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Abstract 

Background:  Among all causes of death, cancer is the most prevalent and is only outpaced by cardiovascular 
diseases. Molecular theory of carcinogenesis states that apoptosis and proliferation are regulated by groups of tumor 
suppressors or oncogenes. Transcription factors are example of proteins comprising representatives of both cancer-
related groups. Exemplary family of transcription factors which exhibits dualism of function is Activating enhancer-
binding Protein 2 (AP-2). Scientific reports concerning their function in carcinogenesis depend on particular family 
member and/or tumor type which proves the issue to be unsolved. Therefore, the present study examines role of the 
best-described AP-2 representatives, AP-2α and AP-2γ, through ontological analysis of their target genes and inves-
tigation what processes are differentially regulated in 21 cancers using samples deposited in Genomic Data Analysis 
Center (GDAC) Firehose.

Methods:  Expression data with clinical annotation was collected from TCGA-dedicated repository GDAC Firehose. 
Transcription factor targets were obtained from Gene Transcription Regulation Database (GTRD), TRANScription 
FACtor database (TRANSFAC) and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text min-
ing (TRRUST). Monocle3 R package was used for global samples profiling while Protein ANalysis THrough Evolutionary 
Relationships (PANTHER) tool was used to perform gene ontology analysis.

Results:  With RNA-seq data and Monocle3 or PANTHER tools we outlined differences in many processes and signal-
ing pathways, separating tumor from normal tissues or tumors from each other. Unexpectedly, a number of altera-
tions in basal-like breast cancer were identified that distinguished it from other subtypes, which could bring future 
clinical benefits.

Conclusions:  Our findings indicate that while the AP-2α/γ role remains ambiguous, their activity is based on pro-
cesses that underlie the cancer hallmarks and their expression could have potential in diagnosis of selected tumors.
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Background
Following cardiovascular diseases, cancer is character-
ized by the second highest global mortality rate of any 
disease [1]. Many paradigms have been developed to 
explain the process of cancer development [2–4]—among 

them is the molecular theory of carcinogenesis associ-
ated with tumor suppressors and oncogenes [5], hav-
ing its origin in the twentieth century [6]. It postulates 
that carcinogenesis is determined by alterations in 
cancer regulatory genes, of which two crucial groups 
are tumor suppressors and oncogenes, both responsi-
ble for apoptosis and proliferation regulation [7] being 
utmost importance in the model of cancer platform [8]. 
Nonetheless, occurrence of cancer-related genes dem-
onstrating concurrently suppressive and oncogenic 
characteristics is definite for instance in transcription 
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factors (TFs) [9]. Of these, probably the best known is 
Guardian of the Genome (p53 protein), whose correct 
activity requires that all of its subunits are not mutated 
and that no dominant negative effect occur [10]. In addi-
tion, the members of the Activating enhancer-binding 
Protein 2 (AP-2) family also demonstrate ambiguity; of 
these, AP-2α exhibits dualism of function depending on 
its related signaling pathway [11, 12]. Another AP-2 pro-
tein, AP-2γ, was thought to have oncogenic activity since 
its transcriptional activity is inhibited by WW Domain 
Containing Oxidoreductase (WWOX) tumor suppressor 
after its sequestration outside the nucleus [13]. However, 
the other reports indicating that AP-2γ induces expres-
sion of p21 protein suggest that it may also demonstrate 
anti-tumoral traits [14], presenting contrasting function 
which prompts consideration.

The entire AP-2 family fits within the basic Helix–
Span–Helix (bHSH) superclass and comprises the five 
members (AP-2α, AP-2β, AP-2γ, AP-2δ, AP-2ε) encoded 
by TFAP2A-E genes [15]. The activation domain is 
located in the amino terminus, whereas the sequences 
responsible for dimerization and binding of DNA are on 
the side of carboxyl terminus [16]. All members recog-
nize specific G/C-rich evolutionarily conserved motifs 
i.e. GCCN3/4GGC, GCCN3/4GGG or CCC​CAG​GC [17, 
18] while the binding of transcription factors’ themselves 
is dictated by a proline-rich motif located in the activa-
tion domain (excluding AP-2δ, which lacks these criti-
cal residues) [15]. Cytogenetically, AP-2 family members 
are encoded on the sixth chromosome, except AP-2γ 
and AP-2ε which are on the twentieth and first chromo-
somes, respectively [16]. When functioning correctly, 
the AP-2 transcription factors regulate appropriate gene 
expression during early developmental processes such as 
face, eye or limb development [19]. It was suggested that 
in the case of mutation, the loss of TF activity of AP-2 
members can lead to the impairment of proliferation, 
differentiation and apoptosis processes [16], suggesting 
AP-2 activity may play role in development. Indeed, both 
AP-2α and AP-2γ have prognostic value for some tumor 
types. AP-2α overexpression is recognized as a prognos-
tic indicator of shorter patient survival in papillary thy-
roid carcinoma and epithelial ovarian cancer but longer 
survival in gastric adenocarcinoma [20–22]. In terms 
of AP-2γ, its overexpression was also associated with 
poorer overall survival in breast cancer patients [23] with 
the other literature data to support this statement and 
enrich it with correlation presenting worse anti-hormone 
therapy response [24]. The other case of chemoresist-
ance (to 5-fluorouracil) was shown in colorectal cancer 
upregulating AP-2γ [25] while endometrial cancer exam-
ple demonstrated that knockdown of this AP-2 member 

sensitizes cells to megestrol acetate via Estrogen receptor 
alpha (ERα) expression upregulation [26].

Literature data indicates that the activity of AP-2 in 
carcinogenesis is very much dependent on specific family 
members. The most recent scientific reports concern the 
first three transcription factors, while the least is known 
about AP-2δ or AP-2ε. The best described factors, AP-2α 
and AP-2γ, play distinct roles depending on tumor type, 
as noted in a recent review [15]; however; this summary 
has since been enriched with additional tumor models 
not available at that time. These findings confirm that 
AP-2α activity is influenced by tumor tissue type: while it 
was found to demonstrate oncogenic activity in cervical, 
gallbladder and ovarian cancer [27–29], it has been also 
seen to act as a suppressor in many other tumors [11, 30–
35]. AP-2γ has been conclusively demonstrated to play 
an oncogenic role in breast cancer [36] (which coincides 
with previous evaluation) and furthermore expanded 
with its unfavorable characteristics in colorectal cancer 
[25]. The last representative of the AP-2 family abun-
dantly described in the literature is beta member. Lat-
est data regarding contribution in cancer indicates that 
AP-2β overexpression has been found to promote tumor 
growth in both breast and thyroid cancer and predicted 
poor prognosis or tumor progression, respectively [37, 
38]. Finally, although little is known of AP-2δ and AP-2ε, 
the former is thought to be associated with progression 
and genomic instability of prostate cancer while the latter 
acts as a tumor suppressor in neuroblastoma [39, 40].

The precise functionality of AP-2 factors in cancer 
clearly remains unknown. Therefore, the aim of the pre-
sent study was to clarify the role of transcription factors 
AP-2α and AP-2γ in carcinogenesis using samples (RNA-
seq) acquired from 21 cancers of The Cancer Genome 
Atlas (TCGA) and Monocle3 or Protein Analysis 
Through Evolutionary Relationships (PANTHER) bioin-
formatics tools. The study identifies the processes which 
are differentially regulated between the studied cancer 
types, compare the findings with those of normal tissue 
and identifies whether any differences exist in the expres-
sion of target genes for these factors in specific types of 
tumors.

Methods
Acquisition of tumor patients’ data
RNA-seq expression data with corresponding clini-
cal annotation was collected from 21 tumors (Table  1) 
of TCGA-dedicated GDAC Firehose Repository (level 
3 RNA-seqV2, RSEM normalized, data status of 28th 
Jan 2016 available at https​://gdac.broad​insti​tute.org/). 
Patients that lacked expression or clinical data were dis-
carded from the study. Available normal, paired solid 

https://gdac.broadinstitute.org/
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tissues were additionally retrieved through R-dedicated 
package TCGA-Assembler [41].

AP‑2α and AP‑2γ target genes identification
Targets for both transcription factors were identified 
through several databases: GTRD (version 19.10 [42, 
43]), TRANSFAC (version 2019.2) and TRRUST (version 
v2). Excluding duplicates, there were 4810 and 5175 tar-
gets for AP-2α and AP-2γ, respectively.

Global profiling of the tumors and ontological annotation
Phenotype heterogeneity between selected tumors 
accompanied by normal tissues was studied and visu-
alized by applying the UMAP method preceded by 
principle component analysis (PCA) regarding the 
expression of the targets of both AP-2α and AP-2γ 
using the Monocle3 R package (https​://cole-trapn​ell-
lab.githu​b.io/monoc​le3/) [44]. The analyses of AP-2α 
and AP-2γ targets were performed as two separate 
entities accordingly. The PCA pre-processing step 
(preprocess_cds()) was done with the dimensionality 
of the reduced space of 100 (num_dim). Reduction of 
dimensions (reduce_dimension()), and clustering of the 
individuals (cluster_cells()) within spaces were applied 
with the UMAP algorithm for dimensionality reduction 

method upon which to base clustering (reduction_
method). The clusters of individuals were compared 
with graph_test() function based on Moran’s I spatial 
autocorrelation analysis with knn neighbor graph and 
q-value threshold of 0.05. Furthermore, the genes vary-
ing across the clusters selected at the previous step 
were grouped into modules through Louvain commu-
nity analysis (find_gene_modules()) with parameters 
set to default. The modules were clustered in two ways: 
1) clustering involving all of the individuals enabling 
to compare between tumors and tumor vs non-tumor 
samples of specific cancer type and 2) clustering of the 
modules restricted to the BRCA foci enabling to dif-
ferentiate between PAM50 subtypes, separately for 
AP-2α and AP-2γ targets. Finally, the results were vis-
ualized with pheatmap() and clustered with the Ward 
D2 method. The whole pipeline was performed accord-
ing to the Monocle3 tutorial (https​://cole-trapn​ell-lab.
githu​b.io/monoc​le3/). To annotate the findings in the 
context of the biological processes in which they are 
involved, overrepresentation test available at PAN-
THER Classification System (http://www.panth​erdb.
org/) with Fischer’s Exact Test and Bonferroni correc-
tion for multiple testing were performed. The method-
ology is graphically summarized in Fig. 1.

Table 1  Cohorts selected from GDAC Firehose Repository

Cohort Description

BLCA Bladder urothelial carcinoma

BRCA​ Breast invasive carcinoma

CESC Cervical and endocervical cancers

COAD Colon adenocarcinoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

THCA Thyroid carcinoma

UCEC Uterine corpus endometrial carcinoma

Fig. 1  Visualization of the methodology

https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
http://www.pantherdb.org/
http://www.pantherdb.org/
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Results
Identification of global differences using toolkit for spatial 
analysis
Considered cohorts were clustered according to designed 
variable discriminating tumors and their corresponding 
normal tissues (marked with an additional prefix "n_"). 
Their distribution across Uniform Manifold Approxima-
tion and Projection (UMAP) dimensions was presented 
according to the genetic targets for a given transcription 
factor (AP-2α or AP-2γ). The analysis based on AP-2α 
identified a group of cancers distinct from other sepa-
rated clusters but to a lesser extent from the correspond-
ing normal tissue: LIHC, KIRP, KIRC, PRAD, SKCM, OV, 
THCA, BRCA, STAD, LUAD and PAAD. In some cases, 
one cancer type coincided in the plot with another (form-
ing a “cluster”) e.g. GBM and LGG, COAD and READ. 
Surprisingly, the remaining tumor reservoir (BLCA, 
CESC, UCEC, ESCA, HNSC, LUSC) formed a heteroge-
neous mixed cluster together with their normal tissues, 
albeit with deviations for ESCA and LUSC. The same 
tendencies as of AP-2α were observed in terms of AP-2γ 
targets, although with minor differences—these are col-
lectively presented in Fig. 2.

In the next stage, distribution in the UMAP1 and 
UMAP2 dimensions was further analyzed with regard 
to differences in expression of the transcription factor 
itself. Global similarities were observed in the case of 
both AP-2α or AP-2γ expression; however, some excep-
tions were observed e.g. AP-2α expression was higher 
in SKCM while AP-2γ was higher in THCA (Fig.  3a, b, 
respectively). Evident differences in expression were 
observed between kidney tumors (KIRC, KIRP) and nor-
mal kidney tissue; this is not surprising in the case of 
AP-2α which has been suggested as a biomarker in renal 
carcinoma [45, 46] however our findings suggest that 
AP-2γ may have the same properties.

Furthermore, due to noticeable separation of breast 
cancer samples visible for both target gene lists (Fig. 2), 
possession of extraordinary tumor profiling signature 
(Prosigna Breast Cancer Prognostic Gene Signature 
Assay—PAM50) prompted us to perform additional 
analyses to assess the subtypes’ separation by TFs tar-
get genes. For both AP-2α or AP-2γ, differences were 
observed in the PAM50 classifiers of breast cancer indi-
cating that the basal-like subtype was different from the 
others (Fig. 4a, b, respectively).

Lastly, heatmaps were generated to arrange the tran-
scription factor target genes into modules with common 
expression profile, indicating how these modules differ 
between clusters; this approach allowed more specific 
differences between individual cancers, the tumor and 
the corresponding normal tissue or intrinsic subtypes 
to be identified (Figs. 5, 6). The content of modules from 

particular analysis type has been summarized in the 
Additional file  1. At first glance, signaling by the AP-2 
targets in tumor tissue is congruent to signaling in the 
corresponding normal tissue for PAAD, LIHC, THCA 
and SKCM (in the case of AP-2α) or for PAAD, THCA 
and SKCM (in the case of AP-2γ). However, the analysis 
of signaling through TF targets in the remaining clus-
ters indicated a large number of modules that could be 
used to distinguish the tumor from normal tissue (the 
latter taken as a reference), or the basal-like BRCA sub-
type from the luminal A/B and HER2-enriched subtypes. 
The proposed modules taken for further comparisons 
between tumor and normal tissue or between different 
tumor tissues are summarized in Table  2 (AP-2α) and 
Table 3 (AP-2γ). In the case of differences between BRCA 
subtypes, the modules 6, 12 and 13 were taken for subse-
quent consideration for the AP-2α target gene list while 
5, 13, 19 modules for AP-2γ.

Another approach was to distinguish different cancer 
types with similar sites of origin. The following compari-
sons were used for gene modules generated from AP-2α 
and AP-2γ targets: COAD versus READ, LGG versus 
GBM, LUSC versus LUAD and KIRC versus KIRP. For 
AP-2α, COAD and READ gave similar results; however, 
LGG versus GBM were differentiated by modules 10 and 
13, LUSC versus LUAD for modules 6, 9, 11, 15 and KIRC 
versus KIRP for modules 1, 3, 4, 6, 13, 16, 19. Regarding 
AP-2γ, COAD versus READ were differentiated by mod-
ule 9, LGG versus GBM with module 5, LUSC versus 
LUAD with modules 7, 10, 12, 15 and KIRC versus KIRP 
with modules 3, 4, 12, 16.

The differences between tumors were then identified 
from a heterogeneous mixed cluster. Using modules 2, 
11, 19 with target genes for AP-2α, the entire selection 
was divided into two different “communities”—LUSC, 
ESCA, HNSC and UCEC, BLCA, CESC. The same ten-
dency could be explained using module 17 of AP-2γ tar-
gets with additional dissimilarities in UCEC versus LUSC 
or ESCA versus BLCA which can be explained by the 
inverse of module 15 or 6, respectively.

Gene ontology of modules distinguishing specific 
comparisons
Analyzing a multitude of comparisons in the form of 
modules diversifying groups (from the previous sec-
tion) led to the extraction of genes for their subsequent 
ontological analysis. The greatest attention was paid to 
modules showing the opposite tendency in the context 
of expression of genes contained therein. As previously, 
the following distinctions were made: between the can-
cer and the corresponding normal tissue, between similar 
tumors or between PAM50 classifiers for breast cancer.
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Comparisons by means of target genes for AP‑2α 
transcription factor
Differences between tumors and normal tissues indi-
cated changes in processes (e.g. apoptosis, proliferation, 
cell migration, cell cycle, cytoskeleton organization, cell 
adhesion or angiogenesis) and signal transduction path-
ways (e.g. ERBB, Wnt, MAPK and Notch) which are 

visualized in Fig. 7. In regards to alterations between dif-
ferent types of tumors, they were approximate to above 
mentioned however additional processes such as regu-
lation of cell shape were also noticeable (Fig. 8). Further 
data such as specific genes that described a particular 
module during ontological analysis, as well as statistical 
significance, are reviewed in Additional file 2.

Fig. 2  Spatial analysis showing differences between tumors and corresponding normal tissues. a AP-2α target gene list. b AP-2γ target gene list
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Comparisons by means of target genes for AP‑2γ 
transcription factor
In the case of second AP-2 family representative, tumor 
versus normal tissue changes also affected processes 
(e.g. autophagy, adhesion, vesicle budding, extracellular 
matrix organization, apoptosis, cell growth and spread-
ing) and signaling pathways (e.g. TNF, EGFR, Wnt, 

JAK-STAT, mTOR, NFkB and TGFβ) which is summa-
rized in Fig. 9. Regarding variation between tumors, no 
additional processes other than those mentioned above 
were identified, even though different modules were 
used (i.e. module 6) (Fig.  10). The specific genes that 
characterizing individual modules through ontological 
analysis, together with their statistical significance, are 
recapitulated in Additional file 3.

Fig. 3  Differences in expression of TF-encoding gene among tumor types and corresponding normal tissues. a TFAP2A. b TFAP2C
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Comparisons of breast cancer intrinsic PAM50 subtypes
Pursuing the scheme of previous subsections, gene 
ontology of modules distinguishing basal-like BRCA 
signature from other subtypes indicated differences e.g. 

in apoptosis, cytoskeleton organization, autophagy, but 
also in EGFR, TNF, Wnt or cadherin signaling pathway. 
The results are summarized in Fig.  11 and Additional 
file 4.

Fig. 4  Spatial analysis showing differences between BRCA subtypes using target genes of a particular transcription factor. a AP-2α. b AP-2γ
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Fig. 5  Heatmap presenting modules of transcription factor target genes differentiating tumors and corresponding normal tissues. a AP-2α targets. 
b AP-2γ targets. The prefix "n_" was added to indicate non-cancer tissue corresponding to the appropriate tumor type
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Fig. 6  Heatmap presenting modules of transcription factor target genes differentiating PAM50 BRCA subtypes. a AP-2α targets. b AP-2γ targets
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Validation of the Results
Validation of the findings based on independent adequate 
cohorts for all considered tumors was not performed due 
to lack of relevant expression data.

Discussion
Carcinogenesis is shaped by both tumor suppressors 
and oncogenes where one group of crucial proteins that 
demonstrate such duality of function are transcription 
factors. Available literature indicates that the character 
of AP-2 factors depends on the particular family repre-
sentative or considered tumor type. Assurance definitely 
applies to fact that AP-2α and AP-2γ have been described 
to the greatest extent compared to other family members.

Unlike previous papers, the present study examines 
the activities of the target genes of AP-2α and AP-2γ in 
more than 20 solid tumors from the TCGA database. The 

observed alterations in the expression of transcription 
factors and their effect on target genes identified pro-
cesses that can potentially distinguish the tumor from its 
corresponding normal tissue or from other tumor types.

Regarding the first type of comparisons, a multitude 
of differences were observed; these allowed the identifi-
cation of more than one module that could distinguish 
tumor tissue from corresponding normal tissue, with 
ontological descriptors concerning both biological pro-
cesses and molecular pathways. A few modules from 
AP-2α target genes list explained the differences for sev-
eral tissues at once: modules 2, 11 and 12 respectively dif-
ferentiated CESC and UCEC, HNSC and KIRC, as well as 
COAD, ESCA and STAD from their corresponding nor-
mal tissues. Module 2 has been described as implicated 
in cell cycle regulation as well as the apoptotic pathway, 
with the cell cycle being differentially regulated between 
cervical cancer versus solid normal tissue samples [47] 
or uterine corpus endometrial carcinoma versus nor-
mal controls [48]. Following, in module 11 the processes 
involving e.g. MAPK activity was noticed which could 
support previous observations that MAPK may play a 
role in HNSC and KIRC carcinogenesis [49, 50]. Lastly, 
module 12 was annotated with processes involved in cell 
cycle or cell adhesion. Differences in cell cycle regulation 
were previously found between tumor tissue and paired 
normal samples of colon adenocarcinoma [51], while cell 
adhesion processes were found to distinguish tumor sam-
ples from normal tissue in esophageal carcinoma [52] or 
gastric cancer [53].

The remaining modules selected for gene ontology 
analysis indicated differences in PRAD, LUSC, BLCA, 
GBM, READ, LUAD, BRCA and KIRP between tumors 
and their matched solid normal tissues. Module 18 
shown alterations in apoptosis, the ERBB pathway and 
regulation of cytoskeleton organization between PRAD 
and its paired control which is consistent with previous 
findings for programmed cell death [54] and ERBB sign-
aling [55]. The other pathway shown was Wnt, describ-
ing lung squamous cell carcinoma versus normal tissue 
differences with module 15 which corresponded to lit-
erature data on cellular levels of this protein [56]. Fur-
thermore, “regulation of cell cycle” or “response to drug” 
descriptors of module 13 explained bladder cancer versus 
normal bladder tissue; this is consistent with current sci-
entific reports where the drug resistance is dependent on 
the JUND representative of the Jun family [57, 58], which 
was a part of AP-2α target genes list forming module 13 
along with two other Jun members. Module 10 concerns 
the misfolding of proteins which appeared to be crucial 
mechanism of lipid storage or increased cellular prolif-
eration and varied between glioblastoma multiforme and 
corresponding normal tissue [59]. Module 8 revealed 

Table 2  Proposed modules distinguishing the  tumor 
from  corresponding normal tissue by  means of  AP-2α 
targets

Cancer tissue versus normal tissue Module

KIRP versus n_KIRP 1

CESC versus n_CESC/UCEC versus n_UCEC 2

BRCA versus n_BRCA​ 3

LUAD versus n_LUAD 6

READ versus n_READ 8

GBM versus n_GBM 10

HNSC versus n_HNSC/KIRC versus n_KIRC 11

COAD versus n_COAD/ESCA versus n_ESCA/STAD versus 
n_STAD

12

BLCA versus n_BLCA 13

LUSC versus n_LUSC 15

PRAD versus n_PRAD 18

Table 3  Proposed modules distinguishing the  tumor 
from  corresponding normal tissue by  means of  AP-2γ 
targets

Cancer tissue versus normal tissue Module

BLCA versus n_BLCA 1

STAD versus n_STAD 2, 5

KIRP versus n_KIRP 3

BRCA versus n_BRCA​ 8

KIRC versus n_KIRC 12, 20

ESCA versus n_ESCA/LUAD versus n_LUAD 12

LUSC versus n_LUSC 12, 15

HNSC versus n_HNSC 12, 17

GBM versus n_GBM/CESC versus n_CESC/UCEC versus n_UCEC 17

LIHC versus n_LIHC/PRAD versus n_PRAD 19

COAD versus n_COAD/READ versus n_READ 1, 3, 9
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differences in intrinsic apoptosis, among others, between 
rectum adenocarcinoma and controls as noted previ-
ously [60]; the same signaling pathway was annotated in 
module 6 explaining lung adenocarcinoma versus normal 
lung, although with an additional cell adhesion descrip-
tor which might be related to changes in adhesive prop-
erties during epithelial-to-mesenchymal transition, as 
confirmed via AP-2α–promoted tumorigenicity of LUAD 
[61]. Finally, kidney renal papillary and breast invasive 
carcinomas were distinguished from their paired nor-
mal tissues using module 1 and 3, respectively. Among 

the others, signaling pathways such as Wnt, Notch (for 
KIRP) or ERBB (for BRCA) were implicated in explana-
tion which is coherent with other research [62, 63].

Since the magnitude of the results for AP-2γ is greater 
than in the case of AP-2α, obtained differences were 
confronted with the literature only in terms of signaling 
pathways. Differences in certain pathways, such as TNF 
or ERBB (for liver hepatocellular carcinoma and prostate 
adenocarcinoma), EGFR or Wnt (for lung squamous cell 
carcinoma), JAK-STAT (for kidney renal clear cell carci-
noma), NFkB (for breast invasive carcinoma) and TGFβ, 

Fig. 7  Gene ontology of selected modules differentiating tumor and corresponding tissue by means of AP-2α targets
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mTOR or NFkB (for stomach adenocarcinoma) were 
noted between tumor and normal tissue. Of these, TNF 
for LIHC, NFkB for BRCA and TGFβ for STAD have 
been identified previously [64–66].

Both AP-2α and AP-2γ demonstrated differences asso-
ciated with signal transduction pathways or biological 
processes in tumor versus tumor comparisons. Regarding 
first transcription factor, many of the modules generated 
through Monocle3 analysis can distinguish KIRC from 
KIRP; in this, ontological analysis identified changes 
in processes e.g. cell adhesion, proliferation, angiogen-
esis, cell migration, cell cycle or pathways i.e. Notch, 

Wnt, ERBB signaling (Fig. 8). Differences in adhesion or 
cell cycle have been noted between two renal cell carci-
nomas, showing specific gene expression to be lower in 
KIRP [67]. Increased expression of AP-2α targets genes 
from module 13 (ontologically indicating regulation of 
cell cycle, proliferation or development) in KIRC com-
pared to KIRP was also noticeable in LGG versus GBM 
comparison although with inverse tendency (Fig.  8). 
Considering the cell cycle differences, the alteration fre-
quencies indicate on average higher percentage of path-
way disruption in GBM (86%) compared to LGG (46%) 
[68]. The cell adhesion and intrinsic apoptotic signaling 

Fig. 8  Gene ontology of selected modules differentiating tumors by means of AP-2α targets
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pathway (module 6) remained on trend in both KIRC 
versus KIRP and LUSC versus LUAD, implying that lung 
carcinomas differ not only in terms of adhesion or apop-
tosis but also regarding cell migration or Wnt signaling 
pathways, as demonstrated by module 15 (Fig. 8). This is 
consistent with a previous comparison of genes linked to 
adhesion and migration that were found to be differen-
tially expressed between LUSC and LUAD [69]. Of the 
two types of lung cancer, LUSC was also found within a 
mixed cluster (Fig.  2a) created by more similar tumors 

(LUSC, ESCA, HNSC, UCEC, BLCA, CESC). Neverthe-
less, the tumors could be distinguished using modules 2, 
11 and 19 which included genes related to cell adhesion, 
regulation of cell cycle arrest and inactivation of MAPK 
activity.

Concerning differences outlined through AP-2γ tar-
gets, identical subgroups could be distinguished within 
the mixed tumor cluster (Fig. 2b) formed by the same six 
cancer types described above—distinction is explained by 
module 17 that post-ontologically shown differences in 

Fig. 9  Gene ontology of selected modules differentiating tumor and corresponding tissue by means of AP-2γ targets
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cell adhesion (Fig. 10), which is concordant with the anal-
ysis of the same tumors through AP-2α targets (Fig. 2a). 
Additionally, module 6 or 15 distinguished two subdivi-
sions inside the cluster i.e. ESCA versus BLCA or UCEC 
versus LUSC, respectively. Using ontology descriptors, 
changes concerned regulation of mTOR signaling and 
extrinsic apoptosis for module 6 or EGFR and Wnt path-
ways for module 15 (Fig. 10). In regards to the latter, the 
alteration frequencies indicate on average lower per-
centage of Wnt pathway disruption in LUSC (18%) com-
pared to UCEC (47%) [68]. Other comparisons applied 
to COAD versus READ explained by vesicle budding 

(module 9) or LGG versus GBM elucidated through 
mTOR signaling, apoptosis and cellular adhesion (mod-
ule 5) with the latter confirmed by another bioinformat-
ics analysis [70]. Lastly, numerous modules distinguished 
KIRC from KIRP or LUSC from LUAD with module 12 
(response to hypoxia, regulation of autophagy, adhesion-
dependent cell spreading) differentiating both. Referring 
the literature, renal cell carcinomas have already been 
differentiated in terms of hypoxia indicating specific 
gene expression to be higher in KIRC [67]. Other mod-
ules for KIRC versus KIRP comparison have been asso-
ciated with processes such as autophagy (module 3), 

Fig. 10  Gene ontology of selected modules differentiating tumors by means of AP-2γ targets
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hormone-mediated signaling pathway (module 4) and 
cell growth regulation or NFkB signaling (module 16). 
For LUSC versus LUAD, they differ according to genes 
associated with Wnt pathway (module 10), regulation of 
cytoskeleton organization (module 7) or EGFR signaling 
(module 15). The last mentioned might be supported by a 
threefold difference in the frequency of EGFR mutations 
between LUSC and LUAD during a previous pan-cancer 
analysis [71].

A separate topic was the division of breast cancer 
subtypes noticed during the global analysis of all can-
cer cohorts in relation to their corresponding normal 
tissues. Both target gene lists i.e. for AP-2α and AP-2γ, 
have separated two subgroups of BRCA samples. Addi-
tional spatial analysis and assignment of PAM50 sig-
natures to samples revealed that the distinguished 
group was a basal-like subtype (Fig. 4). Due to the fact 
that this subtype is the most aggressive form of breast 

Fig. 11  Gene ontology of selected modules differentiating BRCA subtypes by means of AP-2α and AP-2γ targets. a Comparisons through AP-2α 
targets. b Comparisons through AP-2γ targets
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cancer [72], finding potential differences from the oth-
ers could support clinical aspects in the future. Onto-
logical analysis was performed on modules whose 
constituent genes demonstrated opposite expression 
profiles (basal-like vs. luminal A/B or HER2-enriched). 
Mutual part indicated through target genes lists of 
both AP-2α and AP-2γ shown that the processes dif-
ferentiating the basal-like subtype concern regulation 
of programmed cell death or EGFR and TNF signal-
ing pathways (Fig. 11), with the latter observed during 
previous enrichment analysis [72]. Nevertheless, the 
cadherin and Wnt signaling pathways play a key role 
in subtype differentiation due to the number of genes 
described ontologically in module 5 (for AP-2γ targets’ 
comparisons), as noted previously [73].

On the whole, the analysis presented in this research 
indicate that many differentiating processes or path-
ways between tumor and normal tissue or between 
different tumor types/subtypes find their reference 
in current scientific reports. However, some of the 
obtained alterations not having regard in the literature, 
could serve as a novel preliminary point for the devel-
opment of new anti-cancer therapies.

Conclusions
Collectively, our research indicates both novel and 
previously described differences between tumors or 
between a specific tumor and normal matched solid tis-
sue. In addition, an unplanned division of samples from 
the breast cancer cohort was performed, differentiating 
the basal-like subtype from the others. These findings 
could have the clinical applications.

Analyses also proved that the regulation of gene 
expression by AP-2α and AP-2γ is very complex and 
involves many biological processes and signaling path-
ways. The role of AP-2 in carcinogenesis is ambiguous, 
but it is associated with the regulation of processes 
that underlie cancer hallmarks (proliferation, apopto-
sis, angiogenesis, cell growth), and the target genes of 
both transcription factors allow for further analysis of 
changes that occur in individual tumors. Finally, the 
differences in AP-2α and AP-2γ expression observed 
between tissue types (e.g. THCA and SKCM or KIRC/
KIRP vs. normal kidney tissue) suggest their potential 
usefulness in diagnosing and treating specific cancers.

Nonetheless, we believe that our findings regarding 
AP-2α and AP-2γ functional genomics sheds new light 
on specific comparisons yet it is entirely possible that 
subsequent discoveries through in-depth data mining 
could have a further impact on the future of medical 
practice.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1292​0-020-00823​-9.

Additional file 1. Content of modules from particular Monocle3 
approach.

Additional file 2. Detailed ontological analysis of selected modules dif-
ferentiating tumor and corresponding normal tissue by means of AP-2α 
target genes.

Additional file 3. Detailed ontological analysis of selected modules dif-
ferentiating tumor and corresponding normal tissue by means of AP-2γ 
target genes.

Additional file 4. Detailed ontological analysis of selected modules differ-
entiating basal-like breast cancer from other subtypes by means of AP-2α 
and AP-2γ lists of target genes.

Abbreviations
TFs: Transcription factors; AP-2: Activating enhancer-binding Protein 2; WWOX: 
WW Domain Containing Oxidoreductase; bHSH: Basic Helix–Span–Helix; 
ERα: Estrogen receptor alpha; TCGA​: The Cancer Genome Atlas; PANTHER: 
Protein Analysis Through Evolutionary Relationships; BLCA: Bladder urothelial 
carcinoma; BRCA​: Breast invasive carcinoma; CESC: Cervical and endocervical 
cancers; COAD: Colon adenocarcinoma; ESCA: Esophageal carcinoma; GBM: 
Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma; 
KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carci-
noma; LGG: Brain lower grade glioma; LIHC: Liver hepatocellular carcinoma; 
LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; OV: 
Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; 
PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SKCM: 
Skin cutaneous melanoma; STAD: Stomach adenocarcinoma; THCA: Thyroid 
carcinoma; UCEC: Uterine corpus endometrial carcinoma; UMAP: Uniform 
Manifold Approximation and Projection; PAM50: Prosigna Breast Cancer Prog-
nostic Gene Signature Assay; GTRD: Gene Transcription Regulation Database; 
TRANSFAC: TRANScription FACtor database; TRRUST: Transcriptional Regulatory 
Relationships Unraveled by Sentence-based Text mining; PCA: Principle 
Component Analysis.

Acknowledgments
Not applicable.

Authors’ contributions
DK, ŻK, MO and EP conceptualized article. DK, ŻK and MO established meth-
odology. DK, ŻK and MO were responsible for software. AKB and EP supervised 
article. DK and ŻK visualized results. DK, ŻK and MO wrote original draft. DK, 
ŻK, MO, AKB and EP reviewed and edited article. All authors have read and 
approved the manuscript.

Funding
This research was funded by the Medical University of Lodz, grant number 
503/0–078-02/503–01-001–19-00. The funding body had no role in study 
design, collection, analysis, and interpretation of data and in writing the 
manuscript.

Availability of data and materials
TCGA gene expression profiles (level 3 RNA-seqV2, RSEM normalized) are 
publicly available in the Broad GDAC Firehose repository (https​://gdac.broad​
insti​tute.org/) wherein cohort abbreviations used in the present study are 
accession identifiers (data status of 28th Jan 2016). Direct access to respective 
cohort is possible through http://fireb​rowse​.org/?cohor​t=X where “X” should 
be changed to cohort abbreviation (e.g. BLCA, BRCA, CESC, etc.).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://doi.org/10.1186/s12920-020-00823-9
https://doi.org/10.1186/s12920-020-00823-9
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
http://firebrowse.org/?cohort=X


Page 17 of 18Kołat et al. BMC Med Genomics          (2020) 13:174 	

Competing interests
The authors declare that they have no competing interests.

Received: 13 August 2020   Accepted: 12 November 2020

References:
	1.	 Nagai H, Kim YH. Cancer prevention from the perspective of global 

cancer burden patterns. J Thorac Dis. 2017;9(3):448–51. 
	2.	 Hyndman IJ. Review: the contribution of both nature and nurture to 

carcinogenesis and progression in solid tumours. Cancer Microenviron. 
2016;9(1):63–9. 

	3.	 Jilkine A, Gutenkunst RN. Effect of dedifferentiation on time to 
mutation acquisition in stem cell-driven cancers. PLoS Comput Biol. 
2014;10(3):e1003481. 

	4.	 Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund 
KD, et al. Environmental epigenetics: prospects for studying epige-
netic mediation of exposure-response relationships. Hum Genet. 
2012;131(10):1565–89. 

	5.	 Paduch R. Theories of cancer origin. Eur J Cancer Prev. 2015;24(1):57–67. 
	6.	 Sonnenschein C, Soto AM. Carcinogenesis explained within the context 

of a theory of organisms. Prog Biophys Mol Biol. 2016;122(1):70–6. 
	7.	 Zhu K, Liu Q, Zhou Y, Tao C, Zhao Z, Sun J, et al. Oncogenes and tumor 

suppressor genes: comparative genomics and network perspectives. 
BMC Genom. 2015;16(Suppl 7):S8. 

	8.	 Pedraza-Farina LG. Mechanisms of oncogenic cooperation in cancer 
initiation and metastasis. Yale J Biol Med. 2006;79(3–4):95–103. 

	9.	 Lou X, Zhang J, Liu S, Xu N, Liao DJ. The other side of the coin: the 
tumor-suppressive aspect of oncogenes and the oncogenic aspect of 
tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. 
Cell Cycle. 2014;13(11):1677–93. 

	10.	 Muller PA, Vousden KH. Mutant p53 in cancer: new functions and thera-
peutic opportunities. Cancer Cell. 2014;25(3):304–17. 

	11.	 Ruiz M, Pettaway C, Song R, Stoeltzing O, Ellis L, Bar-Eli M. Activator 
protein 2alpha inhibits tumorigenicity and represses vascular endothe-
lial growth factor transcription in prostate cancer cells. Cancer Res. 
2004;64(2):631–8. 

	12.	 Shi D, Xie F, Zhang Y, Tian Y, Chen W, Fu L, et al. TFAP2A regulates 
nasopharyngeal carcinoma growth and survival by targeting HIF-1alpha 
signaling pathway. Cancer Prev Res (Phila). 2014;7(2):266–77. 

	13.	 Aqeilan RI, Palamarchuk A, Weigel RJ, Herrero JJ, Pekarsky Y, Croce CM. 
Physical and functional interactions between the Wwox tumor sup-
pressor protein and the AP-2gamma transcription factor. Cancer Res. 
2004;64(22):8256–61. 

	14.	 Li H, Goswami PC, Domann FE. AP-2gamma induces p21 expression, 
arrests cell cycle, and inhibits the tumor growth of human carcinoma 
cells. Neoplasia. 2006;8(7):568–77. 

	15.	 Kolat D, Kaluzinska Z, Bednarek AK, Pluciennik E. The biological character-
istics of transcription factors AP-2alpha and AP-2gamma and their impor-
tance in various types of cancers. Biosci Rep. 2019;39(3):BSR20181928. 

	16.	 Eckert D, Buhl S, Weber S, Jager R, Schorle H. The AP-2 family of transcrip-
tion factors. Genome Biol. 2005;6(13):246. 

	17.	 Mohibullah N, Donner A, Ippolito JA, Williams T. SELEX and missing phos-
phate contact analyses reveal flexibility within the AP-2[alpha] protein: 
DNA binding complex. Nucleic Acids Res. 1999;27(13):2760–9. 

	18.	 Mitchell PJ, Wang C, Tjian R. Positive and negative regulation of tran-
scription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T 
antigen. Cell. 1987;50(6):847–61. 

	19.	 Hilger-Eversheim K, Moser M, Schorle H, Buettner R. Regulatory roles of 
AP-2 transcription factors in vertebrate development, apoptosis and cell-
cycle control. Gene. 2000;260(1–2):1–12. 

	20.	 Wu HR, Zhang J. AP-2alpha expression in papillary thyroid carcinoma 
predicts tumor progression and poor prognosis. Cancer Manag Res. 
2018;10:2615–25. 

	21.	 Anttila MA, Kellokoski JK, Moisio KI, Mitchell PJ, Saarikoski S, Syrjanen K, 
et al. Expression of transcription factor AP-2alpha predicts survival in 
epithelial ovarian cancer. Br J Cancer. 2000;82(12):1974–83. 

	22.	 Wang W, Lv L, Pan K, Zhang Y, Zhao JJ, Chen JG, et al. Reduced expression 
of transcription factor AP-2alpha is associated with gastric adenocarci-
noma prognosis. PLoS ONE. 2011;6(9):e24897. 

	23.	 Perkins SM, Bales C, Vladislav T, Althouse S, Miller KD, Sandusky G, 
et al. TFAP2C expression in breast cancer: correlation with overall 
survival beyond 10 years of initial diagnosis. Breast Cancer Res Treat. 
2015;152(3):519–31. 

	24.	 Gee JM, Eloranta JJ, Ibbitt JC, Robertson JF, Ellis IO, Williams T, et al. Over-
expression of TFAP2C in invasive breast cancer correlates with a poorer 
response to anti-hormone therapy and reduced patient survival. J Pathol. 
2009;217(1):32–41. 

	25.	 Wang X, Sun D, Tai J, Chen S, Yu M, Ren D, et al. TFAP2C promotes 
stemness and chemotherapeutic resistance in colorectal cancer via inac-
tivating hippo signaling pathway. J Exp Clin Cancer Res. 2018;37(1):27. 

	26.	 Lin CY, Chao A, Wang TH, Lee LY, Yang LY, Tsai CL, et al. Nucle-
ophosmin/B23 is a negative regulator of estrogen receptor alpha 
expression via AP2gamma in endometrial cancer cells. Oncotarget. 
2016;7(37):60038–52. 

	27.	 Zhang P, Hou Q, Yue Q. MiR-204-5p/TFAP2A feedback loop positively 
regulates the proliferation, migration, invasion and EMT process in cervi-
cal cancer. Cancer Biomark. 2020;28:381–90. 

	28.	 Huang HX, Yang G, Yang Y, Yan J, Tang XY, Pan Q. TFAP2A is a novel regula-
tor that modulates ferroptosis in gallbladder carcinoma cells via the Nrf2 
signalling axis. Eur Rev Med Pharmacol Sci. 2020;24(9):4745–55. 

	29.	 Sliwa A, Kubiczak M, Szczerba A, Walkowiak G, Nowak-Markwitz E, 
Burczynska B, et al. Regulation of human chorionic gonadotropin beta 
subunit expression in ovarian cancer. BMC Cancer. 2019;19(1):746. 

	30.	 Pellikainen J, Kataja V, Ropponen K, Kellokoski J, Pietilainen T, Bohm J, et al. 
Reduced nuclear expression of transcription factor AP-2 associates with 
aggressive breast cancer. Clin Cancer Res. 2002;8(11):3487–95. 

	31.	 Su W, Xia J, Chen X, Xu M, Nie L, Chen N, et al. Ectopic expression of AP-
2alpha transcription factor suppresses glioma progression. Int J Clin Exp 
Pathol. 2014;7(12):8666–74. 

	32.	 Hallberg AR, Vorrink SU, Hudachek DR, Cramer-Morales K, Milhem MM, 
Cornell RA, et al. Aberrant CpG methylation of the TFAP2A gene consti-
tutes a mechanism for loss of TFAP2A expression in human metastatic 
melanoma. Epigenetics. 2014;9(12):1641–7. 

	33.	 Lian W, Zhang L, Yang L, Chen W. AP-2alpha reverses vincristine-induced 
multidrug resistance of SGC7901 gastric cancer cells by inhibiting the 
Notch pathway. Apoptosis. 2017;22(7):933–41. 

	34.	 Makhov PB, Golovine KV, Kutikov A, Canter DJ, Rybko VA, Roshchin DA, 
et al. Reversal of epigenetic silencing of AP-2alpha results in increased 
zinc uptake in DU-145 and LNCaP prostate cancer cells. Carcinogenesis. 
2011;32(12):1773–81. 

	35.	 Li Q, Dashwood RH. Activator protein 2alpha associates with adeno-
matous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell 
factor transcriptional activity in colorectal cancer cells. J Biol Chem. 
2004;279(44):45669–75. 

	36.	 Hu J, Tan SK, Lim MGL, Chang SH, Cui G, Liu S, et al. Identification of a 
Wells-Dawson polyoxometalate-based AP-2gamma inhibitor with pro-
apoptotic activity. Biochem J. 2018;475(11):1965–77. 

	37.	 Li Z, Xu X, Luo M, Hao J, Zhao S, Yu W, et al. Activator protein-2beta pro-
motes tumor growth and predicts poor prognosis in breast cancer. Cell 
Physiol Biochem. 2018;47(5):1925–35. 

	38.	 Fu X, Zhang H, Chen Z, Yang Z, Shi D, Liu T, et al. TFAP2B overexpression 
contributes to tumor growth and progression of thyroid cancer through 
the COX-2 signaling pathway. Cell Death Dis. 2019;10(6):397. 

	39.	 Fraune C, Harms L, Buscheck F, Hoflmayer D, Tsourlakis MC, Clauditz TS, 
et al. Upregulation of the transcription factor TFAP2D is associated with 
aggressive tumor phenotype in prostate cancer lacking the TMPRSS2:ERG 
fusion. Mol Med. 2020;26(1):24. 

	40.	 Hoshi R, Watanabe Y, Ishizuka Y, Hirano T, Nagasaki-Maeoka E, Yoshizawa 
S, et al. Depletion of TFAP2E attenuates adriamycin-mediated apoptosis 
in human neuroblastoma cells. Oncol Rep. 2017;37(4):2459–64. 

	41.	 Wei L, Jin Z, Yang S, Xu Y, Zhu Y, Ji Y. TCGA-assembler 2: software pipeline 
for retrieval and processing of TCGA/CPTAC data. Bioinformatics. 
2018;34(9):1615–7. 

	42.	 Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov F. GTRD: a database of tran-
scription factor binding sites identified by ChIP-seq experiments. Nucleic 
Acids Res. 2017;45(D1):D61–7. 



Page 18 of 18Kołat et al. BMC Med Genomics          (2020) 13:174 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	43.	 Yevshin I, Sharipov R, Kolmykov S, Kondrakhin Y, Kolpakov F. GTRD: a 
database on gene transcription regulation-2019 update. Nucleic Acids 
Res. 2019;47(D1):D100–5. 

	44.	 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The 
dynamics and regulators of cell fate decisions are revealed by pseu-
dotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6. 

	45.	 Qin S, Shi X, Wang C, Jin P, Ma F. Transcription factor and miRNA 
interplays can manifest the survival of ccRCC patients. Cancers (Basel). 
2019;11(11):1668. 

	46.	 Lommen K, Vaes N, Aarts MJ, van Roermund JG, Schouten LJ, Oosterwijk 
E, et al. Diagnostic DNA methylation biomarkers for renal cell carcinoma: 
a systematic review. Eur Urol Oncol. 2019. https​://doi.org/10.1016/j.
euo.2019.07.011. 

	47.	 Chen P, Zhang W, Chen Y, Zheng X, Yang D. Comprehensive analysis of 
aberrantly expressed long noncoding RNAs, microRNAs, and mRNAs 
associated with the competitive endogenous RNA network in cervical 
cancer. Mol Med Rep. 2020;22(1):405–15. 

	48.	 Shen L, Liu M, Liu W, Cui J, Li C. Bioinformatics analysis of RNA sequencing 
data reveals multiple key genes in uterine corpus endometrial carcinoma. 
Oncol Lett. 2018;15(1):205–12. 

	49.	 Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, et al. Comprehensive char-
acterization of the alternative splicing landscape in head and neck squa-
mous cell carcinoma reveals novel events associated with tumorigenesis 
and the immune microenvironment. Theranostics. 2019;9(25):7648–65. 

	50.	 Huang D, Ding Y, Luo WM, Bender S, Qian CN, Kort E, et al. Inhibition of 
MAPK kinase signaling pathways suppressed renal cell carcinoma growth 
and angiogenesis in vivo. Cancer Res. 2008;68(1):81–8. 

	51.	 Hu M, Fu X, Si Z, Li C, Sun J, Du X, et al. Identification of differently 
expressed genes associated with prognosis and growth in colon adeno-
carcinoma based on integrated bioinformatics analysis. Front Genet. 
2019;10:1245. 

	52.	 Zeng JH, Xiong DD, Pang YY, Zhang Y, Tang RX, Luo DZ, et al. Identifica-
tion of molecular targets for esophageal carcinoma diagnosis using 
miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 
187 cases. Oncotarget. 2017;8(22):35681–99. 

	53.	 Marimuthu A, Jacob HK, Jakharia A, Subbannayya Y, Keerthikumar S, 
Kashyap MK, et al. Gene expression profiling of gastric cancer. J Proteom-
ics Bioinform. 2011;4(4):74–82. 

	54.	 Kulik G. Personalized prostate cancer therapy based on systems analysis 
of the apoptosis regulatory network. Asian J Androl. 2015;17(3):471–4. 

	55.	 Miller DR, Ingersoll MA, Lin MF. ErbB-2 signaling in advanced pros-
tate cancer progression and potential therapy. Endocr Relat Cancer. 
2019;26(4):R195–209. 

	56.	 Bartis D, Csongei V, Weich A, Kiss E, Barko S, Kovacs T, et al. Down-regula-
tion of canonical and up-regulation of non-canonical Wnt signalling in 
the carcinogenic process of squamous cell lung carcinoma. PLoS ONE. 
2013;8(3):e57393. 

	57.	 Mitra AP, Hansel DE, Cote RJ. Prognostic value of cell-cycle regulation 
biomarkers in bladder cancer. Semin Oncol. 2012;39(5):524–33. 

	58.	 Peng Y, Chen Y, Chen S, Wang J, Jiang C, Hou W, et al. JUND-dependent 
up-regulation of HMOX1 is associated with cisplatin resistance in muscle-
invasive bladder cancer. J Biochem. 2020;168(1):73–82. 

	59.	 Madden E, Logue SE, Healy SJ, Manie S, Samali A. The role of the unfolded 
protein response in cancer progression: From oncogenesis to chemore-
sistance. Biol Cell. 2019;111(1):1–17. 

	60.	 Benard A, Zeestraten EC, Goossens-Beumer IJ, Putter H, van de Velde 
CJ, Hoon DS, et al. DNA methylation of apoptosis genes in rectal 
cancer predicts patient survival and tumor recurrence. Apoptosis. 
2014;19(11):1581–93. 

	61.	 Yuanhua L, Pudong Q, Wei Z, Yuan W, Delin L, Yan Z, et al. TFAP2A induced 
KRT16 as an oncogene in lung adenocarcinoma via EMT. Int J Biol Sci. 
2019;15(7):1419–28. 

	62.	 Fendler A, Bauer D, Busch J, Jung K, Wulf-Goldenberg A, Kunz S, et al. 
Inhibiting WNT and NOTCH in renal cancer stem cells and the implica-
tions for human patients. Nat Commun. 2020;11(1):929. 

	63.	 Zghair AN, Sinha DK, Kassim A, Alfaham M, Sharma AK. Differential Gene 
Expression of BRCA1, ERBB2 and TP53 biomarkers between human breast 
tissue and peripheral blood samples of breast cancer. Anticancer Agents 
Med Chem. 2016;16(4):519–25. 

	64.	 Tan W, Luo X, Li W, Zhong J, Cao J, Zhu S, et al. TNF-alpha is a potential 
therapeutic target to overcome sorafenib resistance in hepatocellular 
carcinoma. EBioMedicine. 2019;40:446–56. 

	65.	 Sau A, Cabrita MA, Pratt MAC. NF-kappaB at the crossroads of normal 
mammary gland biology and the pathogenesis and prevention of 
BRCA1-mutated breast cancer. Cancer Prev Res (Phila). 2018;11(2):69–80. 

	66.	 Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang KK, et al. Activa-
tion of transforming growth factor beta 1 signaling in gastric cancer-
associated fibroblasts increases their motility, via expression of rhomboid 
5 homolog 2, and ability to induce invasiveness of gastric cancer cells. 
Gastroenterology. 2017;153(1):191.e16-204.e16. 

	67.	 Chen F, Zhang Y, Senbabaoglu Y, Ciriello G, Yang L, Reznik E, et al. 
Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 
2016;14(10):2476–89. 

	68.	 Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. 
Oncogenic signaling pathways in the cancer genome atlas. Cell. 
2018;173(2):321.e10-337.e10. 

	69.	 Chen M, Liu X, Du J, Wang XJ, Xia L. Differentiated regulation of immune-
response related genes between LUAD and LUSC subtypes of lung 
cancers. Oncotarget. 2017;8(1):133–44. 

	70.	 Xu Y, Geng R, Yuan F, Sun Q, Liu B, Chen Q. Identification of differentially 
expressed key genes between glioblastoma and low-grade glioma by 
bioinformatics analysis. PeerJ. 2019;7:e6560. 

	71.	 Liu H, Zhang B, Sun Z. Spectrum of EGFR aberrations and potential clini-
cal implications: insights from integrative pan-cancer analysis. Cancer 
Commun (Lond). 2020;40(1):43–59. 

	72.	 Yang K, Gao J, Luo M. Identification of key pathways and hub genes in 
basal-like breast cancer using bioinformatics analysis. Onco Targets Ther. 
2019;12:1319–31. 

	73.	 Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs 
the phenotype of basal-like breast cancer by activating WNT signaling. 
Cell Commun Signal. 2019;17(1):109. 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.euo.2019.07.011
https://doi.org/10.1016/j.euo.2019.07.011

	Functional genomics of AP-2α and AP-2γ in cancers: in silico study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Acquisition of tumor patients’ data
	AP-2α and AP-2γ target genes identification
	Global profiling of the tumors and ontological annotation

	Results
	Identification of global differences using toolkit for spatial analysis
	Gene ontology of modules distinguishing specific comparisons
	Comparisons by means of target genes for AP-2α transcription factor
	Comparisons by means of target genes for AP-2γ transcription factor
	Comparisons of breast cancer intrinsic PAM50 subtypes

	Validation of the Results

	Discussion
	Conclusions
	Acknowledgments
	References


