Skip to main content
. 2020 Nov;20:100413. doi: 10.1016/j.rsase.2020.100413

Table 8.

Precision, recall, F1-scores of five F–CNN models, and two baseline methods for detecting crop field and boundary from four channels (blue-green-red-NIR2) high-resolution satellite images.

Boundary Cropland
Precision Recall F1-Score Precision Recall F1-Score
Training
Random Forest 0.84 0.66 0.74 0.95 0.98 0.96
FCN-DKConv6 0.88 0.86 0.87 0.95 0.95 0.95
U-Net 0.83 0.83 0.83 0.97 0.97 0.97
SegNet 0.84 0.84 0.84 0.97 0.97 0.97
DenseNet56 0.92 0.91 0.92 0.96 0.96 0.96
DenseNet67 0.93 0.92 0.92 0.98 0.98 0.98
DenseNet103 0.94 0.94 0.94 0.99 0.99 0.99
Test
Random Forest 0.49 0.22 0.30 0.87 0.96 0.92
FCN-DKConv6 0.61 0.6 0.61 0.91 0.92 0.91
U-Net 0.65 0.65 0.65 0.92 0.92 0.92
SegNet 0.71 0.71 0.71 0.92 0.93 0.92
DenseNet56 0.75 0.74 0.74 0.94 0.94 0.94
DenseNet67 0.77 0.75 0.76 0.94 0.94 0.94
DenseNet103 0.78 0.78 0.78 0.95 0.95 0.95