Skip to main content
. Author manuscript; available in PMC: 2020 Nov 20.
Published in final edited form as: IEEE Trans Knowl Data Eng. 2018 Jan 15;30(8):1411–1425. doi: 10.1109/tkde.2018.2793862

Algorithm 3.

Conditional Exponential Method

Input:
Candidate i-subgraphs Ci; Privacy budget ϵc; Threshold θ; The number of frequent i-subgraphs ni;
Output:
Frequent i-subgraphs Fi;
  1: ϵc1βϵc, ϵc2 ← (1-β)ϵc;
  2: for j from 1 to ni do
  3: Ci ← ∅;
  4: for each subgraph g in Ci do
  5:   nsg=sg+Lap(2niϵc1);
  6:   if nsgθ then
  7:    add g into Ci;
  8:   end if
  9: end for
10: if Ci is not empty then
11:    gj ← select a subgraph from Ci’ such that Pr[Selectingsubgraphg]exp(ϵc2×sg2ni);
12:   remove gj from Ci;
13:   add gj into Fi;
14: end if
15: end for
16: return Fi;