 53.52 ± 0.77 52.04 ± 0.39**
MCH (pg) 18.54 ± 0.05 18.5 ± 0.07 18.32 ± 0.2 18.16 ± 0.09**
MCHC (g/dL) 33.9 ± 0.34 33.98 ± 0.37 34.2 ± 0.22 34.92 ± 0.19**
PLT (×10³/µL) 678 ± 369.03 874.8 ± 64.08 745 ± 89.39 435 ± 45.14
WBC (×10³/µL) 2.77 ± 0.77 3.21 ± 0.5 3.81 ± 1.11 3.87 ± 1.21
NEU (×10³/µL) 0.52 ± 0.15 0.64 ± 0.09 1.06 ± 0.19 2.12 ± 0.66**
NEU% (%) 19.38 ± 4.04 19.88 ± 1.39 28.64 ± 4.26** 54.86 ± 4.02**
EOS (×10³/µL) 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0 0.01 ± 0.00**
EOS% (%) 1 ± 0.19 1.2 ± 0.26 0.6 ± 0.10* 0.24 ± 0.09**
BAS (×10³/µL) 0.01 ± 0.01 0.01 ± 0 0.01 ± 0.01 0.01 ± 0.01
BAS% (%) 0.2 ± 0.17 0.18 ± 0.11 0.32 ± 0.13 0.24 ± 0.09
MON (×10³/µL) 0.04 ± 0.01 0.05 ± 0.01 0.08 ± 0.03 0.14 ± 0.05**
MON% (%) 1.58 ± 0.29 1.46 ± 0.54 1.98 ± 0.48 3.48 ± 0.72**
LYM (×10³/µL) 2.15 ± 0.66 2.46 ± 0.41 2.61 ± 0.90* 1.54 ± 0.54
LYM% (%) 77.28 ± 4.28 76.4 ± 1.42 67.7 ± 4.14** 39.48 ± 4.03**
RET (×109/µL) 212.78 ± 30.33 236.58 ± 13.38 115.22 ± 20.93** 44.58 ± 9.61**
RET% (%) 2.46 ± 0.29 2.58 ± 0.14 1.16 ± 0.20** 0.43 ± 0.10**

All values are expressed as mean ± SD. Significant differences compared with the control: *p<0.05, **p<0.01.
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exposed to 25 mg/m3. In contrast, ALP decreased signifi-
cantly in males exposed to 1, 5, and 25 mg/m3. Moreover, 
TG decreased significantly in males exposed to 5 and 25 
mg/m3 and females exposed to 1, 5, and 25 mg/m3. TP and 
ALB decreased significantly in males and females exposed 
to 25 mg/m3. T-CHO decreased significantly in females ex-
posed to 25 mg/m3 (Table 4).

Organ weight
The absolute and relative organ weights of the lungs 

increased significantly in males and females exposed to 1, 
5, and 25 mg/m3. The absolute organ weight of the liver de-
creased significantly in males and females exposed to 1, 5, 
and 25 mg/m3, as did the relative organ weight of the liver 
in males exposed to 5 and 25 mg/m3 and females exposed 
to 1 mg/m3. The absolute organ weight of the spleen de-
creased significantly in males and females exposed to 1, 5, 
and 25 mg/m3. The absolute organ weight of the kidneys 
decreased significantly in males exposed to 5 and 25 mg/m3 
and females exposed to 1, 5, and 25 mg/m3. However, the 
relative organ weight of the kidneys increased significantly 
in males and females exposed to 25 mg/m3. The absolute 
organ weight of the heart decreased significantly in males 
and females exposed to 5 and 25 mg/m3, and the relative or-
gan weight of the heart increased significantly in males and 
females exposed to 25 mg/m3. The absolute organ weight 
of the brain decreased significantly in males and females 
exposed to 25 mg/m3, and the relative organ weight of the 
brain increased significantly in males and females exposed 
to 5 and 25 mg/m3 (Table 5 and 6).

Gross lesion evaluations
Ballooning was observed in the lungs of males and fe-

males exposed to 1, 5, and 25 mg/m3, and red focus was 
observed in the lungs of males and females exposed to 25 
mg/m3. Increased size in the tracheobronchial lymph node 
was observed in males and females exposed to 1, 5, and 25 
mg/m3, and red focus and decreased size in the liver, spleen, 
and thymus were observed in males and females exposed to 
25 mg/m3. Additionally, decreased size was observed in the 
testes and epididymides of males exposed to 25 mg/m3, in 
the seminal vesicle and prostate of males exposed to 5 and 
25 mg/m3, and in the uterus and vagina of females exposed 
to 1, 5, and 25 mg/m3 (Table 7).

Histopathological examination
Nasal cavity

Squamous metaplasia of respiratory and transitional 
epithelium were observed in males and females exposed 
to 25 mg/m3. Degeneration of respiratory and transitional 
epithelium were observed in males and females exposed 
to 5 mg/m3. A decrease in number of mucous cells in the 
respiratory epithelium was observed in males and females 
exposed to 1 and 5 mg/m3. Atrophy of olfactory epithelium 
was observed in males and females exposed to 5 and 25 mg/
m3. Ulcer of transitional epithelium was observed in males 
exposed to 25 mg/m3 and females exposed to 5 and 25 mg/
m3. The severity of the nasal cavity lesion increased in a 
dose-related manner (Table 8 and Fig. 3A–D).

Table 4.	 Summary of Serum Chemical Parameters

Sex
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5

Male ALT (IU/L) 57.9 ± 6.28 53.18 ± 1.67 57.47 ± 8.81 72.78 ± 15.22
AST (IU/L) 76.84 ± 4.39 75.5 ± 9.76 92.2 ± 16.29 106.8 ± 9.88**
ALP (IU/L) 1009.54 ± 49.83 850.9 ± 65.91* 778.63 ± 58.64** 751.05 ± 84.64**
GLU (mg/dL) 144.9 ± 12.13 134.74 ± 9.45 115.57 ± 9.82 137.9 ± 25.65
BUN (mg/dL) 18.2 ± 1.92 17.22 ± 0.75 14.97 ± 0.51 21.53 ± 3.11
CREA (mg/dL) 0.37 ± 0.03 0.36 ± 0.02 0.37 ± 0.02 0.37 ± 0.02
T-CHO (mg/dL) 60.66 ± 7.44 76.42 ± 8.39 89.67 ± 9.92 79.7 ± 16.48
TG (mg/dL) 64.22 ± 12.47 47.54 ± 8.91 26.77 ± 3.12** 23.13 ± 5.14**
TP (g/dL) 5.76 ± 0.09 5.98 ± 0.23 5.73 ± 0.21 5.2 ± 0.25**
ALB (g/dL) 4.2 ± 0.07 4.34 ± 0.11 4.13 ± 0.12 3.78 ± 0.13

Female ALT (IU/L) 42.22 ± 2.66 42.36 ± 2.33 63.97 ± 9.60** 65.98 ± 7.33**
AST (IU/L) 75.42 ± 7.27 83.18 ± 4.37 91.8 ± 11.78 111.54 ± 7.61**
ALP (IU/L) 656.58 ± 39.43 651.92 ± 62 698 ± 73.72 640.14 ± 71.63
GLU (mg/dL) 108.76 ± 14.71 97.22 ± 8.18 130.3 ± 26.02 129.5 ± 25.48
BUN (mg/dL) 14.54 ± 0.81 16.56 ± 0.57 14.27 ± 0.59 23.74 ± 2.90**
CREA (mg/dL) 0.36 ± 0.01 0.36 ± 0.02 0.36 ± 0.02 0.33 ± 0.02
T-CHO (mg/dL) 93.54 ± 6.2 94.9 ± 2.58 80.23 ± 9.38 58.54 ± 8.13**
TG (mg/dL) 40.24 ± 9.24 23.46 ± 3.52** 19.9 ± 4.07** 24.86 ± 5.96*
TP (g/dL) 5.38 ± 0.18 5.5 ± 0.12 5.23 ± 0.23 4.78 ± 0.15**
ALB (g/dL) 3.98 ± 0.11 4 ± 0.07 3.83 ± 0.15 3.6 ± 0.12**

All values are expressed as mean ± SD. Significant differences compared with the control: *p<0.05, **p<0.01.
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Larynx
Squamous metaplasia of epithelium and inflammation 

of the lamina propria were observed in males and females 
exposed to 1, 5, and 25 mg/m3. Ulcer of the epithelium was 
observed in males exposed to 5 and 25 mg/m3 and females 
exposed to 25 mg/m3. The severity of the larynx lesion in-
creased in a dose-related manner (Table 8 and Fig. 3E–H).

Trachea
Degeneratoin of the epithelium was observed in males 

exposed to 1, 5, and 25 mg/m3 and females exposed to 5 and 
25 mg/m3. Necrosis of the epithelium was observed in males 
exposed to 25 mg/m3. The severity of the trachea lesion in-
creased in a dose-related manner (Table 8 and Fig. 3I–L).

Lung
Squamous metaplasia of bronchial and bronchiolar 

epithelium and alveolar emphysema were observed in males 
and females exposed to 5 and 25 mg/m3. Addtionally, ne-
crosis with inflammation; alveolar fibrosis; detachment of 
bronchial and bronchiolar epithelium; and peribronchiolar, 
perivascular, and alveolar inflammatory cell infiltration 
were observed in males and females exposed to 1, 5, and 
25 mg/m3. Alveolar hemorrhage was observed in males 
exposed to 5 and 25 mg/m3 and females exposed to 1 and 
25 mg/m3. Lymphoid hyperplasia of bronchus-associated 
lymphoid tissue (BALT) was observed in males and females 
exposed to 1, 5, and 25 mg/m3. Alveolar macrophage aggre-
gation was observed in males exposed to 0, 1, 5, and 25 mg/
m3 and females exposed to 1 and 25 mg/m3. The severity of 
the lung lesion increased in a dose-related manner (Table 8 
and Fig. 3M–P).

Table 5.	 Summary of Absolute Organ Weight
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats  5 5 5 5

Male Body weigh t(g) 197.264 ± 9.169 178.866 ± 6.031** 145.952 ± 4.916** 100.994 ± 4.790**
Brain (g) 1.687 ± 0.035 1.692 ± 0.065 1.636 ± 0.027 1.571 ± 0.036**
Heart (g) 0.656 ± 0.049 0.6 ± 0.023 0.484 ± 0.052** 0.403 ± 0.015**
Lungs (g) 0.861 ± 0.05 1.387 ± 0.137** 1.306 ± 0.094** 1.407 ± 0.119**
Liver (g) 6.336 ± 0.336 5.563 ± 0.316** 3.867 ± 0.203** 2.931 ± 0.194**
Spleen (g) 0.488 ± 0.039 0.418 ± 0.014** 0.318 ± 0.013** 0.22 ± 0.011**
Kidneys (g) 1.346 ± 0.055 1.271 ± 0.037 1.015 ± 0.035** 0.876 ± 0.068**

Female Body weigh t(g) 141.706 ± 5.599 130.036 ± 5.065** 105.012 ± 3.249** 74.874 ± 2.085**
Brain (g) 1.668 ± 0.029 1.6 ± 0.063 1.59 ± 0.056 1.546 ± 0.030*
Heart (g) 0.508 ± 0.022 0.468 ± 0.036 0.41 ± 0.015** 0.325 ± 0.019**
Lungs (g) 0.748 ± 0.088 1.04 ± 0.068** 1.104 ± 0.055** 1.328 ± 0.171**
Liver (g) 4.02 ± 0.166 3.53 ± 0.151** 2.897 ± 0.178** 2.222 ± 0.122**
Spleen (g) 0.368 ± 0.02 0.326 ± 0.018* 0.285 ± 0.015** 0.179 ± 0.013**
Kidneys (g) 1.124 ± 0.068 1.022 ± 0.048* 0.878 ± 0.025** 0.783 ± 0.030**

All values are expressed as mean ± SD. Significant differences compared with the control: *p<0.05, **p<0.01.

Table 6.	 Summary of Relative Organ Weight

Sex
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5

Male Body weight(g) 197.264 ± 9.169 178.866 ± 6.031** 145.952 ± 4.916** 100.994 ± 4.790**
Brain (%) 0.857 ± 0.044 0.947 ± 0.054 1.122 ± 0.049** 1.557 ± 0.055**
Heart (%) 0.333 ± 0.028 0.336 ± 0.016 0.331 ± 0.027 0.4 ± 0.021**
Lungs (%) 0.436 ± 0.014 0.775 ± 0.070** 0.897 ± 0.087** 1.398 ± 0.163**
Liver (%) 3.212 ± 0.074 3.109 ± 0.103 2.648 ± 0.054** 2.902 ± 0.131**
Spleen (%) 0.248 ± 0.024 0.234 ± 0.003 0.218 ± 0.006 0.219 ± 0.014
Kidneys (%) 0.683 ± 0.024 0.711 ± 0.009 0.696 ± 0.007 0.867 ± 0.051**

Female Body weight(g) 141.706 ± 5.599 130.036 ± 5.065** 105.012 ± 3.249** 74.874 ± 2.085**
Brain (%) 1.179 ± 0.057 1.232 ± 0.057 1.516 ± 0.077** 2.066 ± 0.071**
Heart (%) 0.359 ± 0.013 0.36 ± 0.025 0.39 ± 0.012* 0.435 ± 0.037*
Lungs (%) 0.527 ± 0.045 0.801 ± 0.075** 1.051 ± 0.044** 1.773 ± 0.216**
Liver (%) 2.837 ± 0.017 2.715 ± 0.056* 2.756 ± 0.088 2.968 ± 0.149
Spleen (%) 0.26 ± 0.009 0.251 ± 0.007 0.272 ± 0.01 0.239 ± 0.015
Kidneys (%) 0.729 ± 0.02 0.786 ± 0.018 0.836 ± 0.024 1.045 ± 0.015**

All values are expressed as mean ± SD. Significant differences compared with the control: *p<0.05, **p<0.01.
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Table 7.	 Summary of Gross Findings

Sex Organ Findings
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5

Male Unremarkable findings 0 0 0 0
Lungs Ballooning 0 5 5 5

Focus, red 0 0 0 4
Tracheobronchial lymph node Increased size 0 4 2 2
Liver Decreased size 0 0 0 5
Epididymides Decreased size 0 0 0 5
Prostate Decreased size 0 0 1 5
Seminal vesicle Decreased size 0 0 1 5
Spleen Decreased size 0 0 0 5
Testes Decreased size 0 0 0 5
Thymus Decreased size 0 0 0 5

Female Unremarkable findings 0 0 0 0
Lungs Ballooning 0 5 5 5

Focus, red 0 0 0 5
Tracheobronchial lymph node Increased size 0 3 2 3
Liver Decreased size 0 0 0 5
Spleen Decreased size 0 0 0 4
Thymus Decreased size 0 0 0 4
Uterus Decreased size 0 1 1 5
Vagina Decreased size 0 1 1 5

Table 8.	 Summary of Histopathology

Sex Organ Findings
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5
Male Nasal cavity Squamous metaplasia, respiratory epithelium + 0 0 0 1

++ 0 0 0 2
+++ 0 0 0 2

Degeneration, respiratory epithelium ± 0 0 2 0
+ 0 0 1 0

++ 0 0 1 0
+++ 0 0 1 0

Decreased  mucous cell, respiratory epithelium ++ 0 3 0 0
+++ 0 2 5 0

Squamous metaplasia, transitional epithelium ++ 0 0 0 3
+++ 0 0 0 2

Degeneration, transitional epithelium + 0 0 3 0
++ 0 0 2 0

Ulcer, transitional epithelium + 0 0 0 2
++ 0 0 0 1

Atrophy, olfactory epithelium ± 0 0 1 0
+ 0 0 4 0

++ 0 0 0 3
+++ 0 0 0 2

Larynx Squamous metaplasia, epithelium ± 0 2 0 0
+ 0 2 2 0

++ 0 1 1 3
+++ 0 0 2 2

Inflammation, lamina propria ± 0 1 3 1
+ 0 2 0 2

++ 0 0 2 0
+++ 0 0 0 1

Ulcer, epithelium ± 0 0 1 1
+ ++ 0 0 0 1
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Sex Organ Findings
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5
Trachea Degeneration, epithelium ± 0 3 0 0

+ 0 0 2 0
++ 0 0 3 2

+++ 0 0 0 3
Necrosis, epithelium ± 0 0 0 1

+ 0 0 0 1

Lung Squamous metaplasia, bronchial/ bronchiolar ± 0 0 1 0
+ 0 0 2 0

++ 0 0 2 0
+++ 0 0 0 1

++++ 0 0 0 4
Necrosis with inflammation, alveolar ++ 0 3 2 0

+++ 0 0 1 1
++++ 0 0 0 4

Fibrosis, alveolar ± 0 5 0 0
 + 0 0 5 0

++ 0 0 0 5
Detachment, bronchial/bronchiolar epithelium ± 0 3 2 0

+ 0 2 2 0
++ 0 0 1 5

Inflammatory cell infiltration, peribronchiolar/
perivascular/alveolar

± 0 3 0 0
+ 0 2 5 1

++ 0 0 0 4
Alveolar emphysema ± 0 0 4 0

+ 0 0 0 2
++ 0 0 0 3

Hemorrhage, alveolar ± 0 0 1 3
+ 0 0 0 2

Lymphoid hyperplasia, BALT ± 0 2 3 4
+ 0 1 2 0

Alveolar macrophage aggregation ± 1 1 2 1

Lymph node, Lymphoid hyperplasia ± 0 1 3 2

Tracheobronchial + 0 0 1 2

++ 0 2 1 1

+++ 0 2 0 0

Liver Atrophy ± 0 0 4 0
+ 0 0 1 2

++ 0 0 0 2
+++ 0 0 0 1

Spleen Atrophy ++ 0 0 3 0
+++ 0 0 2 5

Thymus Atrophy ± 0 0 0 1
++ 0 0 0 2

+++ 0 0 0 2

Prostate Atrophy + 0 0 1 0
++ 0 0 1 2

+++ 0 0 0 3

Seminal vesicles Atrophy + 0 0 3 0
++ 0 0 1 0

+++ 0 0 0 5

Epididymides Cell debris, luminal ± 1 1 0 0
+ 1 0 0 3

++ 0 0 0 1
+++ 0 0 0 1

Reduced sperm, luminal ± 1 0 0 0
+ 0 1 0 0

Testes Immaturity ± 0 0 0 1
++ 0 0 0 2

+++ 0 0 0 2

Table 8.	 Continued
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Sex Organ Findings
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5
Female Nasal cavity Squamous metaplasia, respiratory epithelium ± 0 0 0 2

+ 0 0 0 1
++ 0 0 0 2

Degeneration, respiratory epithelium ± 0 0 2 0
+ 0 0 1 0

++ 0 0 2 0
Decreased mucous cell, respiratory epithelium + 0 4 0 0

++ 0 1 0 0
+++ 0 0 5 0

Squamous metaplasia, transitional epithelium + 0 0 0 2
++ 0 0 0 1

+++ 0 0 0 2
Degeneration, transitional epithelium ± 0 0 4 0

+ 0 0 1 0
Ulcer, transitional epithelium +++ 0 0 3 1
Atrophy, olfactory epithelium ± 0 0 3 0

+ 0 0 2 0
++ 0 0 0 3

+++ 0 0 0 2

Larynx Squamous metaplasia, epithelium ± 0 2 0 0
+ 0 2 2 0

++ 0 1 1 3
+++ 0 0 2 2

Inflammation, lamina propria ± 0 2 2 1
+ 0 1 2 1

++ 0 0 1 1
+++ 0 0 0 1

Ulcer, epithelium ++ 0 0 0 1
+++ 0 0 0 1

Trachea Degeneration, epithelium ± 0 0 3 0
++ 0 0 0 3

+++ 0 0 0 2
Lung Squamous metaplasia, bronchial/ bronchiolar + 0 0 2 0

++ 0 0 3 1
+++ 0 0 0 0

++++ 0 0 0 4
Necrosis with inflammation, alveolar ± 0 1 0 0

+ 0 2 4 2
++ 0 0 1 2

+++ 0 0 0 1
Fibrosis, alveolar ± 0 5 0 0

+ 0 0 4 0
++ 0 0 1 4

+++ 0 0 0 1
Detachment, bronchial/bronchiolar epithelium ± 0 5 0 0

+ 0 0 2 1
++ 0 0 3 4

Inflammatory cell infiltration, peribronchiolar/
perivascular/alveolar

± 0 4 0 0
+ 0 1 5 0

++ 0 0 0 4
+++ 0 0 0 1

Alveolar emphysema ± 0 0 2 0
+ 0 0 2 0

++ 0 0 0 4
+++ 0 0 0 1

Hemorrhage, alveolar ± 0 1 0 2
+ 0 0 0 2

++ 0 0 0 1
Lymphoid hyperplasia, BALT ± 0 1 2 5

+ 0 0 2 0
Alveolar macrophage aggregation ± 0 3 0 2

Table 8.	 Continued
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Tracheobronchial lymph node
Lymphoid hyperplasia was observed in males and fe-

males exposed to 1, 5, and 25 mg/m3
. The severity of the tra-

cheobronchial lymph node lesion increased in a dose-related 
manner (Table 8).

Other organs
Atrophy of the liver was observed in males and females 

exposed to 5 and 25 mg/m3. Atrophy of the spleen was ob-
served in males and females exposed to 5 and 25 mg/m3. 
Atrophy of the thymus was observed in males exposed to 
25 mg/m3 and females exposed to 5 and 25 mg/m3. Atrophy 
of the prostate and seminal vesicle was observed in males 
exposed to 5 and 25 mg/m3. Cell debris was observed in the 
epididymides of males exposed to 0, 1, and 25 mg/m3, and 
reduced sperm was observed in males exposed to 0 and 1 
mg/m3. Immaturity was observed in the testes of males ex-
posed to 25 mg/m3. Atrophy of the ovary, uterus, and vagina 
was observed in females exposed to 5 mg/m3; 5 and 25 mg/
m3; and 1, 5, and 25 mg/m3, respectively (Table 8).

Discussion

In the present study, the treatment-related effects of 
PHMG·HCl in rats were observed in clinical signs; body 
weight gain; hematology and serum biochemistry; organ 
weight; gross lesions and histopathological lesions in the 
nasal cavity, larynx, trachea, lungs, tracheobronchial lymph 
node, liver, spleen, thymus, seminal vesicle, prostate, testes, 

epididymides, ovary, uterus, and vagina.
Body weights decreased significantly in males and fe-

male exposed to 1, 5 and 25 mg/m3 until termination of the 
study. In particular, body weight decreased far less than that 
in the start of the study in the male and female exposed to 
5 and 25 mg/m3, which corresponds to aggravated clinical 
signs including emaciation and rale observed in the males 
and females exposed to 25 mg/m3. This may be attributed 
to lung inflammation associated with cytokines and stress-
induced anorexia even though we did not evaluate food 
consumption in this study. Inflammatory cytokines and 
stress are reported to act on the hypothalamus and induce 
anorexia16, 17.

RBC, HCT, HGB, MCHC, MCH, MCV, RET, RET 
%, and PLT changed significantly in males and females ex-
posed to 1, 5, and 25 mg/m3. This may be attributed to de-
creased hematopoiesis caused by anorexia18, 19. In addition, 
MON%, NEU, NEU%, and LYM% changed significantly 
in males and females exposed to 5 and 25 mg/m3. This may 
be associated with inflammation lesions including necrosis, 
inflammatory cell infiltration, and fibrosis20. Moreover, de-
crease in LYM% may be associated with stress responses21.

Increase or increasing trends in ALT and AST was ob-
served in males and females exposed to 5 and 25 mg/m3. 
This may be attributed to atrophy of the liver 18, because 
integrity of hepatocyte membranes might be disrupted by 
a decrease in size of the hepatocytes, which causes leak-
age of enzymes. Increases or increasing trends in BUN was 
observed in males and females exposed to 25 mg/m3. This 

Sex Organ Findings
Group 0 mg/m3 1 mg/m3 5 mg/m3 25 mg/m3

No. of rats 5 5 5 5
Lymph node, Lymphoid hyperplasia ± 0 1 1 0
Tracheobronchial + 0 2 1 3

++ 0 2 2 2
+++ 0 0 1 0

Liver Atrophy ± 0 0 2 0
+ 0 0 1 2

++ 0 0 0 1
+++ 0 0 0 2

Spleen Atrophy ++ 0 0 4 0
+++ 0 0 1 4

++++ 0 0 0 1

Thymus Atrophy ± 0 0 2 0
+++ 0 0 0 5

Ovaries Atrophy + 0 0 0 2
++ 0 0 0 2

+++ 0 0 0 1

Uterus Atrophy + 0 0 3 0
++ 0 0 2 3

+++ 0 0 0 2

Vagina Atrophy, epithelial ± 0 5 1 0
+ 0 0 2 0

++ 0 0 1 0
+++ 0 0 1 5

Grade: ± : minimal, +: mild, ++: moderate, +++: marked, ++++: severe.

Table 8.	 Continued
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may be attributed to dehydration or catabolism of protein, 
because increases or increasing trends in RBC, HCT, HGB, 
MCH, and MCHC were observed 17, and clinical signs in-
cluded emaciation22, 23.

Changes in ALP, TG, TP, ALB and T-CHO were ob-
served in males and females exposed to 1, 5, and 25 mg/m3. 
This may be attributed to decreased food consumption19, 
which we speculate from decreased body weights even 
though we did not measure food consumption. Changes in 

the absolute and relative organ weights of the brain, heart, 
liver, spleen, and kidneys were observed in females exposed 
to 1, 5, and 25 mg/m3. These were associated with the de-
creased body weights of rats. Increases in the absolute and 
relative organ weights of the lungs were observed in males 
and females exposed to 1, 5, and 25 mg/m3. These may have 
been affected by lung inflammation24, 25.

Most of histological lesions (including degeneration, 
atrophy, ulcer, inflammatory cell infiltration, inflamma-

Fig. 3.	 Histopathology of rats exposed to PHMG·HCl. In the nasal cavity, (A, B) No abnormal lesion was observed in the control (A) and 1 mg/
m3 PHMG·HCl (B) groups. (C) Degeneration of respiratory epithelium (arrow) and transitional epithelium (arrowhead) in the 5 mg/m3 
PHMG·HCl group. (D) Squamous metaplasia of respiratory epithelium (arrow) and transitional epithelium (arrowhead) in the 25 mg/m3 
PHMG·HCl group. In the larynx, (E) No abnormal lesion was observed in the control group. (F, G) Squamous metaplasia of the epithe-
lium (arrow), inflammation of the lamina propria (arrowhead) in 1 (F) and 5 mg/m3 (G) PHMG·HCl groups and ulcer of the epithelium 
(white arrow) in 5 mg/m3 (G) PHMG·HCl group. (H) Ulcer of the epithelium (arrow) and inflammation of the lamina propria (arrowhead) 
in the 25 mg/m3 PHMG·HCl groups. In the trachea, (I) No abnormal lesion was observed in the control group. (J, K) Degeneration of 
the epithelium (arrow) in 1(J) and 5 mg/m3 (K) PHMG·HCl groups. (L) Necrosis of the epithelium (arrow) in the 25 mg/m3 PHMG·HCl 
group. In the lung, (M) No abnormal lesion was observed in the control group. (N) Detachment of the bronchiolar epithelium (arrow) 
in the 1 mg/m3 PHMG·HCl group. (O) Squamous metaplasia of bronchiolar epithelium (arrow) in the 5 mg/m3 PHMG·HCl group. (P) 
Alveolar fibrosis (arrow) in the 25 mg/m3 PHMG·HCl group. Scale bars=100 μm, Magnification: ×200, H&E staining.
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tion, and fibrosis in nasal cavity, larynx, trachea, and lungs) 
indicated tissue damage by test substance26. In particular, 
lesions in the lungs were observed mainly at the junction 
of terminal bronchioles and alveolar ducts (the centriaci-
nar region) where the velocity of air flow is decreased and 
aerosol particulates can be easily deposited and induce 
damage to cells25, 26. Similarly, a centrilobular pattern of le-
sions was also observed in human patients exposed to hu-
midifier disinfectants27. Many studies have reported that the 
toxicity of PHMG is related to oxidative stress. PHMG·P 
produces ROS in human alveolar A549 cells, mouse macro-
phage RAW264.7 cells, or in vitro air-liquid interface (ALI) 
co-culture models and causes fibrosis and inflammation 
via cellular signals, such as cytokines13, 28, 29. In particular, 
4-hydroxynonenal (4-HNE), an oxidative stress marker, was 
confirmed by immunohistochemistry in the macrophages of 
the fibrotic tissue and the bronchiolar epithelium, mainly in 
Clara cells in 13-week inhalation study of PHMG·HCl. This 
indicated that these cells plays a critical role in damaging 
the lung30.

Squamous metaplasia is considered to be an adaptive 
or protective response to irritation than a precursor to neo-
plastic lesions31. Notably, it has been reported that the larynx 
of rodents is more sensitively affected by inhaled xenobiot-
ics than those of non-rodents. However, these findings lacks 
relevance for humans because of differences in anatomical 
structures32. Even though squamous metaplasia is an adap-
tive or protective change, it should be considered an adverse 
effect because of the severity of the lesion and concomitant 
degenerative/necrotic and/or hyperplastic changes33. Inter-
estingly, the grade of squamous metaplasia of lung in our 
study is found to be more severe than that in 13-week inha-
lation study of PHMG·HCl (Inhalation concentration: 0 mg/
m3, 0.13 mg/m3, 0.4 mg/m3, and 1.20 mg/m3)30. This indicate 
that the epithelium of lung, mainly at the junction of termi-
nal bronchioles and alveolar ducts (the centriacinar region) 
is more severely damaged by PHMG·HCl and rapidly pro-
gressed to squamous metaplasia because of concentration 
of PHMG·HCl much higher than that in 13-week inhalation 
study period even though squamous metaplasia is generally 
found in long term study. These lesions of the respiratory 
system were also observed in a PHMG·P inhalation toxicity 
study 34.

Lymphoid hyperplasia of the tracheobronchial lymph 
node and BALT of the lung were observed in males and fe-
males exposed to 1, 5, and 25 mg/m3. These are considered 
to be immune responses to PHMG·HCl35. Atrophy of the 
liver and spleen are considered to be effects of decreased 
body weight in males and females exposed to 5 and 25 mg/
m3 36, 37. Atrophy of the thymus is considered to be a stress 
response affected by aggravated clinical signs including de-
creased body weight in males and females exposed to 5 and 
25 mg/m3 38. Atrophy of reproductive organs in both male 
and female rats indicate alteration of sexual hormones af-
fected by aggravated clinical signs including decreases in 
body weight39, 40.

In conclusion, two-week repeated whole-body inha-
lation exposure of rats to three different concentrations of 
PHMG·HCl reveled toxic effects on the respiratory system 
and secondary effect on other organs. The results of this 
study indicate that the no observable adverse effect level 
(NOAEL) for PHMG·HCl is below 1 mg/m3. The present 
study provides useful information regarding inhalation tox-
icity of PHMG·HCl.
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