Table 7.
Precision, recall, F1-scores of five F-CNNs models, and two baseline methods for detecting crop field and boundary from three channels (blue-green-red) high-resolution satellite images.
| Boundary |
Cropland |
|||||
|---|---|---|---|---|---|---|
| Precision |
Recall |
F1-Score |
Precision |
Recall |
F1-Score |
|
| Training | ||||||
| Random Forest | 0.82 | 0.63 | 0.71 | 0.94 | 0.98 | 0.96 |
| FCN-DKConv6 | 0.85 | 0.85 | 0.85 | 0.96 | 0.97 | 0.96 |
| U-Net | 0.84 | 0.85 | 0.84 | 0.97 | 0.97 | 0.97 |
| SegNet | 0.84 | 0.84 | 0.84 | 0.96 | 0.96 | 0.96 |
| DenseNet56 | 0.93 | 0.93 | 0.93 | 0.98 | 0.98 | 0.98 |
| DenseNet67 | 0.93 | 0.94 | 0.93 | 0.99 | 0.99 | 0.99 |
| DenseNet103 | 0.94 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 |
| Test | ||||||
| Random Forest | 0.48 | 0.21 | 0.29 | 0.87 | 0.96 | 0.91 |
| FCN-DKConv6 | 0.56 | 0.56 | 0.56 | 0.92 | 0.93 | 0.92 |
| U-Net | 0.64 | 0.65 | 0.65 | 0.93 | 0.93 | 0.93 |
| SegNet | 0.67 | 0.66 | 0.66 | 0.93 | 0.94 | 0.94 |
| DenseNet56 | 0.74 | 0.74 | 0.74 | 0.94 | 0.95 | 0.94 |
| DenseNet67 | 0.77 | 0.75 | 0.76 | 0.95 | 0.95 | 0.95 |
| DenseNet103 | 0.78 | 0.76 | 0.77 | 0.95 | 0.96 | 0.96 |