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Abstract

Technological innovations have produced large multi-modal datasets that include imaging and 

multi-platform genomics data. Integrative analyses of such data have the potential to reveal 

important biological and clinical insights into complex diseases like cancer. In this paper, we 

present Bayesian approaches for integrative analysis of radiological imaging and multi-platform 

genomic data, wherein our goals are to simultaneously identify genomic and radiomic, i.e., 

radiology-based imaging markers, along with the latent associations between these two modalities, 

and to detect the overall prognostic relevance of the combined markers. For this task, we propose 

Radio-iBAG: Radiomics-based Integrative Bayesian Analysis of Multiplatform Genomic Data, a 

multi-scale Bayesian hierarchical model that involves several innovative strategies: it incorporates 

integrative analysis of multi-platform genomic data sets to capture fundamental biological 

relationships; explores the associations between radiomic markers accompanying genomic 

information with clinical outcomes; and detects genomic and radiomic markers associated with 

clinical prognosis. We also introduce the use of sparse Principal Component Analysis (sPCA) to 

extract a sparse set of approximately orthogonal meta-features each containing information from a 

set of related individual radiomic features, reducing dimensionality and combining like features. 

Our methods are motivated by and applied to The Cancer Genome Atlas glioblastoma multiforme 

data set, where-in we integrate magnetic resonance imaging-based biomarkers along with 

genomic, epigenomic and transcriptomic data. Our model identifies important magnetic resonance 

imaging features and the associated genomic platforms that are related with patient survival times.

1. Introduction.

In oncology, it is of critical importance to investigate both inter- and intra-tumor 

heterogeneity through an in-depth understanding of the complex interplay between 

genotypes and phenotypes, towards developing rational anti-cancer therapeutic strategies 
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[Felipe De Sousa et al. (2013)]. The increased availability of complementary and matched 

molecular and imaging data allows for a thorough examination of tumor heterogeneity at 

multiple levels [Nicolasjilwan et al. (2015), Hu et al. (2017), Gutman et al. (2013)]. 

Investigations at the molecular level have been tremendously improved by the development 

of many genomic profiling technologies, including microarrays, next-generation sequencing, 

methylation arrays, and proteomic analyses. The Cancer Genome Atlas (TCGA) project, 

aiming to provide more comprehensive information of human cancer genomes by creating 

an “atlas” of high-throughput multiple genomic profiles across multiple cancers, was 

launched in 2005 as a publicly funded project [Tomczak, Czerwińska and Wiznerowicz 

(2015)]. The growing availability of such data has motivated the development of integrative 

analytical models that incorporate various genomic platforms to detect complex patterns of 

tumor heterogeneity that have predictive and prognostic ability [Wang et al. (2013)].

While genomic data provide information on the molecular characterization of a disease, 

imaging modalities such as X-ray radiography, magnetic resonance imaging (MRI), 

computed tomography, and positron emission tomography provide visual and broad 

resources for the acquisition of high-quality images and provide complementary quantitative 

information about the structural aspects of a disease. In the context of cancer, these imaging 

modalities provide a quantitative basis for detailed assessment of various features of the 

tumor that are associated with the development and progression of cancer. Radiomics is an 

emerging field with a goal of providing predictive or prognostic information by revealing 

quantitative mechanistic associations between radiologic images and clinical outcomes 

[Coroller et al. (2015), Aerts et al. (2014), Ganeshan et al. (2010), Lee et al. (2016)]. 

Radiomics, in general, involves the extraction and mining of various types of quantitative 

imaging features that are processed from high-throughput images obtained via different 

imaging modalities. These imaging features describe different morphological characteristics 

of a tumor, e.g., tumor shape features such as round or spiculated, total volume or surface 

area, intensity histogram features that describe the contrast intensity level, and textural 

features such as energy and entropy that evaluate tumor spatial heterogeneity. In particular, 

“texture analysis, which applies different statistical models and mathematical transforming 

methods to further evaluate a tumors intra-lesional heterogeneity, has become an active 

ongoing area of research [Castellano et al. (2004)]. In the context of glioblastoma 

multiforme (GBM), several studies have shown that the textural features from perfusion 

parametric maps provide useful information for predicting patients’ survival times [Lee et al. 

(2016)] and the features extracted from a gray-level co-occurrence matrix (GLCM) 

[Haralick, Shanmugam and Dinstein (1973), Castellano et al. (2004)] are effective in 

discriminating tumor volumetric phenotypes [Chaddad and Tanougast (2016)].

Radiomic and genomic features capture complementary characteristics of the underlying 

tumor, with radiomics capturing visual phenotypic information in the tumor and genomics 

capturing its underlying molecular biology. Thus, it is of interest to assess the 

interrelationships of these two types of features, a task termed radiogenomics, and then 

collectively assess how these inter-related features correlate with clinically relevant 

endpoints (e.g., survival, progression). From an analytical standpoint, radiogenomic analysis 

faces several key challenges. First, incorporating complex biological interactive 

mechanisms, both within and between multiple genomic platforms at the genomic (DNA), 
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transcriptomic (mRNA) and epigenomic (methylation) levels, is understudied in the 

radiogenomic framework. Second, the highdimensional nature of both the quantitative 

features of images and genomic markers necessitates proper dimension reduction techniques 

and feature selection methods. Third, the analysis becomes more complicated when we wish 

to link clinical outcomes with genomic and radiomic outcomes in addition to modeling 

associations between the radiomic and genomic measurements to provide potentially 

biologically and clinically translatable results.

Multiple studies have addressed these challenges to various degrees. Taking advantage of 

multi-platform genomic data resources, additive models have been developed that treat the 

features from different platforms in the same models, although not explicitly modeling their 

interrelationships [Daemen et al. (2009), Lanckriet et al. (2004)]. Wang et al. (2013) 

proposed an integrative Bayesian analysis framework to integrate multi-platform genomic 

data using hierarchical models that capture the natural mechanistic relationships among the 

various molecular resolution levels. Jennings et al. (2012) generalized the method to 

integrate various types of genomic platforms with a single clinical outcome. These methods 

effectively capture the biological interaction within different molecular processes, but do not 

consider high dimensionality in the outcomes. Olivares et al. (2013) extended the above 

model with multivariate correlated imaging outcomes. This approach models image markers 

in separate linear models after applying a de-correlating procedure, but does not consider 

patient-specific clinical outcomes. Stingo et al. (2013) developed an integrative Bayesian 

modeling approach for imaging-genetics that incorporates the binary disease status as a 

clinical response, and developed a hierarchical mixture model that can select discriminatory 

imaging regions of interest and their relevant single-nucleotide polymorphisms 

simultaneously. Similarly, Batmanghelich et al. (2013) developed a joint probabilistic model 

of imaging and genetic features associated with disease measures, to provide insights into 

how imaging biomarkers can serve as intermediate phenotypes when detecting genetic and 

diagnostic associations. However, these approaches consider only individual platform and 

thus do not consider the interrelationships among the various molecular resolution levels in 

their analytical frameworks.

In this paper, we introduce Radio-iBAG: Radiomics-based integrative Bayesian analysis of 

multiplatform genomic data, an integrative multi-scale Bayesian framework to perform 

radiogenomic analyses. Our goal is three-fold: first, to detect explicit associations among 

different genomic platforms at the different molecular levels; second, to treat the radiomic-

based biomarkers as an intermediate phenotype (i.e., endo-phenotype), evaluate the 

molecular underpinnings regulating these biomarkers and finally, evaluate the eventual 

associations with relevant patient-level clinical outcomes (e.g., survival times). To 

accomplish these tasks, we construct a multi-level regression-based modeling strategy: a first 

stage “genomic model” detects the complex biological mechanistic relationships among 

different genomic platforms, a second stage “radiogenomic model” subsequently discovers 

the underlying associations between gene-platform combinations and radiomic biomarkers. 

To assess clinical relevance, a third level model “radiogenomic clinical model” uncovers the 

associations between clinical outcomes and genomically-driven radiomic markers.
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To address the high dimensionality in both the genomic and radiomic datasets, we utilize 

Bayesian shrinkage-based priors to achieve sparsity and regularization in the high-

dimensional covariate space at various hierarchical levels. Specifically, we employ scale-

mixture of normal representations, that allow adaptive shrinkage and borrowing strength 

within and across the different hierarchical levels. Our methodology is motivated by and 

applied to a GBM case study, wherein we discover multiple radiomic feature groups 

significantly associated with patients survival times along with their mechanism of action 

through multi-platform genomics.

In Section 2, we introduce our modeling scheme, major components, modeling methods and 

biomarker detection for each modeling stage. In Section 3, we illustrate our proposed model 

on the GBM case study with detailed description of the radiomic features and genomic 

profile datasets, modeling results and biological interpretations. In Section 4, we draw some 

conclusions and discuss some future extensions and advancements.

2. Method: Radio-iBAG Model.

2.1. Modeling stages.

As mentioned above, our core construction of the Radio-iBAG model framework consists of 

a multi-stage Bayesian hierarchical model. In the genomic model, we model the complex 

biological mechanistic relationship among genomic data from different platforms capturing 

information at various molecular resolution levels (e.g., gene expression, copy number and 

methylation). Subsequently, we carry the information garnered from the genomic model into 

the second stage, the radiogenomic model, to parse out the imaging-genomic correlations, 

which are then included as predictors in the third stage, the radiogenomic clinical model. 
This procedure delineates the image features that directly affect clinical outcomes, as well as 

those that appear to be modulated by combinations of genomic factors. This construction 

allows us to discover strong relationships between imaging and genomics data, among the 

genomic platforms, and identify which appear to be associated with clinical outcome.

Fig 1 illustrates the general multi-stage modeling scheme. In the first stage, multiplatform 

genomic data sets are expressed as data matrices: XmRNA, XCN, XmiRNA or XMethy, each 

with rows as samples and columns as genelevel summaries of the respective platforms. In 

stage II, we consider radiomic features (RFs) that are preprocessed and extracted from 

imaging data sets, forming a data frame ℐ with columns as different features and rows as 

samples. In the final stage, we incorporate into the model the clinical outcome, denoted as Y, 

which is a vector with the number of elements as the sample size. The construction of each 

modeling stage is explained in detail in the ensuing sections.

A. Genomic Model—Our genomic model involves the integrative modeling of 

multiplatform genomic data sets. Modern genomics data is comprised of multiple platforms 

that contain measurements at various molecular resolution levels, from DNA to mRNA to 

proteins, and including epigenetic levels including alterations like methylation and 

microRNA (miRNA) that affect mRNA expression. These platforms capture complementary 

information at the different molecular resolution levels, and together provide a more 

complete picture of the underlying biology than any one platform. In this paper, we consider 
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three genomic platforms: mRNA, DNA copy number (CN) and miRNA, but the general 

models we introduce can incorporate any other platforms capturing upstream genetic and 

epigenetic information, as well. Also, for a specific gene, we take only the genomic 

platforms mapped with this gene into our model, we do not consider modeling coexpression 

or coregulation of the neighboring genes or potential transcriptional regulators. Suppose NG
=number of patients with genomic information, J=total number of genomic platforms, and 

PG=number of target genes. For our particular case, using copy number alteration and 

miRNA as our upstream platforms, the gene expression level can be modeled and expressed 

as

XmRNAg = f1 XmiRNAg + f2 XCNg
 upstream platform driven 

+ Og
 explained by other factors 

(1)

where each fj(·) is a smooth nonparametric function of the corresponding predictor modeled 

by a penalized spline formulation that allows us to capture flexible non-linear relationships. 

We assessed the nonlinearity of genelevel fits and show that GAM provides better fit that 

GLM for most genes (see supplementary materials Section S3). Other types of splines or 

alternative nonparametric models could also be used. Our analysis in this stage matches the 

first stage of the iBAG model [Wang et al. (2013)], whereby the gene expression of a given 

gene is modeled as explained by upstream factors, with the effects of upstream factors 

modeled nonparametrically as in [Jennings et al. (2015)] via a generalized additive model 

(GAM) [Hastie and Tibshirani (1990)]. In principle, the model can include any number of 

upstream (to mRNA) platform types, including methylation, copy number, loss of 

heterozygosity, methylation, miRNA, and transcription factors, as long as matched data are 

available.

The terms in the model are described and interpreted as follows:

• XmRNAg is the expression of gene g with dimension NG × 1, g = 1, 2, …, PG

• XmRNAg is an aggregated miRNA expression value that integrates information 

across miRNAs that have been documented to regulate the expression of gene g. 

For a given gene, there exist multiple miRNAs that interact with this gene, and 

here we construct gene-level summaries of these miRNAs that condense their 

activity into a lower dimension using principal components, as described in 

detail in Section 3. The gene-level summaries XmiRNAg have dimension 

NG × MmiRNAg, where MmiRNAg denotes the number of gene-level summary 

vectors for the gth gene.

• XCNg are gene-level summaries of the CN alteration for the gth gene with 

dimension NG × MCNg. Similarly, as there are multiple CN alteration values 

from different markers within the same gene, MCNg denotes the number of gene-

level summary vectors.
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• Og represents the “other” part of gene expression that is not captured by the 

modeled upstream factors, but instead attributed to other upstream factors not in 

the model, and is of dimension NG × 1.

This model is fit separately for each gene, and effectively partitions the information 

contained in the mRNA measurements into an additive set of components, with each 

component capturing the part of mRNA expression explained by a particular upstream 

platform. We call these parts different genomic platform components. For gene g, the 

components can be estimated based on the following formula: 

GmiRg = f1 XmiRNAq , GCNg = f2 XCNg  and (GOg = XmRNAg − f1 XmiRNAg − f2 XCNg . 

Repeating the same procedure for all the genes, we combine the components grouped by 

platform, forming different genomic platform combinations: 

GmiR = GmiR1, GmiR2, …, GmiRPG , GCN = GCN1, GCN2, …, GCNPG  and (GO

= GO1, GO2, …, GOPG

. These 

combinations represent the gene expression level attributed to miRNA, CN and other factors, 

respectively, for all PG target genes of interest.

At times, not all samples with genomic data have radiomic data, as in our GBM example. In 

that case, we denote NGℐ NGℐ ⊆ NG  as the sample size of their intersection. We carry 

forward the corresponding subset of the estimated gene platform combinations GmiR, GCN, 

GO, each with dimension NGℐ × PG, as predictors into the second-stage radiogenomic 

model.

B. Radiogenomic Model—The goal of the second stage radiogenomic model is to find 

gene-platform combinations that appear to be associated with radiomic markers, and to 

partition the radiomic markers into the parts modulated by different gene effects carried 

from the genomic model and those that are not modulated by the modeled genomic factors. 

The model can be written as

ℐ = ℐg + ℐg
= GmiRBmiR + GCNBCN + GOBO

 Genomically driven 
+ ℐg

 Non‐genomically driven 
(2)

The terms in the model can be expressed and interpreted as follows:

• ℐ denotes a NGℐ × K matrix in which K is the number of general RFs 

(individual radiomic features or Radiomic-meta-Features (RmFs) that we 

constructed from high dimensional RFs that are highly correlated, described in 

detail in section 3.2).

• BmiR is of dimension PG × K, with columns as the vectors of the expression 

effects for corresponding radiomic markers through miRNA;

• BCN is of dimension PG × K, with columns as the vectors of the expression 

effects for corresponding radiomic markers through CN;
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• BO is of dimension PG × K, with columns as the vectors of the expression effects 

for the corresponding radiomic markers through “other” genomic mechanistic 

factors;

• GmiR, GCN, GO are the estimated gene expression components described in part 

A.

Associations are detected by examining the coefficients’ posterior probabilities based on 

Markov chain Monte Carlo (MCMC) samples, and estimates given by posterior means 

(detailed information in Section 2.3). To achieve the segmentation of the radiomic features, 

we can estimate each component by ℐCN = GCNBCN, ℐmiR = GmiRBmiR, ℐO = GOBO. 

The final nongene-driven part can be estimated by 

ℐg = ℐ − GCNBCN − GmiRBmiR − GOBO. We then further carry the above four 

components into the final stage, the radiogenomic clinical model.

C. Radiogenomic Clinical Model—The third-stage model relates the various 

radiogenomic marker combinations from the second stage model to a clinical outcome (e.g., 

survival time in our context). The model can be expressed as

Y = ℐCNα1 + ℐmiRα2 + ℐOα3 + ℐgα4 + ϵ (3)

where Y is the clinical outcome with dimension NGℐC × 1 and 

NGℐC NGℐC ⊆ NGℐ ⊆ NG) is the sample size of the intersection of the genetic, image and 

clinical data sets. ℐCN is the CN modulated radiomic marker component matrix. Similarly, 

ℐmiR denotes the microRNA modulated part; ℐO is the part of radiomic features explained 

by a genomic factor but modulated by something other than CN or miRNA; and ℐg denotes 

the part of the radiomic feature not regulated by genes in the model. All four radiomic 

marker components have the dimension NGℐC × K. α1, α2, α3, α4 denote the 

corresponding image marker combination effects. ϵ is the error term for modeling the 

clinical outcome. In our GBM application, where the clinical outcome is survival time, we 

use an accelerated failure time (AFT) model, with Y as the log-transformed survival time 

[Wei (1992)]. However, for the general analytical process, our outcome Y can involve any 

clinical measurements with suitable regression model determined by the type of outcome 

(e.g., logistic models for binary outcomes or Cox proportional hazards models in the 

presence of censored outcomes.)

Our goal in this final stage is to identify radiomic markers associated with clinical outcome, 

either modulated by genomic factors or not. We identify these factors by estimation and 

Bayesian posterior inference of α = {α1, α2, α3, α4}, and then can characterize these effects 

in more detail by tracing information back through the earlier stage models. For example, if 

a particular radiomic feature is related to clinical outcome through a genomic effect, we can 

examine the corresponding second stage model to identify which genes are driving such 

effects, and then the first stage model for those genes to find which upstream platforms most 

strongly modulate the expression of those genes. In this way, the radio-iBAG model can not 

only detect clinically relevant radiomic features, but provide a thorough summary of the 
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radiomic-genomic and multi-platform genomic interrelationships that appear to modulate 

these factors.

2.2. Radio-iBAG Model Estimation.

Our second- and third-stage models involve multiple genes and/or RFs, so it is necessary to 

introduce sparsity into the regression models to regularize the fitting and to obtain a 

relatively smaller and more interpretable set of radiogenomic factors that appear to be 

related to the clinical outcome. This can be done using penalized likelihood or other 

regularization techniques, but here we use a Bayesian approach and induce sparsity through 

the prior distributions on the regression parameters.

Some commonly used sparsity priors involve a discrete-mixture prior consisting of a point 

mass at zero for noise and a continuous density distribution for signals, for example a 

normal distribution and a point mass at zero [Mitchell and Beauchamp (1988)]. Other types 

of sparsity priors do not have a zero component, but instead are absolutely continuous 

distributions that accomplish sparsity via nonlinear shrinkage, which can often be 

accomplished using a normal scale mixture prior distribution. Examples include a normal-

exponential (Bayesian lasso) [Park and Casella (2008)], Horseshoe [Carvalho, Polson and 

Scott (2010)], generalized double pareto [Armagan, Dunson and Lee (2013)], Dirichlet 

Laplace [Bhattacharya et al. (2015)], and Normal Gamma [Griffin et al. (2010)]. While the 

Bayesian lasso, which is a Bayesian analog to the commonly-used lasso [Tibshirani (1996)], 

is commonly used, it has limited flexibility given it is determined by a single hyperparameter 

that regulates both sparsity and the tails. We instead use the normal-gamma (NG) prior 

[Griffin et al. (2010)], which contains a second hyperparameter, and thus can better handle 

sparsity as well as flexibility to manage the tails and yield to more accurate coefficient 

estimates, as described and illustrated via multiple simulation settings in [Griffin et al. 

(2010)]. We apply this prior in both stage II radiogenomic and stage III radiogenomic 
clinical models. Further, we allow the sparsity hyperparameters to be indexed by platform, 

which enables borrowing of strength across genes in determining the desired sparsity and 

tail levels on a platform specific basis.

To estimate the coefficient vector, for the kth RF, we assign the NG prior distribution to 

βk = βmiR
k , βCN

k , βO
k , each part of the coefficient vector being assigned with a particular set 

of the hyperparameters. In this way, we allow priors settings that incoporate multi-scale 

datasets. More specifically, suppose our genomic platform combination predictors can be 

expressed as X = {GmiR, GCN, GO}, then the linear regression model and its hierarchical 

prior setting can be expressed as

ℐk = Xβk + ℐkg

ℐk Normal Xβk, σk
2INGℐ
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βk Normal 0P , Dψ

Dψ = diag ψ1, 1, ψ1, 2, …, ψ1, P1, ψ2, 1, ψ2, 2, …, ψ2, P2, …, ψJ , 1, ψJ , 2, …, ψJ , PJ , where 

P = P1 + P2 + … + PJ is the total number of predictors (dimension of X), J denotes the total 

number of platform types (j = 1,2,3, …, J, here our J = 3), and Pj denotes the total number of 

genomic features (each subindexed as g) for the jth genomic platform type. Our estimation of 

the scale parameters and the main coefficients (βk) is processed by applying the NG prior 

ψj, g Gamma λj, 1/ 2γj2  for the jth platform. Also, the hyper-prior 

λj exp(c) and γj−2 Gamma a, b / 2λj  are assigned to induce greater flexibility and 

completeness in shrinkage estimation. To complete our prior specification, we assume a 

conjugate InverseGamma(a,b) prior on σk
2. Here, we let each genomic platform combination 

(platform type) share the same set of hyperparameters (λj, γj2), thus maintaining the grouped 

structure at the shrinkage level. For implementation, we utilize Markov Chain Monte Carlo 

(MCMC) based Bayesian sampling techniques such as Gibbs sampling and Metropolis-

Hastings. The posterior means calculated from MCMC samples are used to obtain the 

parameter estimations, and the corresponding posterior probabilities are used to conduct 

signal detection. The details for the posterior distribution and MCMC sampling are shown in 

Appendix A.

For the radiogenomic clinical model, we utilize similar NG prior distributions, the only 

difference being that our group structure is determined by the RF combinations. We assign 

the same hyperparameters for the partitioned RFs that belong to the same combination/

group. Suppose our predictor set estimated from stage II can be expressed as 

ℐ = ℐCN, ℐmiR, ℐO, ℐg , and the effect parameter α = {α1, α2, α3, α4}, then the model 

and prior construction can be expressed as

Y = ℐα + ϵ
Y Normal ℐα, σ2INGℐc
α Normal 0, Dψ

Dψ = diag(ψ1,1, ψ1,2 ,…, ψ1,K, ψ2,1, ψ2,2, …, ψ2,K, …, ψJ,1, ψJ,2, …, ψJ,K), where J 

denotes the total number of different RF combination types (j = 1,2,3, …, J, our J = 4), k 
denotes the RF index (k = 1,2,3, …, K). Further, we assign our prior and hyper-prior 

distributions as ψj, k Gamma λj, 1/ 2γj2 , σ2  InverseGamma  u1, u2 , λj exp(d), and 

1/ 2γj2 Gamma e, f / 2λj . Note that for censored sample i, we sample Yi from complete 

conditional distribution which is normal distribution with left truncation at ti that represents 

the follow-up time. Finally, RF combination selection is based on the posterior probability of 

the MCMC samples. Details about the posterior distribution and sampling methods are 

provided in Appendix A.
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2.3. Radiomic and Genomic Marker Selection.

For marker/feature selection we propose a thresholding procedure for the various regression 

models. Specifically for the radiogenomic clinical model, we choose a thresholding criteria 

considering both the effective size and clinical interpretability. For example, in the GBM 

case study, we apply the AFT model with the log-transformed survival time as the clinical 

outcome. In our analysis, considering that the survival times are measured in months, which 

is comparatively small, we choose to apply log2-based transformation, which leads to better 

interpretability and a simpler calculation. Based on this setting, the region for detecting the 

coefficients of the image markers becomes αjk ∈ −∞, δ−* ∪ δ+*, ∞ , where we denote 

δ−* as log2 1 − δ2  and δ+* as log2(1 + δ2), particularly, αjk is the coefficient of the kth radiomic 

marker modulated by the jth genomic platform (j = 1,2, …, J, k = 1,2, …, K). Moreover, δ2 

is determined to achieve the proper effect size and is interpreted as the percentage change in 

survival time, e.g., for the GBM data analysis, we choose δ2 = 0.05, which corresponds to 

5% change in survival time. More specifically, we denote 

P+ ℐjk = Σt = S + 1
t = T I αjk

(t) > δ+* /(T − S) and P− ℐjk = Σt = S + 1
t = T I αjk

(t) < δ−* /(T − S) where t 

denotes the tth MCMC iteration, S denotes the burn-in sample size and T represents the total 

number of MCMC iterations. We flag ℐjk to be positively significant if P+ ℐjk > 0.5 or 

negatively significant if P− ℐjk > 0.5 [Barbieri and Berger (2004)].

Analogously, for the radiogenomic model, considering δ-fold or larger variation in the 

response for a unit change in a particular predictor is defined as a standard in the 

significance detection, which corresponds to βjg ∈ (−∞, −δ) ∪ (δ, ∞) and βjg is the 

coefficient of the jth platform of the gth gene in the analysis. Once a proper threshold δ1 is 

determined, the posterior probability is defined as P xjg = Σt = S + 1
t = T I βjg

(t) > δ1 /(T − S), 

where S is the burn-in sample size and T is the total number of MCMC iterations. Feature 

xjg in the gene-platform combinations is highlighted to be ‘significant’ if P(xjg) > 0.5.

Radio-iBAG modeling algorithm provides a concise summary of Radio-iBAG model 

implementation and genomic/radiomic marker selection.

3. Radiogenomic Mapping of Glioblastoma Multiforme.

Glioblastoma Multiforme (GBM) is an aggressive and malignant form of primary brain 

cancer. It is the highest grade glial tumor, with a median survival time of 14.6 months 

following standard treatment options and typically 3 months without treatment [Stupp et al. 

(2009)]. Although different treatment approaches that include radiation, surgery and 

chemotherapy have been developed and applied in clinical practice, the overall mortality rate 

still remains high, mainly due to the tumors resistance to treatment [Bleeker, Molenaar and 

Leenstra (2012)] and the complexity of its primary biological mechanism.
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Currently, at the molecular level, TCGA provides data sets with multiple genomic platforms, 

including methylation, CN alteration, and gene expression. Studies based on TCGA platform 

have identified distinct molecular subclasses of GBM, resembling stages in neurogenesis 

that are relevant to prognosis [Verhaak et al. (2010)]. Also, with the availability of 

standardized medical image annotations from The Cancer Imaging Archive (TCIA), 

multiple studies currently focus on the detection of radiomic imaging variables associated 

with clinical outcomes [Chaddad and Tanougast (2016), Kickingereder et al. (2016)]. 

Relevant studies have shown that quantitative imaging features extracted from different 

modalities provide strong prognostic information [Nicolasjilwan et al. (2015), Lee et al. 

(2016)].

The availability of such large-scale data resources (TCIA and TCGA) makes it feasible to 

perform radiogenomic mapping in GBM to explore the complex associations between 

molecular features and imaging features for this particular cancer type. In this section, we 

apply our integrative multi-stage Bayesian hierarchical model with the data from patients 

with GBM and matched with TCGA and TCIA platforms, to discover radiogenomic 

associations characterizing these data and identify RmFs and genomic markers associated 

with GBM prognosis. More details of the genomic and imaging data sets are provided 

hereafter.

Zhang et al. Page 11

Ann Appl Stat. Author manuscript; available in PMC 2020 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Data Description.

3.1.1. Radiomic and clinical data description.—Among 304 GBM patients with 

available genomic records, 78 matched patients (NGℐ=78) also have MRI T1-weighted post 

contrast images and T2-weighted fluid attenuated inversion recovery (T2-weighted FLAIR) 

images available from TCIA for texture analysis. Image preprocessing procedures, including 

steps such as non-uniformity normalization (N3) correction, registration, segmentation, 

isotropic voxel-reslicing and image filtering, were performed prior to texture feature 

extraction. For this analysis, we derived textural features from the axial 2D slice that has the 

largest tumor area [Zhou et al. (2014)]. Our textural features were obtained from a two-step 

process: 1) Image filtering, 2) Haralick features1 derivation [Haralick, Shanmugam and 

Dinstein (1973)] [Haralick (1979)] and summary measures calculation. These image pre-

processing steps as well as the texture feature calculations are described in detail in the 

Supplementary Section S2.1.

For the radiomic data set, we had 972 RFs that could be categorized into 20 groups based on 

how they were calculated. The group names and corresponding descriptions are provided in 

the Supplementary S2.2. They cover the features of both T2-weighted FLAIR and T1-

weighted post-contrast MRI modalities with different type of features: texture features, 

histogram features and regional features and with two types of ratio based normalization 

methods.

For clinical outcomes, we utilized overall survival times (in months) as the response in our 

integrative analysis. For the clinical model, we used data from NGℐC = NGℐ = 78 GBM 

patients with matching multi-platform genomic, radiomic, and clinical data, and with 9 

patients having censored clinical outcomes. We applied the AFT model using the log2 

transformed survival time log2(Ti) as the response, where Ti is the survival time in months 

after diagnosis for patient i, and imputed the survival time for censored samples 

simultaneously.

3.1.2. Genomic data description.—Our gene expression data set is level 3 

(summarized per gene), and was downloaded and processed by TCGA Assembler [Zhu, Qiu 

and Ji (2014)] with open-source software and related instructions available in public. The 

CN data set is level 2 (probe-level) data obtained from TCGA Portal from the HG CGH 

244A platform with normalized records of CN alteration for each probe. The miRNA data 

set was also acquired from TCGA Portal with 534 miRNA records and 575 samples in total.

In our analysis, we focus on 49 genes that are members of signaling pathways that have 

previously been detected associated with GBM (RTK/PI3K, P53, and RB pathways 

[Network et al. (2008)] and 304 patients (NG = 304) with records available for mRNA, CN 

and miRNA. The sample sizes and the specific types of the raw datasets for all genomic 

platform, radiomic data and clinical data are illustrated via diagram in Supplementary Fig S3 

with description in Section S2.3. The genomic datasets used in the first stage are all 

1Features generated using variòus metrices of the co-occurence matrices are called “Haralick features” after the publication of 
[Haralick, Shanmugam and Dinstein (1973)].
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continuous and the descriptions of the raw data structure (for 304 samples) of different 

genomic platforms are given in below:

• mRNA (304 × 49) contains gene expression levels for each gene and each 

patient.

• Copy number (304 × 491) contains the CN alteration data (columns) for each 

sample (rows). There exist multiple copy number markers per gene, and the 

columns of the data set are sorted by gene. Also, one gene, HRAS, does not have 

CN alteration information, thus, any variance of gene expression contributed by 

CN changes will be captured by the factor “others” in this analysis; in other 

words, for gene HRAS, the corresponding column in matrix GCN is set as zero.

• miRNA (304 × 522) contains miRNA values for each gene (column) and patient 

(row) based on the miRNA-mRNA interaction membership matrix, with records 

coming from targetHub [Manyam et al. (2013)], which collected miRNA-mRNA 

interaction records based on 5 external databases, and multiMiR [Ru et al. 

(2014)] is based on 14 external databases, including validation databases, 

prediction databases and drug-associated databases. There exist multiple miRNA 

records corresponding to one gene, and the columns of the miRNA data set are 

ordered by gene.

We wish to obtain gene-level summaries for each platform based on these raw data sets. 

Considering that a given gene can contain multiple values from different markers for both 

miRNA and CN alteration records, and including all these records into the genomic model is 

computationally expensive and inefficient, the gene-level summaries that can be carried into 

the modeling stage need to be generated. There are different ways to obtain gene-level 

summaries, e.g., taking the average, selecting the top most correlated records, or extracting 

the top principal components via PCA. For the analysis of GBM data, CN alteration and 

miRNA, in each case, we perform PCA on the genomic platform data set mapped to a gene 

and keep the top principal components with cumulative variance that explain up to 90% of 

the total variance. In this way, we regard the remaining records as capturing most of the 

information of the genomic platform data. Specifically, for gene g, the gene-level summaries 

for each platform can be expressed as XmiRNAg and XCNg, which have been denoted in 

Methods. Our genomic model is conducted based on these three data sets, XmRNAg, 

XmiRNAg and XCNg.

As described in Section 2.1, our genomic model uses the GAM to fit the model and estimate 

the partitioned mRNA that is modulated by different genomic platforms. To implement the 

GAM algorithm, we utilized Woods R package “mgcv” and exploited its option for the 

automatic smoothness selection for the penalty parameter based on generalized cross-

validation [Wood (2001)]. Subsequently, for each gene, we calculated the proportion of the 

mRNA variance explained by each platform. We assume that if a genomic platform does not 

explain much variation in mRNA expression, it will not have a significant impact on image 

features. Thus, for GmiR, GCN and GO, we filtered out the genomic platform features that 

explain less than 10% of the total variance of gene expression, leaving the remaining 

features to be carried forth into the radiogenomic model.
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3.2. Estimation of Radiomic-meta-Features.

One of the critical challenges in fitting the radiogenomic model is the high dimensionality 

and redundancy of the set of radiomic features (RFs). In our GBM case study, the 

preprocessed RF data set has 972 features, and contains many features within the same type 

of radiomic class but with different settings, e.g. filtering scales. Thus, there are extensive 

correlation among many RFs with high magnitudes up to 0.99, as can be seen in the 

correlation heatmap shown in Supplementary Fig S1. Facing these challenges, we utilize a 

new radiomic strategy of empirically constructing radiomic meta features (RmFs) comprised 

by a linear combination a sparse subset of highly correlated RFs. Each RmF defines a factor 

capturing one aspect of the fundamental structure in the radiomic features, and together the 

relatively small number of RmFs retain a vast majority of information contained in the set of 

972 RFs. To our knowledge, this strategy has not been applied in the radiomics literature to 

date, and may be useful in other contexts. We construct the RmFs by applying sparse 

principal component analysis (sPCA) [Zou, Hastie and Tibshirani (2006)] which 

incorporates a regularization technique such as the lasso or elastic net to induce sparsity in 

the principal component loadings. This has the advantage of interpretability over general 

principal components that do not in general yield sparse loadings, in the case of our GBM 

application yielding RmFs that are reasonably intuitive and interpretable (see Section 3).

This algorithm offers a parsimonious way to obtain more comprehensive representation of 

radiomic features, which contain the maximum information of the original radiomic data. 

While not strictly orthogonal like PCs, the SPCs are approximately orthogonal so it is 

reasonable to model these RmFs as independent imaging features in the second stage 

radiogenomic model. The sparse loadings for the RmFs for our GBM application are shown 

in Fig 2, and by contrast, the non-sparse loadings for ordinary PCA are shown in the 

Supplementary Fig 2S.

Let ℳ be an NGℐ × P  matrix (typically with P > > NGℐ) with the rows being the subjects 

and the columns the P (=972) RFs. The sparse PCA is applied as follows:

• Apply ordinary PCA to ℳ and record the number of top principal components 

with the cumulative variance explaining up to 100(1 − α)% (eg. 90%) of the total 

variance. Each PC is regarded as a linear combination of the original features 

with its loadings can be estimated by regressing the PC on these features. 

Sparsity in loadings results from adding regularization terms in the regressions.

• The general sPCA algorithm and its numerical computation procedure are 

described by [Zou, Hastie and Tibshirani (2006)]. In most cases, the number of 

features is typically much bigger than the sample size; hence, the simplified 

version of the general sPCA described in the paper should be applied here. The 

mathematical formulation of sPCA is illustrated in the Supplementary file 

Section S2.2. To implement the algorithm, we utilized the R package “elasticnet” 

[Zou and Hastie (2005)], with K (the number of principal components based on 

the ordinary PCA) principal components and vectors of λj (L1 norm 

regularization parameter for each loading vector). The parameter λj can be 
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chosen by cross validation, or various values can be tried to find one that results 

in the desired level of sparsity.

Suppose V is our final matrix of loadings with dimensionality P ×K, the projected imaging 

features matrix (PC score matrix) is then ℐ NGℐ × K = ℳ NGℐ × P V (P × K). We define the 

vectors of this matrix as RmFs, which contain the majority of the information of the original 

radiomic data. These features are further regarded as predictors in the analysis of the 

radiogenomic clinical model.

3.3. Results Using the Radio-iBAG Model.

3.3.1. Radiomic-meta-Feature Estimation.—We conducted sPCA with the 

regularization parameter λ = 2.5 for each principal component, leading to 22 top principal 

scores that explain 80.7% of the total variance. We also explored large range of λ with the 

corresponding loadings and the cumulative variance that are showed in Supplement Section 

S6. We chose λ = 2.5 given its balance in the sparsity of the loadings which leads to good 

interpretation and the cumulative variance that could be attained. We call these 22 principal 

scores Radiomic-meta-features (RmFs) as discussed in section 3.2. To summarize the RmFs, 

Fig 2 plots a heatmap of the squared loading proportions within the 20 broad categories of 

RFs to show which feature types dominate each RmF.

This figure reveals that many of the RMFs appear to be interpretable in the sense of 

summarizing certain aspects of the images, including morphological imaging features that 

can be directly visualized, eg. unformity, tumor area, mean intensity, etc. To further illustrate 

their interpretability, we pick out three example RmFs and in Fig 3 plot T1-Post Contrast 

images for the four tumors with highest and lowest values of the corresponding RmF scores, 

rescaled to [0,1]. RmF 21 has the largest loading values for feature categories indicating 

tumor area (T1_Region, F_Region). The first column of Fig 3 shows that samples with 

higher values of RmF 21 tend to have larger tumor area. RmF 14 has non-zero loadings 

inversely proportional to pixel intensity variance measures, and thus can be construed as 

representative of local pixel heterogeneity. From the second column, it is evident that larger 

RmF 14 (smaller variance) leads to lower local pixel heterogeneity. The third column of Fig 

3 shows the sorted RmF 17, whose loadings are dominated by the imaging intensity 

histogram feature “uniformity”, which represents how non-uniform of the overall gray-level 

pixel intensities. The gray level of the magnified tumor region shows that when RmF value 

gets larger, the tumor surface gets more non-uniform. These RmFs quantitatively capture 

these fundamental features of the images.

We use these RmF as quantifications of the radiomic data in our modeling, with the radiomic 

model fit to Rmf matrix ℐ, which is of dimension 78 × 22, with RmFs as columns and 

subjects as rows.

3.3.2. Radio-iBAG Modeling Results.—Our model shows proper convergence and it 

is not sensitive to the choice of the hyperparameters based on the model checking results 

respectively described and shown in Supplementary file Section S4.2 and Section S7. After 

model fitting, the information about the prognostic radiogenomic features can be explored in 

the following sequence: RmFs that significantly influence the survival time, either positively 
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or negatively, are selected using our criteria outlined in Section 2.3. For each selected RmF, 

the important RF groups comprising this RmF can be identified by evaluating the sPCA 

loading information as shown in Fig 2. To obtain significant genes and genomic platforms 

for the selected RmFs, we then trace back to the radiogenomic model and the genomics 

model, to identify which genes, if any, are associated with that RmF, and then which 

upstream platforms appear to be modulating the genomic effect. The specific results for each 

stage are described here.

Radiomic Results.: We use posterior probabilities to detect significant radiomic signals as 

well as genomic platform factors in both stage II and stage III based on the median 

probability criteria described in Section 2.3. Fig 4 shows the posterior probabilities used to 

select the positively and negatively significant clinical RmF combinations. The results show 

that more RmF are positively significant for the prognostic outcome, with 1 unit change 

leading to at least 5% increase in survival time (δ2 = 0.05, the results using alternative 

thresholding δ2 = 0.02 and δ2 = 0.08 are shown in Supplementary File Section S4.3). Also 

negatively selected significant RmF combinations have the interpretation as 1 unit change 

leading to at least 5% decrease in survival time. From Fig 4(a) and Fig 4(b), we see that 

RmF 7 and RmF 8 have a positively significant influence on the survival time, with the parts 

that are modulated by genes through their copy number effects (GCN). RmF 1 and RmF 3 

are negatively associated with survival with the parts that are modulated by genes through 

their copy number effects (GCN). RmF 1, RmF 4, RmF 8, RmF 18 and RmF 21 are 

positively related with survival via genemic effects not modulated by CN and miRNA. RmF 

10 and RmF 19 are negatively associated with survival through genomic effects not 

modulated by miRNA nor CN. RmF 13, RmF 14 and RmF 21 are positively associated with 

survival apart from genetic modulated factors.

To interpret the flagged RmFs, we turn to Fig 2 (as well as the Supplementary Material.xls 

file), which illustrates how much variance each RF group contributes to the corresponding 

RmF combinations. RmF 8 is found to be positively associated with survival through CN 

effects, and Fig 2 shows that RmF 8 is dominated by the the RF groups “T1_LoG_Tex_R1” 

and “T1_LoG_Tex_Fine”. RF names and their brief interpretations are shown in the table of 

Section S2.2 of the Supplementary Materials. In general, we see that texture features derived 

from T1-weighted post contrast images processed with R1 normalizing approach tend to be 

more significant, and based on the actual loading values (Supplementary Material Excel 

file), we found Haralick features to be important, including sum average and inverse 

difference moment. As another example, RmF 19 modulated by gene expression not 

explained by miRNA or CN changes (GO) is detected to be negatively associated with 

survival, and for this RmF the dominant RF group is the Haralick features extracted from 

T2-weighted FLAIR images, especially with exact features named cluster shade, cluster 

prominence, energy and contrast. Additionally, RmF 21, which is found to be positively 

associated with survival both through genomic factors explained by“other” and the non-gene 

driven part. Further checking found that RmF 21 is associated with T1-weighted post 

contrast and T2- weighted FLAIR tumor areas. This indicates tumor area, as one of the 

major regional features, associated with the survival time and seemingly moderated by gene 
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expression of signaling pathway genes, in part regulated by some genomic transcriptional 

factors other than CN or miRNA.

Radiomic Biological Significance.: In general, more radiomic features extracted from T1-

weighted post contrast MRI images are selected to be clinically significant and most of them 

appear to be associated with genomic effects in signaling pathways. This is not unexpected 

given the fact that recent studies in literature showed that genomics are expected to be most 

related to T1-weighted post contrast images rather than T2-weighted FLAIR preprocessed 

ones. More specifically, RmF 14, which mostly captures the contrast margin of the 

enhancing MRI image, the magnitude and the loading information (included in 

Supplementary excel file), indicate that higher texture feature sum of average or lower 

texture feature sum of variance derived from the contrast of the edges leads to longer 

survival times. The detection of RmF 10 shows that histogram features, derived from T2-

weighted FLAIR image pixel intensity and representing the global summary of the 

enhancement, are selected to be primarily affecting patients’ survival. It has been shown that 

the overall intensity is correlated with blood flow vasoconstriction. Moreover, we see 

associations with several key genes PDGFRA and TP53, with genomic transcriptional 

factors that affect the uniformity of the overall pixel intensity. In addition, RmF 21, with 

both genomic transcriptional factor driven part and non-gene driven part, are also selected to 

be significant in influencing patients’ survival time. Since the region feature, more 

specifically, tumor area, that captures most of the variation of RmF 21, our conclusion 

indicates that tumor area calculated from both T1-weighted post contrast and T2-weighted 

FLAIR images, are clinically important, larger area results in shorter survival times.

Genomic Results.: For the selected RmFs, we trace back to stage II and obtain the 

regulating genes that significantly affect the RmFs through specific genomic platforms (CN, 

miRNA or others), as shown in Fig 5, Fig 6 and Fig 7. To flag genes as associated wtih the 

RmFs, we compute the posterior probabilities of the magnitude exceeding a pre-specified 

threshold. For our analysis, we present the results with the setting δ1 = 0.075 in this section 

since it gave us the best balance between the signal and sparsity (the results when setting the 

threshold δ1 = 0.05, 0.075, 0.1 are shown in supplementary file Section S4.3). For the 

flagged genes, we traced back through the stage I model to acquire the percentage values 

(marked in blue) that represent the proportion of the mRNA variance that is explained by the 

corresponding genomic platform. For example, RmF 8 modulated by the CN combination is 

selected to be important, referring to the top left graph in Fig 5, genes GRB2, PIK3CB, 

SPRY2 and TP53 are selected as important, affecting RmF 8 through CN alteration. For 

gene SPRY2, 20.3% of its mRNA is explained by CN alteration. Also, genes PDGFRA and 

TP53 are selected as significantly influencing RmF 10 via other transcriptional factors. For 

TP53 in particular, the genomic factors (other than CN and miRNA) explains 86.2% of its 

mRNA variance.

For the results of stage I, after performing genomic modeling and filtering out the genomic 

platforms that did not explain much of the variance of gene expression (discussed earlier), 

there are 92 markers in the remaining gene-platform combinations (miRNA: 12; CN: 31; 

Others: 49) being carried into stage II, the radiogenomics model, as predictors. Fig 8 
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presents the overall genomic and radiomics results: RmF 7 and RmF 8, modulated by CN, 

are selected to be positively associated with survival time. Furthermore, 4 genes (GRB2, 

PIK3CB, SPRY2 and TP53), with their part of gene expression (mRNA) explained by CN 

alteration, are detected as being significantly associated with these RmFs. For the 

transcription modulated part, RmF 10 and RmF 19 are detected as being negatively 

important and associated with gene ERBB2, TP53 and PDGFRA; while RmF 21 is 

positively significant and associated with genes CDKN2A, ERBB2, MDM2, PDGFRA, 

PIK3C2G and PIK3CG. For the non-gene-driven factors, RmF 13, RmF 14 and RmF 21 are 

positively significant.

Genomic Biological Significance.: Result table shows that gene EGFR is selected to be 

significant for multiple flagged RmFs. It agrees with the literature that the aberrations and 

gene expression of EGFR, with its full name as “epidermal growth factor receptor”, have 

been associated with the classical subtype of GBM among 4 major subtypes (proneural, 

classical, mesenchymal and neural), defined based on transcription data analysis [Verhaak et 

al. (2010)]. This particular subtype accounts for ~ 25%−30% of GBM cases. The 

amplification of the EGFR gene is the most common genomic change that leads to 

overexpression of the receptor variant III (EGFRvIII), and 20% or less EGFRvIII in GBM is 

significantly related to longer overall patient survival [Montano et al. (2011)]. Moreover, 

PDGFRA is another gene which has been flagged as important for multiple RmFs. It was 

found that for the proneural subtype, platelet-derived growth factor (PDGF) receptors 

(PDGFRAs) have been found to represent gene [Verhaak et al. (2010)]. Also, PDGFR has 

been positively correlated with patient survival time and its critical role in oncology has been 

well described in the context of gliomas [Nazarenko et al. (2012)]. Gene TP53 is selected to 

significantly influence RmF 8 via its mRNA explained by CN, and specifically, TP53 has 

been found to be the main hub gene that acts as tumor suppressor through comparative 

analyses of CN and mRNA expression in GBM tumor and xenografts Hodgson et al. (2009). 

The study illustrated that loss of TP53 function in GBM leads to transcriptional upregulation 

in gene expression network.

MDM2 is a commonly known oncogene that inhibits the tumor suppressor TP53; its 

overexpression and amplification have been studied through the analysis of CN alterations 

and gene expression profiles in previous studies [Yin et al. (2009)]. The gene CDKN2A, 

with other transcription factors accounting for its expression, has been found to be 

significantly associated with tumor area for both T1-weighted post contrast and T2-weighted 

FLAIR. CDKN2A belongs to the RB1 pathway, serves as a cyclin-dependent kinase 

inhibitor, and has been detected to be important [Solomon et al. (2008)]. It has been reported 

that loss of RB1 expression occurs in up to 25% of glioblastomas. Changes in RB1 

expression have been associated with alterations in tumor cell proliferation and survival 

[Kim et al. (2011), Nakamura et al. (1997)]. Also, the assessment of RB1 promoter 

hypermethylation showed a clear correlation between the loss of RB1 expression and 

promoter hypermethylation [Nakamura et al. (2001)]. Analysis of GBM on the molecular 

level (TCGA data), using fluorescence in situ hybridization and immunohistochemistry, 

showed that alterations in RB1 occur more commonly in the proneural subtype of GBM.
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4. Discussion and Conclusion.

This article presents the radio-iBAG model, a general framework for multi-scale integrative 

Bayesian analysis of radiogenomics data. Our hierarchical models incorporate biological 

mechanistic relationships among multiple genomic platforms, radiomic feature analysis and 

radiogenomic analysis with relevant clinical outcomes. There are three key features of this 

modeling strategy: (1) Multiple genomic platform profiles are incorporated in the 

radiogenomics framework; (2) For model fitting, high dimensionality with a pre-defined 

group structure in the covariates can be addressed through Bayesian shrinkage priors. In 

particular, we choose the normal gamma prior due to its flexibility in both shrinkage and 

parameter estimation; and finally (3) Investigating the relationship between clinical 

outcomes and radiomic features containing genomic information allows us to identify 

clinically significant genes, radiomic features and more importantly, the hidden associations 

between these two data modalities. We note that although our modeling strategy is motivated 

by an imaging genomics study in GBM, our methodology is general and can be applied to 

any other disease domain which generates quantitative imaging data with matched genomic 

data. This includes neurological diseases where the imaging features could be computed 

from structural or functional neuroimaging assays [Azadeh et al. (2016)].

We applied our methodology to the analysis of radiomic and genomic data sets of GBM. Our 

model analyzed the relationship between the survival times of patients and the RmFs 

modulated by various gene-platform combinations. Our analysis identified several RmFs 

that significantly impact survival times as well as identified the key radiomic features 

driving these factors. These results revealed that some of the most prognostically important 

radiomic features include tumor area, intensity histogram uniformity, and Haralick features 

derived from the GLCM, including energy contrast, inverse difference moment, and entropy 

for both T1-weighted post-contrast and T2-weighted flair images. Based on the results of 

modeling the relationship between RmFs and multi-platform genomic measurements, for 

each detected RmF, we subsequently identified which gene-platform combinations 

modulated that RmF. This allows us to detect prognostic RmFs modulated by upstream 

molecular platforms such as copy number, microRNA or other factors. Furthermore, we 

were able to identify which genes and platforms were driving these associations.

In summary, the advantages of applying integrative analysis of multiplatform genomic 

profiles in this framework are illustrated through the hierarchical back-tracking, which 

allows us to discover strong associations and interrelationships among the clinical, image, 

and genomic factors that may help elucidate the underlying biology. Most of the significant 

genes identified in our analysis have been shown to be biologically and clinically relevant to 

GBM molecular subclassifications, cancer development, or therapeutic strategies.

Several possible future extensions and generalizations could be explored based on our 

Radio-iBAG framework. For example, in our methodology, we applied a multi-stage 

modeling strategy in doing integrative analysis. A possible advancement may be using a 

joint model to capture all the relationships among different platforms simultaneously and 

maintain the detective power with interpretable results. One other possible direction may be 

incorporating pathway information as another hierarchy into the model structure or 
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considering more complicated biological mechanisms at molecular level, e.g, hidden 

associations between a gene and other platforms of the neighboring genes, into the modeling 

framework, e.g. as considered in McGuffey et al. (2018). Another possible future extension 

may be involving histological images of different tumor tissue regions as another imaging 

modality into the study, which will provide more pathological based interpretable 

radiogenomic relationships along with relevant clinical outcomes. We leave these tasks for 

future work.
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APPENDIX A: APPENDIX SECTION

A. Full conditi006Fnal posterior distribution.

The general posterior distribution of the coefficient parameter as well as other 

hyperparameters for the regression model either for the Radiogenomic Model or the 

Radiogenomic Clinical Model are shown below.

Consider the linear regression formula: Y = Xβ + ϵ.

In the radiogenomic model, Y denotes the specific RF, X is the matrix of the genomic 

platform combinations. In the radiogenomic clinical model, Y denotes the clinical outcome, 

X represents the RF combinations modulated by different gene expression parts explained 

by different genomic platforms. The full posterior distributions are

β rest Normal XTX + σ2Dτ−1 −1XTY , XTX + σ2Dτ−1 −1σ2

σ2 result IG a + n/2, b + (Y − Xβ)T (Y − Xβ)/2

ψji rest GIG a = γj−2, b = βji2 , p = λj − 1
2

λj rest 1/λj
aexp −bγj−2/ 2λj − cλj × ∏

i = 1

pj
ψji

λj/ Γ λj
pj 2γj2

pjλj

γj−2 rest Gamma a + pjλj, b /λj + ∑
i = 1

pj
ψji /2

If applying to the radiogenomic clinical model, j denotes the RF combination that are 

modulated by the gene expression that is explained by the jth platform, and k represents the 
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kth RF; if applying to the radiogenomic model, j is the genomic platform type index, i is the 

gene index.

Specifically, λj is sampled through the Metropolis-Hastings method, the proposed family is 

exp σλ
2z λj, and z comes from the standard normal distribution. The acceptance rate is 

controlled between 20% and 30%.
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Fig 1: Schematic representation of the multi-stage modeling process.
In stage I, for each gene, model the relationship between mRNA and different upstream 

genomic platforms and partition mRNA expression into multiple parts explained by different 

genomic platforms, CN: copy number alteration, miRNA: microRNA, Methy: methylation, 

Others: gene expression that is explained by other factors; In stage II, for each radiomic 

marker, apply Bayesian hierarchical model and partition the radiomic marker into different 

parts modulated by multiple mRNA factors that are explained by various gene-platform 

combinations and regard the residual as a non-gene-driven part denoted as Ig; In stage III, 

apply Bayesian hierarchical model to investigate the relationship between segmented 

radiomic factors with clinical outcome.
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Fig 2: Squared loading proportion for each RF group.
For each of the 22 radiomic-meta-features (RmFs), the sum of the squared loadings of each 

group is calculated, divided by the total sum of the squared loadings, which equals exactly 1. 

The heatmap shows this values in grey level, interpreted the RF group importance for each 

RmF. The grey level ranging from white to black matches the proportional values ranging 

from 0 to 1.
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Fig 3: 
T1-Post Contrast images are shown based on the sorted results of 3 representitive RmFs: 

RmF 21 mainly accounts for tumor area; RmF 14 mainly represents tumor pixel 

heterogeneity; RmF 17 represents tumor uniformity. The RmF values are all scaled from 0 to 

1.
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Fig 4: 
Results of stage III (radiogenomic clinical model): Detecting postively and negatively 

significant RmF combinations. Each RmF is segmented into 4 parts, of which 3 parts are 

modulated by different genomic platform combinations denoted as ℐCN, ℐmiR, and ℐO. 

The 4th part is modulated by unknown/unmeasured factors represented as ℐg (“ng” in the 

legend). The barplot shows the posterior probabilities that the coefficient for each part 

αjk > δ+*, where αjk denotes the kth RmF modulated by the jth genomic platform. For each 

RmF, the probabilities of these 4 components, CN, miRNA, others, and ng, are respectively 

shown in red, green, purple and blue. Each probability in Fig (a) shows that 1 unit increment 

in the RmF component leads to at least 5% increase in survival time. Each probability in Fig 

(b) shows that 1 unit increment in the RmF component leads to at least 5% decrease in 

survival time. We consider the markers to be significant if this posterior probability is larger 

than 0.5.
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Fig 5: 
Significant genomic CN combinations
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Fig 6: 
Significant genomic mRNA “Other” combinations
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Fig 7: 
Significant genomic mRNA “Other” combinations
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Fig 8: Results: Significant RmFs, genes and genomic platforms.
Four categories of RmF combinations are listed in the first column, where “non_gene” 

denotes “g,” which is the non-gene-driven part of the RmF. For each category, several 

significant RmFs detected from the clinical model are listed in the second column, with 

unbolded indicating positive ones; bolded indicating negative ones. Posterior probability of 

the important radiomic markers is shown in column 3. For each selected RmF, several RF 

groups are selected based on RmF description heatmap (Fig 2). For each significant RmF 

combination, significant genes are listed with the percentage of how much the variance of 

mRNA is explained by the specific genomic platform.
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