Skip to main content
. 2020 Nov;20:100413. doi: 10.1016/j.rsase.2020.100413

Table 7.

Precision, recall, F1-scores of five F-CNNs models, and two baseline methods for detecting crop field and boundary from three channels (blue-green-red) high-resolution satellite images.

Boundary
Cropland
Precision
Recall
F1-Score
Precision
Recall
F1-Score
Training
Random Forest 0.82 0.63 0.71 0.94 0.98 0.96
FCN-DKConv6 0.85 0.85 0.85 0.96 0.97 0.96
U-Net 0.84 0.85 0.84 0.97 0.97 0.97
SegNet 0.84 0.84 0.84 0.96 0.96 0.96
DenseNet56 0.93 0.93 0.93 0.98 0.98 0.98
DenseNet67 0.93 0.94 0.93 0.99 0.99 0.99
DenseNet103 0.94 0.95 0.94 0.99 0.99 0.99
Test
Random Forest 0.48 0.21 0.29 0.87 0.96 0.91
FCN-DKConv6 0.56 0.56 0.56 0.92 0.93 0.92
U-Net 0.64 0.65 0.65 0.93 0.93 0.93
SegNet 0.67 0.66 0.66 0.93 0.94 0.94
DenseNet56 0.74 0.74 0.74 0.94 0.95 0.94
DenseNet67 0.77 0.75 0.76 0.95 0.95 0.95
DenseNet103 0.78 0.76 0.77 0.95 0.96 0.96