Table 7.
Boundary |
Cropland |
|||||
---|---|---|---|---|---|---|
Precision |
Recall |
F1-Score |
Precision |
Recall |
F1-Score |
|
Training | ||||||
Random Forest | 0.82 | 0.63 | 0.71 | 0.94 | 0.98 | 0.96 |
FCN-DKConv6 | 0.85 | 0.85 | 0.85 | 0.96 | 0.97 | 0.96 |
U-Net | 0.84 | 0.85 | 0.84 | 0.97 | 0.97 | 0.97 |
SegNet | 0.84 | 0.84 | 0.84 | 0.96 | 0.96 | 0.96 |
DenseNet56 | 0.93 | 0.93 | 0.93 | 0.98 | 0.98 | 0.98 |
DenseNet67 | 0.93 | 0.94 | 0.93 | 0.99 | 0.99 | 0.99 |
DenseNet103 | 0.94 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 |
Test | ||||||
Random Forest | 0.48 | 0.21 | 0.29 | 0.87 | 0.96 | 0.91 |
FCN-DKConv6 | 0.56 | 0.56 | 0.56 | 0.92 | 0.93 | 0.92 |
U-Net | 0.64 | 0.65 | 0.65 | 0.93 | 0.93 | 0.93 |
SegNet | 0.67 | 0.66 | 0.66 | 0.93 | 0.94 | 0.94 |
DenseNet56 | 0.74 | 0.74 | 0.74 | 0.94 | 0.95 | 0.94 |
DenseNet67 | 0.77 | 0.75 | 0.76 | 0.95 | 0.95 | 0.95 |
DenseNet103 | 0.78 | 0.76 | 0.77 | 0.95 | 0.96 | 0.96 |