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Abstract

Generation of allelic gene reporter mice has provided a powerful tool to study gene function in 
vivo. In conjunction with imaging technologies, reporter mouse models facilitate studies of cell 

lineage tracing, live cell imaging and gene expression in the context of diseases. While there are 

several advantages to using reporter mice, caution is important to ensure the fidelity of the reporter 

protein representing the gene of interest. Here we compared the efficiency of two Il9 reporter 

strains Il9citrine and Il9GFP in representing IL-9-producing CD4+ T-helper 9 (TH9) cells. Although 

both alleles show high specificity in IL-9-expressing populations, we observed that the Il9GFP 

allele visualized a much larger proportion of the IL-9 producing cells in culture than the Il9citrine 

reporter allele. In defining the mechanistic basis for these differences, chromatin 

immunoprecipitation and chromatin accessibility assay showed that the Il9citrine allele was 

transcriptionally less active in TH9 cells compared to the wildtype allele. The Il9citrine allele also 

only captured a fraction of IL-9-expressing bone-marrow-derived mast cells. In contrast, both the 

Il9citrine and Il9GFP reporter detected Il9 expression in type 2 innate lymphoid cells (ILC2) at a 

greater percentage than could be identified by IL-9 intracellular cytokine staining. Taken together, 

our findings demonstrate that the accuracy of IL-9 reporter mouse models may vary with the cell 

type being examined. These studies demonstrate the importance of choosing appropriate reporter 

mouse models that are optimal for detecting the cell type of interest as well as the accuracy of 

conclusions.
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Introduction:

Cytokines are soluble messenger proteins that allow cell to cell communication among 

immune system cells and other cells in the body during homeostatic maintenance and 

inflammatory immune responses. There are various techniques such as ELISA, flow-

cytometry and quantitative real-time PCR (qRT-PCR) that facilitate detection of cytokine 

mRNA and protein in vitro and ex vivo. However, these approaches have limitations for 

tracking cells in vivo and isolating cytokine-positive cells for functional analyses such as 

adoptive transfer. To overcome these challenges, reporter mouse models have been 

developed and widely used for easy detection and the lack of toxicity for the expressing 

cells.

Transgenic reporter mice represent a powerful approach to understand tissue development in 

vivo, signals regulating cell-fate decisions, cell lineage tracing and gene function in diseases. 

In the study of cytokine biology, commonly used approaches in the generation of reporter 

mouse models for lineage tracing include introduction of internal ribosome entry site 

(IRES)-reporter under the control of the promoter of target gene or reporter gene knock-in 

into the first exon of the target gene (1). In the first approach, the target gene remains intact, 

while in the second approach the target gene is disrupted. Both of these approaches allow for 

the detection of cells expressing the gene of interest (2). For example, IL-4 is a signature 

cytokine produced by TH2 cells that play a fundamental role in pathogenesis of humoral 

immunity, parasitic infections and allergic inflammatory diseases (3–9). In order to study the 

role of TH2 cells and other IL-4 producing cells, several IL-4 reporter mouse models have 

been generated and each has their advantages and disadvantages. IL-4/GFP-enhanced 

transcript (4get) mice were one of the first cytokine reporter mice generated to detect IL-4 

expression in situ (10). The 4get mice were made by inserting an internal ribosome entry 

site-green fluorescent protein (IRES-GFP) cassette into the 3’ untranslated region of the Il4 
locus. The IL-4 reporter 4get mice have played an important role in identification of other 

IL-4 secreting cells populations including natural killer (NK)T cells, basophils, eosinophils 

and mast cells (11–13). While the 4get mice identified IL-4 protein-expressing cells, the 

allele also expressed GFP when the allele was in an open and accessible conformation, but 

no Il4 mRNA was translated. To identify IL-4 secreting cells, a dual reporter system was 

generated by using 4get mice and human CD2/IL-4 reporter mice also known as knock-in 

hCD2 (KN2) mice(14). The KN2 mice were generated by replacing the first exon of mouse 

Il4 gene with the huCD2 cassette. The use of dual reporter system allowed identification of 

IL-4 competent cells that were GFP+ and IL-4 producing cells that were GFP+hCD2+. In a 

parallel approach to understand the function of IL-4 in vivo, GFP/IL-4 (G4) mice were also 

generated (15, 16). Here, the first exon and first intron of the Il4 gene were replaced by the 

gene encoding enhanced GFP creating mice that are deficient in IL-4 yet allow detection of 

IL-4 producing cells. Each of the knock-in IL-4 reporter mouse models have proven to be 

advantageous in studies defining the function of IL-4 in inflammatory diseases (17–19).

Interleukin-9 (IL-9) is another pleotropic cytokine associated with immunity to helminthic 

parasites and tumors, and a myriad of inflammatory diseases including allergic airway 

inflammation, and autoimmune disorders (20–24). In allergic airway diseases, IL-9 has been 

shown to increase accumulation of mast cells and eosinophils in the lung, promote IgE and 

Kharwadkar et al. Page 2

Immunohorizons. Author manuscript; available in PMC 2020 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



type-2 cytokine production, and hyperresponsiveness(25, 26). While the CD4+ T-helper 

subset called TH9 cells are predominant producers of IL-9, IL-9 producing cell types also 

include type-2 innate lymphoid cells (ILC2s), mast cells (MCs) and natural killer T (NKT) 

cells (26–31). With increasing evidence of the involvement of IL-9 and IL-9 producing cells 

in immunopathological diseases, several groups have generated IL-9 reporter mouse models 

to trace IL-9 producing cells in vivo (32, 33). The first IL-9 reporter mice successfully 

generated were IL-9 fate reporter mice. IL-9 fate reporter mice were made by introducing a 

first exon knock-in of Cre into an Il9 BAC (34). Surprisingly, the IL-9 fate reporter, crossed 

to mice with the Gt(ROSA)26Sortm1(EYFP)Cos/J allele, only detected 10% of the IL-9 

secreting T cells cultured in vitro. Still, the lineage tracer identified IL-9 secreting ILC and 

TH9 populations in several airway disease models.

Similar to IL-9 fate reporter mice, Gerlach et al. utilized Il9citrine mice generated by insertion 

of a citrine coding gene into the first exon of the endogenous Il9 gene which disrupted 

expression of endogenous Il9 but allowed detection of IL-9 producing cells in vivo in an 

IBD model, but only a fraction of IL-9 secreting cells from TH9 cultures (35). Similarly, 

Il99er mice, with enhanced YFP-IRES-Cre knock in to first Il9 exon, have been used to 

identify IL-9 producing T cells and ILC populations in acute allergic lung inflammation 

(36). Using a different approach Licona-Limon et al. generated the interleukin-9 

fluorescence enhanced reporter (INFER) mice, Il9GFP, by inserting an IRES-EGFP cassette 

at the 3’ end of the Il9 gene (37). In vitro T cell differentiation analysis showed that around 

80% of the IL-9 secreting population was also positive for the GFP reporter. The Il9GFP 

mice allowed detection of IL-9 secreting ILC and TH9 populations as well as quantitation of 

endogenous IL-9 production in a parasite model. Each of the IL-9 reporter mice generated 

thus far, show fidelity in detecting IL-9 producing cell populations, however, the efficiency 

in reporting for IL-9 expression varies in different models. Furthermore, the relative 

efficiency of these reporter mice in accurately detecting IL-9 production in different cell 

lineages remains unclear. In this study we demonstrate that there are differing efficiencies of 

Il9 reporter alleles in detecting IL-9 among distinct cell types.

Materials and methods:

Mice

Exon1-knock-in knock out Il9tm1Anjm (Il9citrine) mice and INFER Il9tm2.1Flv ( Il9GFP) mice 

were previously described, were obtained from Dr. Andrew NJ McKenzie’s and Dr. Richard 

A. Flavell’s laboratory (35, 37). The Il9citrine mice are on BALB/cJ genetic background 

while Il9GFP are on C57BL/6J (B6/J), accordingly BALB/cJ, C57BL6J (B6/J) and 129S 

(129S1/SvlmJ) mice were obtained from Jackson laboratory as background control. All 

experiments were done with 8–12 week-old mice.

In vitro T-cell differentiation

Naïve CD4 T cells were isolated from mouse spleens using CD4+CD62L+ T cell isolation 

kit provided by the supplier (Miltenyi Biotec). Cells were cultured in complete RPMI 1640 

media on anti-CD3 (2 Units/ml 145–2C11; BioXCell) coated-plates and soluble anti-CD28 

(2.5 μg/ml; BD Pharmingen) under TH9 polarizing conditions including: hTGF- β1 (2 ng/
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ml), IL-4 (20 ng/ml), hIL-2 (50 U/ml), anti-IL-10R (10 μg/ml) and anti-IFN-γ (10 μg/ml) 

(All cytokines were obtained from PeproTech and antibodies were obtained from BioXcell). 

On day 3, cells were expanded into fresh media containing the original concentrations of 

cytokines in the absence of co-stimulatory signals for an additional 2 days. On day 5, mature 

TH9 cells were harvested for further analysis.

In vitro bone-marrow derived mast cell (BMMC) generation

To generate bone marrow derived mast cells (BMMCs), bone marrow cells from WT or 

Il9citrine/citrine mice were isolated and red blood cells (RBCs) were lysed using Ammonium-

Chloride-Potassium (ACK) lysis buffer (LONZA). Cells were cultured in complete RPMI 

with IL-3 (10 ng/ml) and stem cell factor (SCF; 30 ng/ml) and allowed to mature for 21 

days.

Innate lymphoid cell isolation

For ILC2 isolation, WT and Il9citrine/citrine mice were treated intranasally (i.n.) with 0.5 μg of 

IL-33 for 3 days. On day 4, lungs were harvested, minced and incubated with 0.5 mg/ml of 

collagenase A (Roche) in Dulbecco’s modified Eagle’s medium (DMEM) at 37 °C for 45 

min. To generate single-cell suspension, digested lung tissue was passed through stainless 

steel meshed strainers and RBCs were removed by using ACK lysis buffer. Cells were 

further washed with phosphate-buffered saline (PBS) containing 0.5% bovine serum 

albumin (BSA) and filtered through 70 μm nylon mesh to remove debris. For intracellular 

staining of IL-9 in ILC2 subset, lung cells were re-stimulated with 50 ng ml−1 of IL-33 for 5 

hours and treated with monensin for 2 hours. ILC2 were identified as Lineage- (Lin-), 

CD45.2+, CD90.2 (Thy1.2)+, Sca-1+, Klrg-1+ and ST2+, and were stained for IL-9. For 

isolation of ILC2 subset, lung cell suspension was lineage-depleted using biotinylated 

antibodies including mouse lineage depletion kit and CD11c, CD19, DX5, and NK1.1 from 

Miltenyi Biotec. Lineage depleted lung cells were further stained for ILC2 markers 

including CD45.2, 104, BD Horizon; Klrg1, 2F1, BD Horizon; Sca-1, D7, BD Horizon; 

ST2, U29–93, BD Horizon and sorted on a BD FACS Aria II at the IUSM flow-cytometry 

core.

Quantitative real-time PCR

Total RNA was isolated from cells using Trizol (Life Technologies). RNA was reverse 

transcribed according to manufactures directions (Quantabio, Beverly, MA). qRT-PCR was 

performed with commercially available primers (Life Technologies) with a 7500 Fast-PCR 

machine (Life Technologies). Gene expression was normalized to housekeeping gene 

expression (β2-microglobulin). In case of qPCR for ChIP assay, SYBR green master mix 

(Applied Biosystems) was used for gene expression analysis (38).

Flow cytometric analysis

For cytokine staining, CD4+ T cells were stimulated with Phorbol 12-myristate 13-acetate 

(PMA, 50ng/ml, Sigma) and ionomycin (1ug/ml, Sigma) for 3 hours followed by monensin 

(2μM, Biolegend) for total 6 hours at 37ºC. BMMCs were treated with monensin and re-

stimulated with IL-33 (50 ng/ml) for 4 hrs. After re-stimulation, cells were washed with 
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FACS buffer (PBS with 0.5% BSA). CD4+ T, BMMCs or total lung cells were then stained 

with a fixable viability dye (eFluor780, eBioscience) and surface markers (CD4, GK1.5, 

Biolgend; CD90.2, 53–2.1, Biolegend; CD117 (c-kit), 104D2, Biolegend; FcεR1a, MAR-1, 

Biolegend; CD45.2, 104, BD Horizon; Klrg1, 2F1, BD Horizon; Sca-1, D7, BD Horizon; 

ST2, U29–93, BD Horizon and mouse lineage antibody cocktail, BD Pharmigen) for 30 min 

at 4 ºC followed by washing and fixation with 4% formaldehyde for 10 min at room 

temperature. For cytokine staining, cells were then permeabilized with permeabilization 

buffer (eBioscience) for 30 min at 4 ºC, and stained for cytokines (IL-9; RM9A4, Biolegend) 

for 30 min at 4 ºC.

Chromatin immunoprecipitation assay

In vitro-differentiated Th cells were activated with anti-CD3 for 3 hours and were 

crosslinked for 15 min with 1% formaldehyde at RT with rotation. The reaction was 

quenched by adding 0.125 M glycine and incubated at RT for 5 min. Fixed cells were lysed 

with cell lysis buffer, followed by nuclear lysis buffer. Nuclei were degraded and 

chromosomal DNA were fragmented to a size range of 200–500 bp through ultrasonic 

processor (Vibra-cell). After sonication, the supernatant was diluted 10-fold with ChIP 

dilution buffer. After pre-clearing, the supernatant was incubated with the ChIP antibodies at 

4 °C overnight with rotation. The following day, immunocomplexes were precipitated with 

Protein Agarose A or G beads at 4 °C for 2–4 h. Immunocomplexes were washed with low 

salt, high salt, LiCl and two times with TE buffer. After elution followed by reverse 

crosslinks, DNA was purified and analyzed by qPCR. After normalization to the Input DNA, 

the amount of output DNA of each target protein was calculated by subtracting that of the 

IgG control. Quantification of ChIP assay by qPCR was performed using primers as 

described (38).

Chromatin accessibility assay

Chromatin was isolated from in vitro-cultured T cells and re-stimulated for 3 hours with 

anti-CD3. Chromatin was digested with nuclease (Nse) mix using the EpiQuik chromatin 

accessibility assay kit (Epigentek). Isolated chromatin was divided into two, one for 

nuclease treatment, and another for non-treatment. After incubation at 37 °C for 4 min, 

reaction was quenched by adding reaction stop solution. Samples were incubated with 

proteinase K at 65°C for 15 min to degrade any contaminating proteins. DNA was purified 

followed by qPCR to amplify DNA fragment with primers for Il9 CNS regions (same as 

ChIP primers) or Hbb-bs for negative control (F: 5′-gagtggca- cagcatccagggagaaa-3′, R: 5′-
ccacaggccagagacagcagccttc-3′) The fold enrichment (FE) was calculated by the formula: FE 

= 2^(Nse CT − no Nse CT) × 100%.

Statistical analysis

All the data was analyzed using two-tailed Student’s t test to generate p-value. Post hoc 

Tukey test was used for multiple comparisons. p ≤ 0.05 was considered statistically 

significant.
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Results:

Il9+/citrine reporter mice inadequately report for IL-9 expression in TH9 cells differentiated in 
vitro

To characterize T-helper 9 cells in more detail, we sought to profile IL-9 reporter expression 

in two distinct IL-9 reporter mice, Il9+/citrine or Il9+/GFP, that have been previously used to 

identify IL-9-producing cells in disease models. Naïve CD4 T cells from Il9+/citrine or 

Il9+/GFP were cultured under TH9 polarizing conditions for 5 days in vitro and IL-9 or 

reporter expression was monitored through each day of TH9 differentiation. Flow-cytometric 

analysis showed that in the Il9+/citrine cultures, there were small populations of IL-9+ and 

citrine+ cells, which were largely mutually exclusive. Since each allele produces only one of 

the detected proteins, it suggests there is monoallelic expression of Il9 alleles within cells 

(Fig. 1A). There was a large increase in IL-9 staining on day 4, but far less of an increase in 

citrine expression, with citrine detecting only about a third of the IL-9-producing cells (Fig. 

1A). On day 2 and 3 of Il9+/GFP cell culture, there were significant amounts of GFP detected 

in the absence of IL-9 production, suggesting that the reporter is indicating gene 

competence. By day 4, there is a predominant population of IL-9+ GFP+ cells in the 

Il9+/GFP cell culture (Fig. 1A). To further quantify expression from these alleles, we 

performed qRT-PCR. The relative amount of GFP transcript expressed by the Il9+/GFP allele 

was about half that of Il9 (Fig. 1B). However, citrine expression was less than 10% of Il9 
transcript levels (Fig. 1B). In addition to examining reporter expression in TH9 cells in 

heterozygous IL-9 reporter mice, we also assessed the reporter expression in reporter allele 

homozygous mice. Similar to Il9+/citrine TH9 cultures, the Il9citrine/citrine cells reported only 

7% of the TH9 culture (Fig. 1C), whereas, Il9GFP/GFP cells reported for about half of the TH9 

culture (Fig. 1C). The distinct function of the reporters was not due to differences in the 

background of the mice as TH9 cultures from BALB/c mice, C57BL6 mice and 129S mice 

(which were used to generate the citrine allele (35)). had similar percentages of IL-9+ TH9 

cells (Fig. 1D).

Disruption of exon-1 region in Il9 gene in Il9citrine/citrine reporter mice reduced 
transcriptional activity at the Il9 locus in TH9 cells

The decreased ability of the citrine allele to report for IL-9 production suggested that 

targeting the exon1 region at Il9 locus may have interfered with regulation of the reporter 

allele. Recent studies have identified and reported conserved non-coding sequence (CNS) 

regions across the Il9 locus that play an important role in Il9 gene transcription and 

regulation (38, 39) (Figure 2A). To define how targeting the first exon of Il9 affected gene 

activity, we measured chromatin accessibility across the conserved noncoding sequence 

(CNS) regions at the Il9 locus in both BALB/c and Il9citrine/citrine mice (38). The Il9 locus in 

TH9 cells cultured from Il9citrine/citrine mice was much less accessible than the wild-type 

allele (Figure 2B). To determine whether the disruption of the exon-1 region of the Il9 locus 

in Il9citrine mice affected transcriptional activity, we performed chromatin 

immunoprecipitation assays to assess histone modifications at the intronic, exonic and 

conserved CNS regions of the Il9 locus in BALB/c, C57BL/6, 129S, Il9citrine and Il9GFP Th9 

cultures. H3K27 acetylation, a mark of open chromatin was similar among Th9 cells from 

BALB/c, C57BL/6, 129S and Il9GFP although it was considerably lower in the Il9citrine 
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cultures (Fig. 2C-D). H3K4 trimethylation, a mark of active transcription demonstrated a 

similar pattern in the wild type strains, but was lower in the Il9GFP Th9 cells, and almost 

undetectable in the Il9citrine cultures (Fig. 2C-D). The pattern of RNA pol II binding across 

the locus varied greatly among the wild type strains suggesting strain-specific patterns of pol 

II pausing on the allele (Fig. 2C-D). The Il9GFP Th9 cells showed a unique peak in the 3’ 

end, suggesting a link to the IRES element (Fig. 2D). In contrast, the Il9citrine Th9 cells had 

barely detectable RNA pol II binding (Fig. 2C). Together these findings demonstrated that 

disruption of the exon-1 region of Il9 gene impaired transcriptional activity of the Il9citrine 

reporter allele in TH9 cells.

In contrast to TH9 and mast cells, Il9citrine/citrine reporter mice demonstrated higher IL-9 
reporter expression in ILC2 population compared to wild-type allele.

In addition to TH9 cells, mast cells and ILC2s have also been described as potent IL-9 

producers (28, 33, 40). To investigate whether Il9citrine/citrine mice differentially reported for 

other IL-9 producing cells we looked at IL-9 and reporter expression in bone-marrow 

derived mast cells (BMMCs) re-stimulated with IL-33. As in TH9 cells, Il9citrine/citrine 

reported for less than half of the IL-9 production in ckit+ FcεR1α+ BMMCs cultured in vitro 

(Figure 3). We were unable to detect consistent IL-9 production in mast cell cultures from 

wild-type and Il9GFP/GFP mice on the C57BL/6 background in these studies.

In order to examine whether the Il9citrine/citrine and Il9GFP/GFP allele exhibited a similar 

pattern of reporter expression in ILC2 populations, Il9citrine/citrine and Il9GFP/GFP mice along 

with their respective wild-type background (BALB/c and C57BL/6) mice were intranasally 

challenged with recombinant IL-33 for 3 days (Figure 4A). On day 4, lungs were harvested 

and samples were analyzed for IL-9 or reporter expression in the ILC2 population defined as 

Lin- CD45.2+ Sca1+ Klrg1+ ST2+ Thy1.2+ cells. Using flow-cytometry, we observed that in 

contrast to TH9 and mast cells, both Il9citrine/citrine and Il9GFP/GFP mice reported higher 

percentages of IL-9-producing ILC2 cells than wild-type mice, although the increase in 

Il9GFP/GFP mice was not significant (Figure 4B-D). We then sorted ILC2 populations from 

the lungs of Il9+/citrine and Il9GFP mice intranasally challenged with rIL-33 for 3 days and 

measured transcript level expression of IL-9 and the respective reporter and compared 

expression to in vitro derived Th9 cells examined in Fig. 1 and 2. Comparing the ratio of 

reporter:Il9 gene expression in TH9 and ILC2 populations in the respective reporter mice, we 

observed that the Il9citrine allele preferentially reported for IL-9 in ILC2 cells when 

compared to Th9 cells, and the Il9GFP allele trended in that direction (Figure 4E). 

Importantly, the Il9citrine allele in ILC2s reported approximately 100 times more expression 

than in the TH9 population, whereas the Il9GFP allele showed differences that were more 

modest and not statistically significant. These findings indicate that there are important 

differences in how a reporter allele identifies cytokine expression in distinct cells types and 

that knock-in to a coding sequence or modifying the target gene locus has the potential to 

interfere with locus expression. This is an important caveat in interpreting experiments using 

various reporter mice.
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Discussion:

Reporter mice serve as a remarkable tool to identify gene function and detect cells 

expressing the gene of interest in vivo with minimal toxic effects. However, the fidelity of 

the reporter to identify populations of cells expressing the gene of interest and the efficiency 

in reporting for gene expression needs to be defined for each model as well as cell type. In 

this study we examined the fidelity and efficiency of two IL-9 reporter mice in identifying 

the IL-9 secreting T cells cultured in vitro. Our results showed that although both Il9GFP and 

Il9citrine mice identified IL-9 secreting cells, the Il9GFP mice detected a majority of the IL-9-

producing T cells whereas the Il9citrine mice identified ~20% of the IL-9 secreting T cells in 

vitro. Thus, different approaches for targeting a gene of interest can result in differing 

efficiencies of reporting.

The mechanisms for the functional differences between reporter alleles are still not entirely 

clear. Although the Il9citrine allele maintains specificity for expression in TH9 cells (35, 41), 

it is likely that the Il9citrine allele disrupts a regulatory element that contributes to Il9 
expression in T cells and mast cells, consistent with the altered chromatin modifications 

observed at the Il9citrine allele. Deletion of the Il9 enhancer region CNS −25 was similarly 

crucial for Il9 gene regulation in T cells and mast cells but not in the ILC2 population (38, 

39). Thus, these findings indicate that the first exon of the Il9 locus may be important in 

transcriptional regulation of Il9 in T cells. In contrast to the lack of expression of the 

Il9citrine allele in T cells, ILC2 cells show enhanced reporter protein and mRNA compared to 

IL-9 protein and Il9 mRNA for both reporter strains. The differences in protein could result 

from differences in protein half-lives of reporter versus cytokine, and of fluorescent proteins 

among cell types. The differences in mRNA might result from altered regulation of the gene, 

but it is also possible that the gene encoding the fluorescent protein confers greater stability 

to the mRNA in ILC2 cells. These distinctions would require more detailed analyses.

The expression pattern observed in the Il9citrine mice is similar to the previously generated 

Il9Cre fate-reporter mice where only 10% of IL-9 secreting T cells were identified by the 

IL-9 fate-reporter mice (34). Both Il9citrine and IL-9 fate reporter mice were generated by 

knocking in the reporter into the first exon of Il9 gene. Consistent with these observations, 

Schwartz et. al. noted substantial differences between gene expression patterns observed in 

IL-9 fate reporter mice compared to Il9GFP mice in a papain-induced allergic airway disease 

model (42). These identified differences in expression efficiency among Il9 reporter allele 

across cell lineages requires a reexamination of conclusions regarding the relative 

contributions of cells producing IL-9. In models of airway inflammation and rheumatoid 

arthritis it was concluded that ILC2s are the primary producer of IL-9 (34, 43, 44). The IL-9 

fate reporter and Il9citrine mice used in these studies more efficiently identifies IL-9 

expression in ILC2 than TH9 cells, potentially underrepresenting the role of TH9 cells. Until 

IL-9 conditional mutant mice are used to selectively remove IL-9 production in specific 

populations the definitive answer to the major or required source of IL-9 will be unclear. 

More than likely the cellular source of IL-9 will vary depending on the model and type of 

inflammation.
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Another potential concern in reporter alleles is elimination of the endogenous gene, as 

occurs in the Il9citrine mice, if there is positive feedback on gene expression. Indeed, in mast 

cells IL-9 can amplify its own production as well as the production of other type 2 cytokines 

(45). However, in multiple experiments with Th9 cultures where IL-9 is blocked during 

culture or supplemental IL-9 is added during culture, we have not observed any changes in 

IL-9 production at the end of the culture (not shown). Thus, the reduced IL-9 production in 

the Il9citrine Th9 cultures is unlikely to be from a lack of a positive feedback from IL-9 itself.

The Il9citrine allele is clearly less active. Compared to either BALB/c or 129S control cells 

the allele was less accessible, had less H3K27 acetylation and less H3K4 trimethylation. 

These markers of active genes also correlated with less RNA pol II binding. In contrast, the 

Il9GFP allele had normal H3K27 acetylation. The decreased H3K4 trimethylation at the 

Il9GFP allele was surprising given the expression of the allele. However, this might be a 

result of IRES effects on the rest of the gene. In fact, we observed unique peaks at exon 5 for 

RNA pol II binding in the Il9GFP allele that support a role for the IRES in altering 

transcription patterns at the Il9 locus. Together these results suggest that reporter alleles, 

regardless of targeting strategy, likely alter the chromatin structure of the allele, and that 

inadvertently targeting regulatory elements or inserting IRES sequences will both have 

effects.

Reporter alleles can also help define the monoallelic expression observed in some cytokine 

genes. For example, Hollander et. al, first reported monoallelic expression of IL-2 in mature 

thymocytes and T cell populations identified using polymorphisms in alleles (46, 47). 

Interestingly Naramura et al., showed that CD4 T cells cultured from IL-2-GFPki mice (GFP 

knocked into Il2 locus) failed to exhibit monoallelic expression or allelic exclusion (48). 

These observations suggest that gene regulatory elements including exons, introns, promoter 

and enhancer regions can influence allelic expression in specific cells types. The Il9citrine 

TH9 cultures early in differentiation do show early exclusion, showing preferential 

expression of either IL-9 or citrine. However, at the later stages of differentiation there are 

double-positive cells, suggesting that exclusion is not complete. It is possible that while 

gaining competence for expression, there is monoallelic expression, but as the cell becomes 

more differentiated, both alleles are expressed. Importantly, the early exclusion is not 

observed in the Il9GFP allele since both IL-9 and GFP can be generated from the same allele.

There is also the question of whether alleles report strictly for expression, or also for 

competence of the allele, as observed in 4get mice (10). In the Il9GFP allele, generated with 

an IRES insertion like the 4get allele, there are large populations of GFP+ cells during early 

TH9 differentiation, when IL-9 protein secretion is absent. That observation parallels data 

from the 4get mice that showed GFP expression where there was no Il4 mRNA. This parallel 

suggests that competency of the locus is being reported and that the allele might be useful in 

analysis of changes in chromatin structure at the Il9 locus.

Our results have demonstrated that different approaches to targeting the Il9 locus in the 

generation of a reporter allele result in reporters that have efficiencies that vary with cell 

type. This is an important consideration in selecting alleles for the studies of specific cell 

types and presents caveats for studies where positive cells could not be identified. In these 
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situations, it is possible that technical issues with a reporter allele could be responsible for 

negative results. Whether this paradigm is restricted to the Il9 locus, or whether it is broadly 

applicable to other reporter alleles will be defined as studies with these reagents continues.
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Figure 1: Profile of fluorescent protein expression in Il9 reporter mice
A. Reporter expression measured over a period of 5 days during TH9 differentiation in vitro 

from Il9+/citrine or Il9+/GFP mice. B. mRNA expression of Il9 and respective reporter (citrine 

or GFP) measured on day 4 of TH9 differentiation. C. IL-9 reporter expression by day 5 TH9 

cells cultured in vitro from in Il9citrine/citrine and Il9GFP/GFP mice. D. IL-9 production by day 

5 TH9 cells cultured in vitro from BALB/c, C57BL6 and 129S mice Data are mean ± SEM 

of 3 mice per experiment and representative of at least two independent experiments. 

*p<0.05.

Kharwadkar et al. Page 14

Immunohorizons. Author manuscript; available in PMC 2020 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Disruption of Il9 exon 1 impaired transcriptional activity
A. Schematic of conserved non-coding sequences (CNS) at the Il9 locus. (B-F) Naive CD4+ 

T cells from wild-type or Il9citrine mice were cultured in TH9 conditions for 5 days and 

restimulated with PMA and ionomycin for 3 hours upon harvest on day 5. B. Chromatin 

accessibility assessed at Il9 locus in BALB/c and Il9citrine/citrine allele. C. Relative amounts 

of H3K27ac, H3K4me3 and RNA polymerase-II at Il9 locus in TH9 cells examined ChIP-

qPCR in BALB/c and Il9citrine/citrine mice. D. Relative amounts of H3K27ac, H3K4me3 and 

RNA polymerase-II at Il9 locus in TH9 cells examined ChIP-qPCR in C57BL6, 129S and 

Il9GFP/GFP mice. Data are mean ± SEM of 3 mice per experiment and representative of two 

independent experiments.
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Figure 3: Il9 reporter expression in BMMCs compared.
IL-9 and citrine expression in BMMCs derived from wild-type or Il9citrine/citrine mice. Data 

are mean ± SEM of 3 mice per experiment and representative of two independent 

experiments. *p<0.05.
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Figure 4: Il9citrine/citrine and Il9GFP/GFP mice selectively reported IL-9 production in ILC2s.
A. Schematic of rIL-33 intranasal challenge in Il9+/citrine mice for generation and detection 

of lung ILC2 population. B. Gating strategy for identification of ILC2 population in the lung 

defined as Lineage-CD45+Klrg1+Sca1+Thy1.2+ST2+. C. Detection of IL-9 and citrine 

reporter production in lung ILC2s. D. Detection of IL-9 and GFP reporter production in lung 

ILC2s. E. Ratio of reporter:Il9 allelic expression in TH9 cells (as generated in Fig 1) and 
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ILC2 subsets. Data are mean ± SEM of 3 mice per experiment and representative of two 

independent experiments. *p<0.05.
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