Skip to main content
. Author manuscript; available in PMC: 2020 Nov 20.
Published in final edited form as: IEEE Trans Knowl Data Eng. 2018 Jan 15;30(8):1411–1425. doi: 10.1109/tkde.2018.2793862

Algorithm 1.

Frequent Subgraph Identification

Input:
Graph database D; Threshold θ; Privacy budget ϵ2; Maximum size of frequent subgraphs Mg;
Output:
Frequent subgraphs F;
  1: F ← ∅; ϵb=αϵ2Mg; ϵc=(1α)ϵ2Mg;
  2: for i from 1 to Mg do
  3: Ci ← generate the set of candidate i-subgraphs;
  4:  count the support of each candidate i-subgraph;
  5: ni = binary_estimation(Ci, ϵb, θ);\\see Sec. 6.1
  6: Fi = conditional_exponential(Ci, ϵc, θ, ni);\\see Sec. 6.2
  7: F += Fi;
  8: end for
  9: return F;