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a b s t r a c t

Discovering gene regulatory relationships and reconstructing gene regulatory networks (GRN) based on
gene expression data is a classical, long-standing computational challenge in bioinformatics.
Computationally inferring a possible regulatory relationship between two genes can be formulated as
a link prediction problem between two nodes in a graph. Graph neural network (GNN) provides an oppor-
tunity to construct GRN by integrating topological neighbor propagation through the whole gene net-
work. We propose an end-to-end gene regulatory graph neural network (GRGNN) approach to
reconstruct GRNs from scratch utilizing the gene expression data, in both a supervised and a semi-
supervised framework. To get better inductive generalization capability, GRN inference is formulated
as a graph classification problem, to distinguish whether a subgraph centered at two nodes contains
the link between the two nodes. A linked pair between a transcription factor (TF) and a target gene,
and their neighbors are labeled as a positive subgraph, while an unlinked TF and target gene pair and
their neighbors are labeled as a negative subgraph. A GNN model is constructed with node features from
both explicit gene expression and graph embedding. We demonstrate a noisy starting graph structure
built from partial information, such as Pearson’s correlation coefficient and mutual information can help
guide the GRN inference through an appropriate ensemble technique. Furthermore, a semi-supervised
scheme is implemented to increase the quality of the classifier. When compared with established meth-
ods, GRGNN achieved state-of-the-art performance on the DREAM5 GRN inference benchmarks. GRGNN
is publicly available at https://github.com/juexinwang/GRGNN.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gene regulatory networks (GRNs) represent the causal regula-
tory relationships between transcription factors (TFs) and their
gene targets [22]. Integrating sufficient regulatory information as
a graph, GRNs are essential tools for elucidating gene functions,
interpreting biological processes, and prioritizing candidate genes
for molecular regulators and biomarkers in complex diseases and
traits analyses [22]. While high-throughput sequencing and other
post-genomics technologies enable statistical and machine learn-
ing methods to reconstruct GRN, inferring gene regulatory rela-
tionships between a set of TFs and a set of potential gene targets
through gene expression data is still far from being resolved in
bioinformatics [26].

With decades of efforts of inferring gene regulatory relation-
ships from gene expression data, many machine learning and sta-
tistical methods have been proposed for reconstructing GRN [26].
Unsupervised methods dominate GRN inference. These methods
include 1) regression-based methods, in which TFs are selected
by target gene through sparse linear-regression, such as TIGRESS
[14]; 2) information-based methods, such as ranking edges based
on variants of mutual information, e.g. ARACNE [23], CLR [8],
MRNET [24]; 3) correlation-based methods, such as the absolute
value of Pearson’s correlation coefficient and Spearman’s correla-
tion coefficient; and 4) Bayesian networks by optimizing posterior
probabilities using different heuristic searches [1]. Among all unsu-
pervised methods, GENIE3 [15] is a well-established and widely
accepted method based on ensemble random forest regression of
gene expression levels between TF and targets. In the DREAM5
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challenge on gene network inference [22], GENIE3 obtained the
best performance among all the methods at that time.

In recent years, due to the identification of a large number of
TFs and their targets, supervised approaches have been developed
to train classifiers to infer regulatory interactions. Many studies
have demonstrated that carefully trained supervised models out-
perform unsupervised methods [21]. These supervised methods
decompose the gene regulatory network inference problem into a
large number of subproblems to estimate local models for charac-
terizing the genes regulated by each TF [21]. Bleakley et al. firstly
reconstructed biological networks using local models in SVM [4].
Other SVM-based methods include SIRENE [27], CompareSVM
[10], and GRADIS [32]. Cerulo et al. used a probability estimation
approach to learn GRN from only positive and unlabeled data [5].

With recent advancements in deep learning, there is already
some work to predict gene regulatory relationships through the
deep learning framework. Daoudi and Meshoul trained a deep neu-
ral network on known TF and target pairs in each of the DREAM4
multifactorial data [7]. MacLean trained a shallow convolutional
neural network with known Arabidopsis TFs and target pairs with
microarray gene expression as the features [20]. Turki et al. used
unsupervised methods to train supervised models to guide SVM
and deep neural networks to infer GRNs through link prediction
[35].

However, these existing supervised GRN inferring methods
show limited usage in practical biological applications. Because
of heterozygous data sources, these supervised methods usually
have limited generalizable capabilities in complex biological
mechanisms. Most supervised models are formulated as the matrix
complementation problem. All the results are based on training
and testing on a single data source splitting into training/valida-
tion/testing datasets or in cross validation. For a practical GRN
inferring problem, there is usually no known relationship ready
for training, which makes it unfeasible to predict gene regulatory
relationships inductively in practice.

Moreover, gene regulatory activities always act as a whole sys-
tem with a set of genes to perform a biological function [19]. Net-
work motif [2] is a widely accepted biological hypothesis, that a
small set of recurring regulation patterns can serve as basic build-
ing blocks of GRN. The same network motifs have been found in
diverse organisms from bacteria to humans. However, these exist-
ing supervised GRN inferring methods usually only take the two
endpoints of the regulatory interactions as the input, and then
treat these known TF/target gene interactions independently in
the training processes, and hence neglect the global relationships
among these interactions. One of the related work to inductively
infer GRN is by Patel and Wang [30]. Based on SVM, they only
trained and tested 4 TFs with the largest degrees with inductive
and transductive inferences.

Instead of learning only two ends of the relationships, graph
models are capable of modeling complex relationships between
TF/gene pairs and their neighbors. Graph neural networks (GNN)
as a generalization of neural networks are designed to handle
graphs and graph-related problems as node classification, link pre-
diction, and graph classification [12]. Generally, GNNs consist of an
iterative process to propagate the node information. After h itera-
tions of the aggregation, each node in the graph can be presented
by a feature vector aggregating from its h-hop neighbors. The
entire graph can be represented by pooling on all feature vectors
of all nodes in the graph [33].

In the context of graph analysis, link prediction is one of the
major research areas of GNN [36]. Predicting links through an
auto-encoder or variational auto-encoder achieved great success
transductively [16,17]. Zhang and Chen firstly extracted local
enclosed subgraphs around links to train a fully connected neural
network in Weisfeiler-Lehman Neural Machine [38], and then SEAL
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[39] was proposed to use a GNN to replace the fully connected neu-
ral network.

Inspired by SIRENE [27], we extended SEAL by formulating the
GRN inference problem as a graph classification problem and pro-
pose an end-to-end framework gene regulatory graph neural net-
work (GRGNN) to infer GRN. The basic hypothesis is that the
features of two nodes and their neighbors (local structure) can
decide whether they form a TF and target gene pair, which is con-
sistent with the network motif hypothesis. The local structure as a
graph consists of gene pairs and neighbors, which can be distin-
guished through a classifier. For an unknown condition or species,
the biggest advantage in this formulation is inductive learning, i.e.,
GRNs can be constructed with the same input as the unsupervised
methods without using new labels in the new condition or species.

The major innovation in this paper is introducing heuristic
starting skeletons for inductive learning. The initial graph of genes
is built from one of several noisy skeletons based on different
heuristics on gene expression data. Then, the subgraphs centered
at known TF/gene pairs are extracted. A linked pair between a TF
and its target gene, and their neighbors are labeled as a positive
subgraph, while an unlinked TF/target gene pair and their neigh-
bors are labeled as a negative subgraph. GNN classifiers are trained
through these subgraphs, and then ensemble together to predict
links as graph labels in GRN. A semi-supervised framework is also
adopted to handle the unlabeled data.

To the best of our knowledge, this is the first work to infer gene
regulatory networks through graph neural networks. Our contribu-
tions in this paper are (1) introduction of a supervised/semi-
supervised graph classification framework for gene regulatory net-
work inference, (2) using noisy starting skeleton to guide link pre-
diction in the graph, and (3) efforts of inductive inference GRN
across different species and conditions.
2. GRGNN framework

Inferencing regulatory relationships in GRN can be defined as
follows: given a set of TFs T, a set of target genes G, and gene
expression data Ri;j, i 2 fT;Gg; j 2 ½1;n� for all T and Gwith n arrays,
infer the adjacency matrix AT;TþG for all T. GRN is defined as a bipar-
tite graph < T;G; E >, where both T and G are vertices in the graph.
E is the set of links in GRN. Link E only exists between ðT; TÞ and
ðT;GÞ, any ðG;GÞ R E. In the adjacency matrix A, Ai;j ¼ 1 if ði; jÞ 2 E
and Ai;j ¼ 0 otherwise. With the abundance of information of ver-
tices, Xi is the node information corresponding to a single node i.
dðx; yÞ is the shortest distance between node x and y. Node x is node
y’s h-hop neighbor when dðx; yÞ ¼ h. As this study aims to predict
link existence, E is always treated as an undirected edge in our
formulation.

Framework GRGNN is proposed to solve this problem. Fig. 1
shows the scheme of GRGNN. The whole processes of GRGNN con-
sist of the following four steps: 1) construct noisy starting skele-
tons; 2) extract enclosed subgraphs; 3) add node labels and
features; 4) build ensemble GNN classifiers. Finally, a semi-
supervised learning framework is proposed to deal with the unla-
beled links in GRN.
2.1. Construct noisy starting skeletons

In order to incorporate the local structure of the input, heuristic
methods are applied to infer relationships between TFs and their
target genes through the input of gene expression Rin both training
and testing datasets. Widely used Pearson’s correlation and Mutual
information can be used as the heuristics to connect nodes in the
study. Due to the limitation of existing heuristic methods, the



Fig. 1. GRGNN scheme. Noisy starting skeletons derived from Pearson’s correlation and mutual information are used to generate the enclosed positive subgraph centering
with A and B, and the negative graph centering with C and D. Graph neural networks as the agents are learned independently. An ensemble classifier is built upon these agents
and used for the link prediction through graph classification.
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inferred links are noisy, but integrating these links as a starting
skeleton can guide training.

In contrast to inherently unknown GRN, we define GRN0 as the
noisy skeleton inferred from the gene expression data. Totally k
noisy skeletons GRN0

i ¼< T;G; E0
i >; i 2 ½1; k� are constructed from

k heuristic functions. Given TF t and gene g, each heuristic function
Hiðt; gÞ 2 ½0;1�; i 2 ½1; k�. The adjacent matrix in the i-th noisy
skeleton is defined as:

At;g0 ¼
1
0

�
if Hiðt; gÞ >¼ thresholdi

otherwise
ð1Þ

The thresholds are set as the parameters for tuning.

2.2. Extract enclosed subgraphs

Most of TF and target pairs are actually unlabeled with
unknown regulatory information, and hence we predict them
using co-expression at the first-order approximation for the graph
topology GRN0

i. For each of the known regulatory partners t 2 T and
g 2 fT;Gg, ðt; gÞ 2 E, extract a subgraph SGiðt; gÞþ containing them-
selves and their h-hop neighbors on this noisy skeleton GRN0

i as the
positive subgraphs. Meanwhile, randomly select t 2 T and
g 2 fT;Gg, ðt; gÞ R E, extract a subgraph SGiðt; gÞ� containing them-
selves and their h-hop neighbors on the noisy skeleton GRN0

i as the
negative subgraphs. Although such a negative set may contain false
negatives due to undiscovered regulatory relationships, this is a
widely used process of choosing negative examples. To get a bal-
anced dataset, usually the number of negative links is chosen as
the same size as the positive links.

2.3. Add node labels and features.

A perfect hashing labelling [39] functionlabel ið Þis used for mark-
ing node i’ s roles inSGðt; gÞ:
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label ið Þ ¼ 1
1þminðdt þ dg þ ðd=2Þ½ d=2ð Þ þ d%2ð Þ � 1�Þ

if i ¼ tjg
otherwise

�

ð2Þ

where dt ¼ dði; tÞ, dg ¼ dði; gÞ, d ¼ dt þ dg , d=2ð Þ and d%2ð Þ are the
integer quotient and remainder of d divided by 2. Only the centered
target nodes t and g are labeled with 1, while the importance of
nodes decreases when the node is far away from the center nodes.
With appropriate labels, GNN can learn the structural information
whether a link exists between the target nodes.

As either a TF or a target gene, each node in GRN has abundant
information to reveal its biological roles. Generally, these features
can be categorized into explicit features and structural embeddings.
Only gene expression data are used to build node features. For gene
expression vector Riof gene i, i 2 fT;Gg, l is the mean and r is the
standard deviation. Q1; Q2 and Q3 are quantiles of expression val-
ues. Q0 and Q4 are set as the minimum and maximum expression
values.

After several experiments, gene expression features z-score [6],
standard deviation r, and four Quantile Percentage [3] are defined
as the explicit features to describe the distribution of the expres-
sion. z-score 2 ð�1;þ1Þ as Eq.3, r and four Quantile Percentage
2 ð0;1Þ as Eq. (4) along with TF 2 f0;1g

Z � scorei ¼ Ri � li

ri
ð3Þ

Quantile Percentagek ¼ Qkþ1 � Qk

Q4 � Q0
; k 2 f0;1;2;3g ð4Þ

Graph embedding is a learned continuous feature representa-
tion for nodes in networks. Node2vec is applied to learn a mapping
of nodes to a low-dimensional space of features that maximizes the
likelihood of preserving network neighborhoods of nodes [11].
Complementary to node labeling, graph embedding is aimed to
capture the topological structure of the networks with the diver-
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sity of connectivity patterns in networks. The graph embedding is
concatenated with explicit features together as the node feature
vectors. For different GRN0

i, the explicit features are consistently
similar for all the nodes sharing the same gene expression input.
These topological differences result in diverse node labels and
graph embedding.

2.4. Build ensemble GNN classifiers

With the whole graph and the node features as the input, any
GNN for graph classification could be used as a classifier. Here,
DGCNN [40] is used to address the graph classification, which
adopts a quasi Weisfeiler-Lehman subtree model [34] to extract
nodes’ local substructure features, and pool these nodes in order.
Finally, a convolutional network work (CNN) follows to read sorted
graph representations and make predictions.

For each GRN
0
i ¼ ðA0

i;RÞ, where the adjacent matrix A
0
i is built

from gene expression R, k GNN classifiers are built upon k sets of
positive and negative enclosed subgraphs based on k heuristic
functions. Then an ensemble classifier is built upon these k classi-
fiers. Define L as the logits of the last layer of GNN with a softmax
function, where w1 and w0 are neural weights for binary
prediction:

L ¼ log
ew1

ew0 þ ew1

� �
� log

ew0

ew0 þ ew1

� �
ð5Þ

For i 2 ½1; k�, ai is the weight, then the logits of the ensemble
classifier Lensemble can be defined as:

Lensemble ¼ a1L1 þ a2L2 þ :::þ akLk ð6Þ
subject to a1 þ a2 þ � � � þ ak ¼ 1 and Li > 0; i 2 ½1; k�. The parameter
a can be trained either through a neural network or a simple least
square regression.

2.5. Semi-supervised learning

A semi-supervised learning strategy is introduced to select a
reliable negative sample set from the unlabeled datasets. Inspired
by classical text classification S-EM [18], the basic idea is to build
and maintain a Reliable Negative sample set RN through training
iteratively. The process starts from randomly selecting samples
from unlabeled data, the initial negative samples trained and
tested by themselves are the initial RN. Keep RN and replace others
with other unlabeled samples, and then train and test themselves
iteratively. Each time keep negative samples as RN till equilibrium.
It’s an Expectation-Maximization (EM) process and is shown to be
successful in many other classification applications.

2.6. Scalability of GRGNN

One of the time-consuming parts of GRGNN practice is extract-

ing the enclosed subgraphs. The time complexity is OðnjV jhÞ and
the memory complexity is OðnjEjÞ for extracting n subgraphs in
h-hop, where jV j and jEj are numbers of nodes and edges in the
whole graph. If h is chosen as a small number, GRGNN can be
applied in GRN inference whole genome-wide, which typically
with tens of thousands of nodes at most.

2.7. GRGNN implementation

GRGNN is a versatile framework that fits for many alternatives
in each step. In its implementation, two classical context related-
ness measurements, Pearson’s correlation coefficient and mutual
information are used to calculate links as a noisy skeleton to guide
the prediction on the feature vectors of gene expression. In this set-
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ting, simply set a1 ¼ 0:5 and a2 ¼ 0:5 in the ensemble step already
obtained good results. GRGNN is implemented with Pytorch [29]
and tested under Linux Ubuntu 16.04. The code for GRGNN is avail-
able at https://github.com/juexinwang/GRGNN.
3. Experimental results

3.1. Benchmark dataset

In this study, three datasets from In silico, E. coli and S. cerevisiae
in the DREAM5 challenge [22] were used as the benchmark for
evaluating GRGNN. The details of the DREAM5 datasets and the
gold standard network of TF-target interactions are described in
Table 1. From Table 1, In Silico dataset is quite different from
E. coli and S. cerevisiae datasets in the scale of nodes, edges, average
degree per TF, and average degree per node. In this paper, we only
focus on the GRN inference performance on the E. coli and S. cere-
visiae datasets.
3.2. Comparing with supervised methods in transductive learning

We first compared GRGNN with other supervised methods in
classical transductive performances, which predict unknown given
parts of the known in the same species. Similar to other studies, 3-
fold cross-validation is adopted for E. coli and S. cerevisiae. In each
species, two-thirds of the regulatory relations are used for training,
and the remaining one third are used for testing model perfor-
mance. 1-hop GRGNN with an ensemble of both Pearson’s correla-
tion coefficient and mutual information is evaluated with the
baseline methods SVM and RF. The cutoff of Pearson’s correlation
coefficient is 0.8 and only mutual information larger than 3r is
chosen as the guiding edge. As the input graphs are relatively small
in scale, the dimension of the expression embedding feature vector
here is set as 1. SVM and RF are implemented through python
package sklearn [31]. To evaluate performances of the proposed
methods, negative samples are semi-supervised selected in the
same number as the gold-standard positive samples in both train-
ing and testing processes. Measurements such as accuracy, preci-
sion, recall, Matthews correlation coefficient (MCC), and area
under the curve (AUC) are used to evaluate the performances. All
the experiments are run 5 times and the mean and standard devi-
ation are taken. Table 2 is the 3-fold validation transductive learn-
ing results on both in E. coli and S. cerevisiae, which shows that
ensembled GRGNN performs better or at least the same with
SVM/RF in GRN inferences in nearly all the criteria.
3.3. Comparing with supervised methods in inductive learning

Then we compared GRGNN with other supervised methods in
inductive performances. Inductive learning is more challenging
than transductive learning for the model trained from E. coli was
applied to predict regulatory relationships in S. cerevisiae, and the
model trained from S. cerevisiae was used to predict E. coli. SVM
and Random Forest (RF) are also set as the baseline methods.
GRGNN in 0-hop is evaluated to get a fair comparison with the
baselines, which means no neighbor information from the graph
data structure is used with 0-hop, other than the graph embedding.
To quantify whether neighbors in the graph bring additional pre-
dictive power, 1-hop GRGNN is evaluated along with 0-hop
GRGNN. GRGNN guided by both Pearson’s correlation coefficient
and mutual information as the noisy starting skeleton is evaluated
individually with their ensemble form GRGNN-EN. For each of the
evaluations, node features with only explicit features are compared
with explicit features plus graph embedding learned from node2-
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Table 2
Evaluating transductive performance with supervised GRN inferring methods on balanced datasets.

Methods E. coli S. cerevisiae

Accuracy Precision Recall MCC AUC Accuracy Precision Recall MCC AUC

SVM 0.688 ± 0.000 0.762 ± 0.000 0.547 ± 0.000 0.393 ± 0.000 0.757 ± 0.000 0.575 ± 0.000 0.586 ± 0.000 0.506 ± 0.000 0.151 ± 0.000 0.601 ± 0.000
RF 0.770 ± 0.000 0.800 ± 0.000 0.721 ± 0.000 0.544 ± 0.000 0.837 ± 0.000 0.708 ± 0.000 0.730 ± 0.000 0.658 ± 0.000 0.418 ± 0.000 0.773 ± 0.000
GRGNN 0.786 ± 0.034 0.779 ± 0.047 0.875 ± 0.031 0.605 ± 0.047 0.903 ± 0.009 0.782 ± 0.044 0.786 ± 0.053 0.827 ± 0.043 0.571 ± 0.083 0.880 ± 0.010

Table 1
Details of DREAM5 datasets. Only E. coli and S. cerevisiae are used for the analysis.

Species #nodes #TF #Target Genes #Links #Samples #avg degree per TF #avg degree per node

In Silico 1643 195 1448 4012 805 2.442 20.57
E. coli 4511 334 4177 2066 805 0.458 6.19
S. cerevisiae 5950 333 5617 3940 536 0.662 11.83
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vec. All the parameters and evaluation measurements are the same
as transductive learning.

Table 3 is the evaluation results on these balanced datasets both
in E. coli and S. cerevisiae, which shows that ensembled GRGNN
outperforms SVM/RF in GRN inferences in nearly all the criteria.
Even though both GRGNN agents guided by noisy starting skele-
tons basically beat baselines in most cases, the ensemble of these
two agents of GRGNN_PC and GRGNN_MI could persistently
improve the results and help provide much more robust results.

Furthermore, the ablation tests demonstrate neighbor informa-
tion plays a vital role in GRN inferences. 1-hop GRGNN outper-
forms 0-hop GRGNN persistently in most of the criteria of both
datasets, which indicates integrating neighbors brings more pre-
dictive power to the graph model. Even considering training on
two endpoints without neighbors as degraded with 0-hop, GRGNN
outperforms SVM/RF with/without embedding features. This is due
to the pooling procedure of GNN, where GNN itself outperforms
SVM/RF. Even bringing some variances, adding graph embedding
of the enclosed subgraph generally improves the performances
for GRGNN. Especially, artificially involving graph embedding from
the enclosed graph significantly improves the performances of the
baseline SVM/RF, shows the power of neighbors. It could be
explained as structural information from the noisy skeletons is
involved as graph embedding in the training processes. In sum-
Table 3
Evaluating inductive performance with supervised GRN inferring methods on balanced da

Methods Features E. coli

Accuracy Precision Recall MCC

SVM E 0.621 ± 0.000 0.628 ± 0.000 0.594 ± 0.000 0.242 ± 0.000
G + E 0.704 ± 0.027 0.761 ± 0.009 0.596 ± 0.092 0.420 ± 0.045

RF E 0.568 ± 0.000 0.595 ± 0.000 0.423 ± 0.000 0.141 ± 0.000
G + E 0.635 ± 0.031 0.807 ± 0.057 0.359 ± 0.070 0.326 ± 0.061

GRGNN_PC
(hop0)

E 0.653 ± 0.001 0.652 ± 0.001 0.726 ± 0.153 0.306 ± 0.001
G + E 0.670 ± 0.150 0.677 ± 0.160 0.776 ± 0.134 0.352 ± 0.286

GRGNN_PC
(hop1)

E 0.586 ± 0.007 0.580 ± 0.007 0.625 ± 0.009 0.173 ± 0.014
G + E 0.696 ± 0.078 0.677 ± 0.062 0.773 ± 0.100 0.395 ± 0.160

GRGNN_MI
(hop0)

E 0.614 ± 0.002 0.581 ± 0.001 0.810 ± 0.025 0.251 ± 0.003
G + E 0.820 ± 0.008 0.874 ± 0.015 0.741 ± 0.034 0.647 ± 0.011

GRGNN_MI
(hop1)

E 0.652 ± 0.003 0.635 ± 0.002 0.718 ± 0.019 0.306 ± 0.006
G + E 0.767 ± 0.068 0.744 ± 0.077 0.847 ± 0.025 0.540 ± 0.134

GRGNN_EN
(hop0)

E 0.643 ± 0.000 0.619 ± 0.001 0.743 ± 0.002 0.293 ± 0.002
G + E 0.771 ± 0.100 0.766 ± 0.141 0.862 ± 0.076 0.568 ± 0.187

GRGNN_EN
(hop1)

E 0.656 ± 0.000 0.637 ± 0.000 0.730 ± 0.000 0.318 ± 0.003
G + E 0.809 ± 0.033 0.743 ± 0.069 0.853 ± 0.112 0.564 ± 0.153
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mary, GRGNN outperforms the baseline as it obtains predictive
power from neighbor information through the guidance of noisy
skeleton of embedding and ensemble processes.

3.4. Comparing with unsupervised methods

The inductive capability of supervised methods makes it com-
parable with unsupervised GRN inferring methods. For GRN, super-
vise learning on the extremely unbalanced dataset brings strong
bias in favoring negative samples. Take E. coli for example, there
are 334� ð4511� 1Þ ¼ 1;506;340 possible links in total, and only
2;066 among them are confirmed gold standard positive links.
Hence, a receiver operating characteristic (ROC) curve and
precision-recall curve for all the methods on both E. coli and S. cere-
visiae datasets were generated in Fig. 2. We chose the widely
accepted random forest based GENIE3 along with information
based ARACNE, CLR, and MRNET as the representative unsuper-
vised methods in comparison. In this study, the python implemen-
tation of GENIE3 is downloaded from its official GitHub repository.
The implementation of ARACNE, CLR, and MRNEAT in R package
minet [25] is employed for analysis. The default parameters were
applied on both E. coli and S. cerevisiae datasets, and the top
1,000,000 predicted links were used for evaluation. To fairly com-
pare unsupervised methods with supervised methods, GRGNN was
tasets. Feature E is the explicit expression features and G is graph embedding.

S. cerevisiae Note

Accuracy Precision Recall MCC –

0.505 ± 0.000 0.557 ± 0.000 0.056 ± 0.000 0.026 ± 0.000 Baseline
0.643 ± 0.000 0.941 ± 0.001 0.304 ± 0.000 0.387 ± 0.001 Enclosed

Graph + SVM
0.507 ± 0.000 0.520 ± 0.000 0.186 ± 0.000 0.019 ± 0.000 Baseline
0.658 ± 0.004 0.848 ± 0.012 0.384 ± 0.007 0.377 ± 0.009 Enclosed

Graph + RF
0.537 ± 0.000 0.674 ± 0.001 0.145 ± 0.000 0.121 ± 0.001 –
0.630 ± 0.072 0.777 ± 0.155 0.492 ± 0.290 0.306 ± 0.171 –
0.566 ± 0.000 0.662 ± 0.002 0.395 ± 0.280 0.164 ± 0.000 –
0.655 ± 0.059 0.746 ± 0.121 0.518 ± 0.078 0.343 ± 0.115 –
0.536 ± 0.000 0.678 ± 0.000 0.136 ± 0.001 0.119 ± 0.000 –
0.632 ± 0.175 0.866 ± 0.269 0.396 ± 0.070 0.321 ± 0.424 –
0.534 ± 0.001 0.571 ± 0.001 0.326 ± 0.117 0.079 ± 0.002 –
0.566 ± 0.202 0.695 ± 0.283 0.579 ± 0.149 0.150 ± 0.453 –
0.537 ± 0.000 0.676 ± 0.001 0.141 ± 0.000 0.120 ± 0.000 –
0.662 ± 0.090 0.818 ± 0.221 0.568 ± 0.229 0.388 ± 0.195 Baseline

Compared
0.570 ± 0.000 0.630 ± 0.002 0.340 ± 0.002 0.158 ± 0.001 –
0.684 ± 0.056 0.770 ± 0.147 0.574 ± 0.083 0.393 ± 0.135 Proposed

Method



Fig. 2. ROC curve and Precision-Recall curve on balanced training and testing.
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learned purely from the S. cerevisiae dataset in the study of E. coli,
and GRGNN and all unsupervised methods were fed with gene
expression data only from E. coli in testing (i.e., without using
any TF-target gene labels for training). The same protocol pro-
ceeded in the study of S. cerevisiae with trained GRGNN from
E. coli. All supervised methods were trained and tested on a bal-
anced dataset. In this experiment, GRGNN used its ensemble ver-
sion with 1-hop neighbors and graph embedding. The baseline
SVM used explicit features from genes only.

Fig. 2 shows that GRGNN outperforms all other methods on
both ROC curve and Precision-Recall curve. Our results are consis-
tent with existing works in supervised-unsupervised comparison
in GRN, that supervised methods are typically superior [21].
Besides, our results have demonstrated when training and testing
in different datasets, GRGNN has better generalization capability
inductively than GENIE3.
Fig. 3. Performances of GRGNN in different numbers of hops.
3.5. Inferring regulatory from a different number of layers

One common question in building the GNN models is how
many layers of neighbors are sufficient for graph inference. An
empirical test on dataset S. cerevisiae was processed by GRGNN.
Starting from choosing no neighbors, 0-hop GRN only relies on
the pooling process on all node presentations to make the predic-
tion. Then, layers and layers of neighbors were added into the
models incrementally until reaching hop-9, which means in this
case, the enclosing training and testing graph include far away
nodes in distance up to 9 from the centered linked TF and target
gene pairs.

Accuracy, precision, recall, and MCC are evaluated through
these models in Fig. 3, which indicates that the step adding 1-
3340
hop to 0-hop brings extra predictive power with the neighbors as
the local structure in the graph. After that, adding more hops does
not seem to bring significantly better results in GRN. This phe-
nomenon may indicate that few hops of GNN contain almost all
information for link prediction from its local structure in the graph,
as the information of other parts of the network may be encoded
well through graph embedding. In practice, 1-hop GRGNN itself
could get good results. Our results on GRN are consistent with
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the c-decaying theory [39], in which first-order and second-order
heuristics can be perfectly computed from 2-hop enclosing sub-
graphs, while high-order global heuristics can be approximated
from h-hop enclosing subgraphs with an exponentially smaller
error.
3.6. Heuristic starting skeletons help regulatory inference

Considering the factor that links existing only in a small propor-
tion between the available nodes in our DREAM benchmark net-
work, we generated random links between TFs and all the
TF/targets in the uniform distribution with probability 0.003. This
random network is used as the starting skeleton to replace the
informative heuristic starting skeletons generated from Pearson’s
correlation and mutual information. We run GRGNN 10 times with
hop 1 in the same setting in Table 3. For E. coli without graph
embedding features, the average and standard deviation of Accu-
racy, Precision, Recall, and MCC are 0.553 ± 0.027, 0.570 ± 0.044,
0.460 ± 0.113, 0.112 ± 0.058. For E. coli within graph embedding
features, the average and standard deviation of Accuracy, Precision,
Recall, and MCC are 0.571 ± 0.039, 0.597 ± 0.090, 0.574 ± 0.206, 0.
162 ± 0.086. When a change to probability 0.001, similar results are
observed on the same dataset and same parameter settings. For
E. coliwithout graph embedding features, the average and standard
deviation of Accuracy, Precision, Recall, and MCC are 0.610 ± 0.007,
0.597 ± 0.010, 0.683 ± 0.019, 0.223 ± 0.013. For E. coli within graph
embedding features, the average and standard deviation of Accu-
racy, Precision, Recall, and MCC are 0.577 ± 0.041, 0.565 ± 0.039,
0.760 ± 0.154, 0.172 ± 0.055. These weak prediction powers may
only come from the endpoints, random networks as the starting
skeleton brings random neighbors as the noises. Comparing with
results in Table 3, we can see our usage of Pearson’s correlation
and Mutual Information indeed brings useful information to the
model.

To test the influences of choosing heuristic parameters in the
starting skeleton, different Pearson’s correlation thresholds 0.8,
0.9, 0.95, and 1.0 are choosing extensively on 3-fold cross valida-
tion on S. cerevisiae. We run GRGNN 3 times with both hop 0 and
hop 1 in the same setting in Table 2. Table 4 details the results
in Accuracy, Precision, Recall, MCC, and AUC on S. cerevisiae with/
without neighbors. With different Pearson’s correlation, edges
involved in the study range in magnitude, but we can see the
GRGNN model is basically robust to these heuristics.
3.7. Inferring GRN in human studies

Comparing with gold-standard benchmarks in E. coli and S. cere-
visiae from the DREAM5 challenge, GRNs in the human species is
muchmore complex, and the regulatory relations differ in different
tissues and different conditions. It is extremely difficult to con-
struct benchmarks for the human species. To explore the perfor-
mances of GRGNN on human species, we use the same dataset
and similar strategy as studies in DoRothEA [9]. Only high confi-
dence literature curated 8,427 regulatory links from 795 TFs in
TRRUST database [13] are treated as the human GRN benchmarks.
RNA-seq data in 1,110 basal human cancer cell line (B3 dataset in
DoRothEA) is used as the input. We run 1-hop GRGNN 3 times
transductively in 3-fold cross validation. All the parameters and
settings are the same as Section 3.2. From Table 5, GRGNN outper-
forms SVM/RF baselines on the constructed benchmarks in Human
studies.



Table 5
Evaluating GRN inferring methods on Human studies.

Methods Accuracy Precision Recall MCC AUC

SVM 0.587 ± 0.000 0.576 ± 0.000 0.661 ± 0.000 0.177 ± 0.000 0.612 ± 0.000
RF 0.560 ± 0.000 0.593 ± 0.000 0.381 ± 0.000 0.128 ± 0.000 0.595 ± 0.000
GRGNN 0.828 ± 0.035 0.837 ± 0.022 0.849 ± 0.020 0.672 ± 0.055 0.933 ± 0.008
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4. Discussion

From the experiment’s results, the inductive prediction power
of GRGNN on GRN may come from the following aspects. (1)
Ensemble of various heuristic skeletons. Even a skeleton built from
Pearson’s correlation coefficient or mutual information has a rela-
tively low signal-to-noise ratio, an appropriate ensemble processes
in the end alleviated these noises along with diverse information
from different angles in linear correlation and information theory.
Meanwhile, training and testing the same source of heuristics
brings GNN opportunities to learn a mapping from the heuristic
to the genuine regulatory relationships. (2) Graph embedding cap-
tures network topological structures for link prediction. Consistent
with the biological hypothesis in GRN, subgraph with neighbors
is much more informative than the regulatory pairs itself. Learned
embeddings explored neighborhoods to have a better representa-
tion of the graph. This structural information may be used to
explain why nearly every model obtained better performances
when using graph embedding information. (3) Carefully selected
explicit features from gene expression. Gene expression is the main
input for GRN inferences. Comparing with learned embedding on
noisy skeletons, gene expression data are the direct and dominant
factors for relation inferences. To increase model generalization for
different species and conditions, z-score, standard deviation, and
quantile percentages are selected to describe the overall distribu-
tion and tendency of the input expression. (4) GNN as the graph
classifier. Different from success in the fixed grid of image classifi-
cation, a well-established convolution neural network cannot han-
dle graph well. Advances in representation, convolution, and
pooling on the graph data structure in GNN make high quality
graph classifier feasible. (5) Biological meaning in the graph formula-
tion. Subtracting a local graph as the regulatory unit is supported
by the network motifs hypothesis in transcription networks [2].
The same network motifs have already been observed to conserve
across diverse organisms. The formulation as a graph classification
inherently meets the biological meaning of GRN.

The main limitation of this work is the datasets used. E. coli and
S. cerevisiae are relatively well-studied small model species. These
data are the only benchmark having systematically clear, experi-
mental validated, gold standard regulatory relationships. Inductive
goals may be easy to obtain on these two species. With the expan-
sion of regulatory relationship identification and a deeper under-
standing of the regulatory mechanisms, GRGNN can be trained
and tested on more species such as human, mouse, and plants. Fur-
thermore, GRGNN is flexible for adopting different technologies in
setting up a heuristic skeleton, incorporating structural features,
and choosing different graph classifiers. For different purposes, it
has great potential to test combinations of other embeddings with
other cutting-edge classifiers such as DiffPool [37] and K-GNN [28].
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