Table 8.
Precision, recall, F1-scores of five F–CNN models, and two baseline methods for detecting crop field and boundary from four channels (blue-green-red-NIR2) high-resolution satellite images.
| Boundary | Cropland | |||||||
| Precision | Recall | F1-Score | Precision | Recall | F1-Score | |||
| Training | ||||||||
| Random Forest | 0.84 | 0.66 | 0.74 | 0.95 | 0.98 | 0.96 | ||
| FCN-DKConv6 | 0.88 | 0.86 | 0.87 | 0.95 | 0.95 | 0.95 | ||
| U-Net | 0.83 | 0.83 | 0.83 | 0.97 | 0.97 | 0.97 | ||
| SegNet | 0.84 | 0.84 | 0.84 | 0.97 | 0.97 | 0.97 | ||
| DenseNet56 | 0.92 | 0.91 | 0.92 | 0.96 | 0.96 | 0.96 | ||
| DenseNet67 | 0.93 | 0.92 | 0.92 | 0.98 | 0.98 | 0.98 | ||
| DenseNet103 | 0.94 | 0.94 | 0.94 | 0.99 | 0.99 | 0.99 | ||
| Test | ||||||||
| Random Forest | 0.49 | 0.22 | 0.30 | 0.87 | 0.96 | 0.92 | ||
| FCN-DKConv6 | 0.61 | 0.6 | 0.61 | 0.91 | 0.92 | 0.91 | ||
| U-Net | 0.65 | 0.65 | 0.65 | 0.92 | 0.92 | 0.92 | ||
| SegNet | 0.71 | 0.71 | 0.71 | 0.92 | 0.93 | 0.92 | ||
| DenseNet56 | 0.75 | 0.74 | 0.74 | 0.94 | 0.94 | 0.94 | ||
| DenseNet67 | 0.77 | 0.75 | 0.76 | 0.94 | 0.94 | 0.94 | ||
| DenseNet103 | 0.78 | 0.78 | 0.78 | 0.95 | 0.95 | 0.95 | ||