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Abstract

Purpose of the review—In this review, we discuss the roles of the gut microbiota, dietary 

phytochemicals in improving human health. Recent studies have reported that the human gut 

microbiota can be altered by dietary phytochemicals including phenolics, carotenoids, and dietary 

fibers. In addition, both pathogenic and nonpathogenic bacteria show regulatory effects with 

phytochemicals, suggesting potential synergistic effects in the improvement of human gut health 

and prevention of chronic diseases.

Recent findings—Numerous studies have been conducted on gut microbial alterations induced 

by phytochemicals, such as phenolics and carotenoids. Butyrate, a short-chain fatty acid produced 

via bacterial fermentation in the colon, also shows a significantly beneficial effect in the 

maintenance of gut microbial homeostasis. However, the molecular mechanisms underlying the 

effects of diets and the interactions of the gut microorganisms remain poorly understood. The gut 

microbiome profile changes have been observed in chronic inflammation-induced diseases 

including colitis, Crohn’s disease, immune dysfunction, colon cancer, obesity and diabetes. The 

anti-inflammatory effects of dietary phytochemicals against these diseases may be partially 

mediated by regulation of microbial profiles. Latest advances in biomedical technology such as the 

next-generation sequencing (NGS), and continuous cost reduction associated with these 

technologies, enabled researchers to perform ever-increasing number of large-scale, high-
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throughput computational analyses to elucidate the potential mechanism of phytochemical-

microbiome interactions.

Summary—Information obtained from these studies may provide valuable insights to guide 

future clinical research for the development of therapeutics, botanicals and drug efficacy testing, 

many of which will be discussed in this review.
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Introduction

The term “microbiota” refers to microbial communities [1]. The human gastrointestinal (GI) 

tract harbors more than 100 trillion total microbes, including bacteria, archaea, microbial 

eukaryotes and viruses [2, 3]. Although this number varies in individual studies, it remains 

clear that microbial biological functions are important [4]. The gut microbiota has several 

beneficial effects on human health, including promoting innate and adaptive immunity [5, 

6], maintaining the intestinal epithelial integrity [7, 8], helping the metabolism and synthesis 

essential nutrients such as vitamins, carbohydrate [9, 10], and resisting pathogens [11, 12]. 

Currently, scientists can explore the characteristics of the human microbiota from low to 

high resolution by collecting and analyzing high-throughput sequencing data with 

computational methods and algorithms [13, 14]. The National institutes of health common 

fund-supported human microbiome project initiated the profiling of the signature of the 

human microbiota and interpreted the high-throughput data obtained from 16S rRNA 

sequencing (relative abundance and diversity) and shotgun sequencing (functions and 

pathways) [3]. Subsequently, the gut microbiota of healthy subjects and patients with 

specific diseases has been explored dynamically in the last decade [15–18]. Phytochemicals 

are bioactive compounds that are abundantly distributed in fruits and vegetables [19–22]. A 

strong correlation between specific classes of phytochemicals and modification of the 

responding microbiota was observed [23–25]. However, comprehensive understanding of the 

interactions among phytochemicals and the gut microbiota remains in the early phase.

In this review, we will cover the roles of several classes of phytochemicals in the 

modification of the human gut microbiota. We will explore the relationship between the 

human gut microbiota and chronic diseases, including inflammatory bowel disease (IBD), 

colorectal cancer (CRC) and obesity. We will also discuss the potential mechanism 

underlying the triangular regulation of phytochemicals, the gut microbiota and human 

diseases, along with other significant factors, including dietary patterns, lifestyles and 

environmental exposure. The purpose of this review is to highlight the importance of 

interactions between phytochemicals and the gut microbiota and demonstrate the strong 

potential for the development of multiple platforms of diagnosis and therapies using this 

information, which will guide future clinical studies.
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Phytochemicals in the modification of the gut microbiota

Flavonoids

Flavonoids are a major subgroup of phenolics that contain two phenyl rings and one 

heterocyclic ring, and are widely distributed in fruits and vegetables such as blueberry and 

cranberry [26–28]. Evidence suggests that flavonoids and their derivatives influence the 

profile of the gut microbiota for improvement of host immune function and metabolism [29–

31], and the metabolic process reveals that flavonoids have both prebiotic and antibacterial 

effects [32]. Possible growth enhancement of Bifidobacterium, Lactobacillus, Enterococcus 
species and inhibition of Clostridium and Bacteroides species were observed during the 

coculture with flavonoids, and the changes in the human gut microflora were assessed by 

fluorescence in situ hybridization [33]. The bacterial species Eubacterium ramulus and 

Clostridium orbiscindens were also involved in flavonoid metabolism [34, 35]. Quercetin 

and its glycoside derivatives are abundant flavonols (subcategorized as flavonoids [36]) that 

are consumed via regular diets [37, 38]. Study showed that quercetin, not its glycoside 

derivatives, inhibited the growth of the bacteria Bacteroides galacturonics, Lactobacillus, 

Escherichia coli, Enterococcus caccae, and Ruminococcus gauvreauii in a dose-dependent 

manner [29]. Other flavonoids also showed antimicrobial properties against food-borne 

pathogens and are widely applied in the food industry [39]. Naringin (a flavanone) and rutin 

(a flavonol) metabolism have been determined to be microbiota dependent based on results 

obtained for mixed cultures with the human microflora [40]. All evidence suggest that 

flavonoid metabolism and the gut microbiota influence each other, and the gut microbiota 

has a strong impact on flavonoids and the associated metabolites, leading to strong health 

benefits.

Anthocyanins

Anthocyanins represent a major subgroup of flavonoids that are distributed in the common 

vegetables and fruits consumed in the US market, such as blueberry, raspberry, purple 

cauliflower and lettuces [41–44]. Raspberry anthocyanins (glycosides) have been 

significantly degraded in the presence of the active human microflora during coincubation 

[45]. Anthocyanins from potato, black rice and malvidin-3-glucoside also exhibited 

significant impacts on the growth of the gut microbiota, including on the growth of 

Bifidobacterium spp., Lactobacillus spp., Staphylococcus aureus and Salmonella 
typhimurium, during in vitro fermentation [33, 46, 47]. This bidirectional effect between 

anthocyanins and the gut microbiota was also observed in vivo. The catalytic gut bacteria 

Eubacterium ramulus and Clostridium saccbarogumia were involved in the deglycosylation 

of cyanidin-3-glucoside, a major derivative of cyaniding [48]. Black raspberry anthocyanins 

restored the growth of Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus 
spp. and inhibited the growth of Desulfovibrio spp. and Enterococcus spp. in C57BL/6J 

mice [49]. The luminal abundances of Firmicutes (Clostridium spp.) and Bacteroidetes 
(Barnesiella spp.) were significantly altered by raspberry anthocyanins [50]. The relative 

abundances of Bacteroides, Prevotella, Porphyromonas and Lactobacillus significantly 

increased and those of Bifidobacterium and Clostridium decreased in rats fed with 

blackcurrant anthocyanins [51]. Berry anthocyanins suppressed the growth of the 

proinflammatory bacterium Bilophila wadsworthia and increased the abundance of 
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Gammaproteobacteria in the high-fat diet group [52, 53]. In human clinical trials, subjects 

fed anthocyanin-rich red wine exhibited increased relative abundances of Eggerthella lenta, 

Bifidobacterium and Enterococcus at the genus level in feces [54]. An 8-week study with 51 

subjects fed anthocyanins and prebiotic fibers showed increased phylum levels of 

Bacteroidetes and reduced levels of Firmicutes and Actinobacteria [55]. A majority of 

anthocyanins undergo metabolism in the lower small intestine and colon, which was 

mediated by the colonic microbiota [56]. Even through large amount of studies and results 

have been reported, further research of specific bacteria and anthocyanins interaction and 

their molecular mechanisms are needed to be elucidated.

Hydrolyzable Tannins

Tannins are polyphenolic compounds and are subcategorized into ellagitannins, gallotannins, 

complex tannins, and condensed tannins [57]. Ellagitannins are hydrolyzable tannins that are 

present in berries, walnuts, plant seeds and herbs [58–61]. Ellagitannins were hydrolyzed to 

ellagic acid, and ellagic acid was then gradually metabolized by the colon microbiota to 

produce urolithin A and urolithin B [62]. In addition, it has been demonstrated that the 

antioxidants urolithin C and urolithin D were also present at significantly high 

concentrations in the intestines [63]. Evidently, urolithin metabolites production and tannins 

metabolism occurs primarily in the human lower GI tract and are microbiota dependent. To 

identify specific microbes that are involved in ellagitannin metabolism, human clinical 

studies have reported that species belonging to the genera Bacteroides, Prevotella and 

Ruminococcus are the dominant gut microbes in subjects that consumed urolithin-enriched 

walnut and pomegranate extracts, and the family Coriobacteriaceae is associated with 

urolithin metabolites and blood cholesterol levels [64]. Other studies have suggested that the 

genera Clostridium, Bifidobacterium, Lactobacillus and Bacteroides are involved in the 

production of urolithins [65, 66]. Bifidobacterium and Clostridium were also involved in 

pomegranate ellagitannin metabolism in a bacteria species-dependent manner, as determined 

by measuring the optical density of culture media [67]. Gallotannin is another type of 

hydrolyzable tannin [68, 69]. A human clinical trial revealed that gallotannins underwent 

microbe-mediated metabolism and released free gallic acid in the GI tract [70]. Although 

many studies have suggested that hydrolyzable tannin metabolism is microbiota related, the 

mechanisms underlying the antioxidant and anti-inflammatory activities of tannin 

metabolites and urolithins in the improvement of human health remain poorly understood 

[62].

Carotenoids

Carotenoids are tetraterpenoids, colored pigments that are present in fruits and vegetables 

[71]. The subgroups include xanthophylls (lutein, zeaxanthin) and carotenes (alpha-carotene, 

beta-carotene, and astaxanthin), and these compounds exhibit high antioxidant activity in the 

maintenance of human health [72–75]. Astaxanthin is an oxycarotenoid that is abundant in 

certain microalgae and marine animals [76, 77, 75]. Dietary astaxanthin (50 mg/kg) altered 

the relative abundances of the phyla Bacteroidetes and Proteobacteria; genera 

Butyricimonas, Bilophila and Parabacteroides; and species from Verrucomicrobia and 

Akkermansia in C57BL/6J mice [78]. Astaxanthin (200 mg per kg body weight per day) 

reduced the bacterial load of gram-negative pathogen Helicobacter pylori 119/95p on 
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Helicobacter pylori infected Balb/cA mice, and reduced the gastric inflammation and 

Helicobacter. pylori specific T-cell cytokine release [79]. A pilot study showed that dietary 

astaxanthin (0.04%, w/w) modified cecal microbiota at the phylum by both gender and 

genotype in vivo [80]. Astaxanthin application selectively reduced the abundance of cecal 

Proteobacteria and Bacteroides in female wide-type and BCO2 knockout mice C57BL/6J 

mice. In addition, astaxanthin significantly increased the abundance of Actinobacteria and 

Bifidobacterium in male wide-type mice only.

Fibers and butyrates

Whole plant foods include vegetables, whole grains and fruits and contain high amounts of 

fibers. Digestible fibers are among the major bioactive components of whole-food dietary 

interventions and significantly change the profile of the human gut microbiota [81–83]. 

Butyrate is a short-chain fatty acid (SCFA) that is commonly produced by bacterial 

fermentation of dietary fibers in the colon [84, 85]. This fatty acid plays several important 

biological roles, including as an inhibitor of histone deacetylase, an energy metabolite for 

the production of ATP, an activator of G protein-coupled receptors, an antioxidant, an anti-

inflammatory agent and promoter of brain health [86–92]. Human clinical trials determined 

that dietary fiber intake was strongly associated with the abundances of specific gut 

microbes, including those of the bacterial class Clostridia, phylum Actinobacteria and order 

Bifidobacteriales [93]. Soluble corn fibers (21 grams per day) significantly altered the 

bacterial phyla Firmicutes and Bacteroidetes and families Ruminococcaceae, 

Lachnospiraceae, Eubacteriaceae and Porphyromonadaceae in a randomized human clinical 

study [94]. Furthermore, metabolic pathways, including metabolism of carbohydrates, 

nucleotides, vitamins, and amino acids, were also induced by dietary fiber consumption. 

Studies have reported that a high-fiber diet influences the composition of the intestinal 

microbiome, indicating that the process of fiber fermentation is highly microbiota dependent 

[95, 96]. Thus, to fully appreciate the benefits to human health and understand the potential 

underlying mechanisms to guide the improvement of dietary requirements in the future, 

further research is needed.

From the above discussion, one could see that there is significant interactions between 

dietary phytochemicals and gut microbiota (summarized in Table 1), that could impact 

human health, to be discussed below.

Gut microbiota and phytochemical interactions in chronic diseases

The human gut microbiome and chronic diseases have been extensively studied in recent 

years [97–99]. An increasing number of studies have reported that microbial profiles 

systematically represent the interactions between the gut microbiota and microbiota-derived 

metabolites. The signature profiles are variable and highly dependent on the chronic diseases 

exhibited by the subject. In this review, the microbiota signatures of IBD, colorectal 

inflammation/CRC, and obesity/metabolic syndrome are discussed.
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IBD and gut microbiota

IBDs are induced by severely dysregulated and excessive immune response to commensal 

microbes, especially pathogens [100, 101]. IBD has been subcategorized to two major types: 

ulcerative colitis (UC) and crohn’s diseases (CD) [102]. With the development of gene 

sequencing technologies, especially 16s ribosome RNA and metagenomic sequencing and 

powerful bioinformatic tools, the reliability and accuracy of the description of gut microbial 

profiles and bacterial functions during intestinal inflammation in IBD have increased [103, 

104]. UC is characterized as a continuous inflammation in the colon [102]. Compared with 

the “normal” gut microbiota, patients with UC suffer from a reduction in bacterial diversity, 

microbiota instability (over- or under-expression of certain species) and adverse effects of 

therapies and drugs [100]. Some signature changes have been observed in human clinical 

trials where UC patients exhibited abnormalities of the gut microbiota, such as total 

depletion of the phyla Firmicutes and Bacteroidetes [105]. Other clinical reports have shown 

that UC patients exhibited increased abundances of the phyla Actinobacteria and 

Proteobacteria with decreased bacterial diversity. In vitro, Fusobacterium varium, 

Fusobacterium nucleatum and Enterobacteriaceae coli were isolated from patients with UC 

and were possibly responsible for induction of chronic inflammation in the colon [106–110]. 

Unlike UC, CD occurs in the entire GI tract with mixed healthy and inflamed areas [100]. A 

systematic review and meta-analysis revealed that the abundance of Mycobacterium avium 
subspecies paratuberculosis was positively correlated with CD [111]. Reduced abundances 

of the genera Faecalibacterium and Roseburia, as well as increased levels of 

Enterobacteriaceae coli and Ruminococcus gnavus, were also observed in patients with CD 

[112]. Currently, the gut microbiota-host interaction-induced mucosal immune response 

dysfunctions and intestinal chronic inflammation are the major causes of IBD, leading to 

reduced gut bacterial diversity and microbial dysregulation. To restore the gut microbiota 

homeostasis and prevent IBD, dietary intervention has become a critical and promising 

approach.

Phytochemicals show strong anti-inflammatory activity in vivo and in vitro and might have 

potential applications in the treatment of IBD [113–116]. In human clinical trials, forty 

patients with IBD were tested on an anti-inflammatory diet (IBD-AID) treatment [117–119]. 

The IBD-AID diet contained fish, egg, various fruits and vegetables to improve IBD 

patients’ carbohydrate modification, ingestion of pre- and probiotics, balance of the fatty 

acids intake and overall dietary pattern. Results showed that over 60% of IBD patients had 

good or very good response to dietary treatment in clinical assessment. The symptom 

reduction and life quality improvement was effective. Unfortunately, the underlying 

mechanism of efficiency was not elucidated. For other phytochemicals, flavonoids and 

polyphenols played anti-inflammatory roles against IBD through increasing intestinal 

bacterial diversity, reducing the relative abundance of Enterobacteriaceae coli and 

Fusobacteria, and increasing the abundance of Bacteroidetes [120, 121]. Flavanols EGCG 

from green tea, and tannic acids from gelatin tannate also showed strong anti-inflammatory 

activity in vitro by modulating gut microbiota, yet the accurate interaction was not fully 

understood [122, 123]. With accumulated evidence of gut microbiota interaction with 

phytochemicals, future human clinical trials of selected dietary supplementation would help 

developing effective and lower toxic botanical therapies against IBD.
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Gut microbiota in colorectal inflammation and CRC

The human colonic mucosa is populated with a wide range of microorganisms, usually in a 

symbiotic relationship with the host [124]. The imbalance of colon microbiota raises the risk 

of the colon exposed to metabolic and inflammatory stimuli [125, 126]. This imbalance, or 

dysbiosis, is a multifactorial issue that has been found to be associated with lifestyle 

(indicative of dietary habits and sedentary behaviors), DNA mutations, and inflammation 

and, most recently, changes in microbiota [127–130]. Recent studies have attempted to 

identify microbial changes that may enhance the process [131–135]. For example, 

Proteobacteria is a phylum that houses more than 200 genera of gram-negative bacteria, 

including several well-known pathogens as Enterobacteriaceae coli, Salmonella and 

Helicobacter pylori [136]. Several preclinical and clinical studies have demonstrated that 

these pathogens were found associated with human colon inflammation and CRC [137–

141]. Meta-analyses of human clinical studies revealed that Helicobacter pylori infection 

was associated with nearly 50% significant higher risk of CRC [142, 143]. A case-control 

study from Germany in 2003 – 2007 showed slightly higher level of Helicobacter pylori 
(around 46.1%) in CRC cases than healthy controls (40.1%). Firmicutes comprises mostly 

gram-positive phylum in human colon [144, 145]. The overall gut mucosa Firmicutes 
accounted 43.46% and 63.46% in healthy individuals and CRC patients respectively[146]. 

Staphylococcaceae, a family class of Firmicutes, was found to be more abundant in human 

CRC patients than in healthy controls [147]. Controversially, another human clinical showed 

that Firmicutes phylum at mucosal tissue of tumor was lower at 37.12% than paired normal 

mucosa at 44.72% of total mucosal bacteria [148]. Fusobacterium is a gram-negative 

bacteria and shows to be more prevalent in individuals with CRC than in healthy rats and 

humans [147, 149]. Furthermore, among individuals, those with a high abundance of 

Fusobacterium were apparently more likely to have adenomas than those with a low 

abundance of this genus [150]. A significant increasing of Fusobacteria occurred on the gut 

microbiota of CRC patients from 0.03% to 10.58% compared with healthy individuals [146]. 

These findings suggest that such microbiota may accumulate during the colorectal 

carcinogenesis. Meanwhile, by transplanted fecal microbiota from both CRC patients and 

healthy individuals into germ-free mice, tumor burden increased was strongly associated 

with the mice gut genus Bacteriodies abundance [149]. Evidence suggests that inflammatory 

and metabolic stimuli, along with the microbial community are important for the prognosis 

of colon carcinogenesis. Investigation of the colon microbiota and the associated modulatory 

cellular pathways is an area with great potential for research.

Phytochemicals show anticancer and anti-inflammatory activities on various human cancers 

[151–153]. Phytochemicals also modulate the intestinal microbial ecology, especially the gut 

microbiota as early as a few days after switching between carefully controlled diets [154–

156]. Evidence suggested that dietary polyphenols stimulated the growth of certain 

Lactobacillus strains [157]. Berry phenolics inhibited the growth of both gram-positive and 

gram-negative pathogenic bacterial strains, but interestingly, the lactic acid bacteria group 

was hardly affected [158]. Lactobacillus acidophilus CECT 362 was resistant to tea phenolic 

extracts containing caffeine, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin, 

(−)-epigallocatechin gallate, and gallic acid, whereas food-borne bacteria were inhibited 

[159]. Polyphenolic extracts from green tea, honey, peppers, black currants, raspberry, 
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cinnamon, and peppermint also exhibited inhibitory activity against Helicobacter pylori 
[160–162]. Polyphenols in olive oil diffused into the gastric juice and exerted a potent 

bactericidal effect against eight strains of Helicobacter pylori at very low concentrations (1.3 

μg/mL) [163]. Tea extracted phenolics (epicatechin, catechin, 3-O-Me galic acid, gallic acid 

and caffeic acid), aromatics and metabolites (3-(4-OH phenyl)propionic acid, 3-

phenylpropionic acid, 4-OH phenylacetic acid) showed selective growth effects on human 

gut microflora and reduce the growth of pathogenic bacteria including Clostridium 
perfringens, Clostridium difficile and Bacteroides spp. significantly [164]. Despite systemic 

similarities between rodents and humans, it is important to understand the complexity, 

exposure-related differences and mechanisms of action of phytochemicals in gut microbial 

modulation [165]. Phytochemicals contribute to the maintenance of human GI health, 

largely via modulation of the gut microbial balance with simultaneous inhibition of 

pathogens and stimulation of beneficial bacteria. Hence, regular consumption of a diet rich 

in phytochemical contents may beneficially balance the gut microbial ecology, helping 

prevent GI disorders and thus enhancing host health.

Gut microbiota and obesity, metabolic syndrome

Obesity is commonly defined as body mass index (BMI) values greater than 30 kg/m2 [166, 

167], and widely characterized by the pathophysiology of lipid accumulation in body 

compartments and excessive secretion of pro-inflammatory adipokines by adipocytes and 

macrophages [168, 169]. Obesity and insulin resistance can lead to the development of 

metabolic syndromes, including high blood glucose levels, high blood pressure, high serum 

triglyceride levels, low high-density lipoprotein levels and large waist circumferences, which 

increase the risk of heart disease, diabetes mellitus and stroke [170, 171]. Genetic changes in 

the body may not fully explain the dramatic increase in the occurrence of obesity in the past 

few decades [172, 173]; instead, environmental factors, such as high-caloric diet and 

sedentary lifestyle, are among the major driving forces [174]. An increasing number of 

studies have shown that the gut microbiome diversity and composition are associated with 

both diet and human diseases such as obesity, metabolic syndromes and type 2 diabetes 

[175–181]. The gut microbiota transplantation from conventional mice to lean and insulin-

sensitive germ-free mice (a process called conventionalization) led to a 60% increase in 

adiposity and caused insulin resistance [182]. Subsequently, the same laboratory reported 

that the gut microbial composition in obese (ob/ob) mice showed a 50% reduction in the 

abundance of Bacterioidetes and an increase in the abundance of Firmicutes compared to the 

abundances in lean (ob/+) and wild-type (+/+) mice [183]. To understand the causative role 

of the gut microbiome in obesity, a landmark study was conducted showing that germ-free 

mice transplanted with the gut microbiota from obese (ob/ob) mice exhibited substantially 

increased adiposity compared with mice transplanted with the gut microbiota from lean 

(ob/+) mice [184]. The mechanism was interpreted based on increased capacity for energy 

harvest, as demonstrated by the increased acetate and butyrate levels. Similar results were 

also reported on western diet induced obesity C57BL/6J mice, and microbiota profile was 

shifted to an increased abundance of Firmicutes and a decreased abundance of Bacteroidetes 
[185]. Meanwhile, one bacterial class Mollicutes class in the phylum of Firmicutes was 

found significantly up-regulated by diet-induced obese, which increased host energy harvest, 

as indicated by the enrichment of microbial genes and KEGG pathways involved in the 
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import and anaerobic fermentation of dietary carbohydrates. The lipopolysaccharides (LPS) 

are an endotoxin produced at the outer membrane of all gram-negative microbes[186], and 

cause systemic inflammation to initiate insulin resistance and obesity (a phenomenon called 

metabolic endotoxemia) [187, 188]. LPS-producing pathogens including family of 

Enterobacteriaceae and Desulfovibrionaceae (phylum of Proteobacteria) were found 

enriched in high-fat diet induced obesity mice and rats [189, 190]. A significant decrease in 

fecal Enterobacteriaceae was observed in obese adolescent humans who lost 4–7 kg 

following a 3-month energy-restricted diet and a physical exercise program [191]. In 

addition, diurnal oscillations of the microbiota were linked to obesity and metabolic 

syndromes [192, 193]. Mice fed a high-fat diet with disturbance in circadian rhythm 

exhibited altered microbial compositions and presented higher weight gains and glucose 

intolerance than mice fed the same diet with a normal circadian rhythm [192]. Moreover, 

germ-free mice transplanted with feces from jet-lagged human subjects exhibited dysbiosis, 

which caused weight gain and glucose intolerance [192].

Cranberry extracts, composed of phenolic acid, flavonols, anthocyanins, and 

proanthocyanidins, reduced weight gain, visceral adiposity and insulin resistance by 

reinforcement of antioxidative defense and prevention of intestinal inflammation in obese 

mice fed a high-fat/high-sucrose diet [194]. In this study, cranberry extracts restored the 

metabolic homeostasis in a positive correlation with the abundance of Akkermansia [194]. 

Strikingly consistent results were observed in mice fed 1% concord grape polyphenols (high 

in anthocyanins, flavan-3-ols, and flavonols). Grape polyphenols substantially increased the 

abundance of Akkermansia muciniphila, leading to altered intestinal gene expression. This 

effect in turn regulated intestinal epithelial integrity and inflammatory marker levels, finally 

resulting in improved lipid deposition (reduced adiposity and weight gain) and glucose 

tolerance (decreased glucose absorption and increased insulin secretion) [195]. In cafeteria 

diet-induced obese rats, a negative correlation was observed between weight gain and 

enrichment of microbial pathways involved in flavonoid biosynthesis [196]. The results 

indicated that dysbiosis caused by obesogenic diets could disrupt the biosynthesis of 

flavonoids, which may lead to decreased host utilization of flavonoids, resulting in an 

obesity phenotype [196]. The gut microbiota exhibited conversion of flavonoids, which were 

mainly distributed in the phyla Actinobacteria, Firmicutes, and the family of Clostridiaceae, 

Enterococcaceae, Eubacteriaceae, Erysipelotrichaceae, Lactobacillaceae, Lachnospiraceae, 

Ruminococcaceae and Streptococcaceae [197]. In addition, glucoraphanin (which can be 

metabolized to isothiocyanates), which is abundant in cruciferous vegetables such as 

broccoli, cauliflower, and mustard, could mitigate obesity, insulin resistance and related 

metabolic disorders by browning white fat, inhibiting metabolic endotoxemia-related 

chronic inflammation, and decreasing oxidative stress in mice fed a high-fat diet [198]. 

Glucoraphanin exerted its anti-obesity effect via a decrease in the abundances of the phylum 

of Proteobacteria, many bacteria from which can produce endotoxins [198, 199]. Moreover, 

Ganoderma lucidum, a medicinal mushroom that is used in traditional Chinese medicine, 

reduced obesity and insulin resistance by suppressing metabolic endotoxemia-related 

chronic inflammation in mice fed a high-fat diet by decreasing the endotoxin-bearing 

Proteobacteria and Firmicutes to Bacteroidetes ratios [200]. Fecal transplantation from mice 

treated with the Ganoderma lucidum extracts to mice fed a high-fat diet could effectively 
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reverse obesity and fat accumulation as well as the dysregulation of proinflammatory 

cytokines and intestinal tight junctions. These findings indicate that modulation of the gut 

microbiota is the mechanism for underlying the treatment of obesity.

Current challenges in and applications of human microbiota studies

Some of the challenges on the human microbiota studies are associated with interpretation of 

the metagenomic data with a lack of standard parameters and references and with the 

potential biases of technicians and methods during sample preparation. These challenges 

include, but are not limited to, the following: 1) variations in data process and analysis using 

different computational tools; 2) difficulty in sample collection of the mucosal and cecal 

microbes, as well as GI tract tissue under inflammation and oxidative stress; 3) microbiota 

composition changes during fermentation and degradation and during passage from the 

rectum to lumen; 4) DNA extraction efficiency for gram-positive and gram-negative bacteria 

are different, and results also varies in different chemical isolation kit.

Conclusion

There is solid evidence that gut microbes play the key roles in the reduction of the risk of 

chronic diseases, and phytochemicals are interactive with them. Currently, comprehensive 

preclinical and clinical studies reveal the gut microbial profiles of both healthy subjects and 

those suffering from chronic disease such as IBD, CRC and obesity. Dietary intervention 

seems to be a less aggressive, low risk and effective approach to prevent and treatment such 

diseases. In future, we will understand the biological functions of the gut microbiota and the 

interactions with phytochemicals, which contribute to the improvement of health benefits for 

humans.
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Table 1:

Summary of phytochemical and microbiota interaction

Phytochemical Altered microbiota Reference

Flavonoids Bacteroides galacturonics, Lactobacillus, Escherichia coli, Enterococcus caccae, Bifidobacterium 
catenulatum, Ruminococcus gauvreauii

29

Bifidobacterium, Lactobacillus, Enterococcus, Clostridium, Bacteriodies 33

Eubacterium ramulus, Clostridium orbiscindens 34, 35

Anthocyanins Bifidobacterium ssp., Lactovacillus ssp., Staphylococcus aureus, Salmonella typhimurium 33, 46, 47

Eubacterium ramulus, Clostridium saccbarogumia 48

Eubacterium rectale, Faecalibacterium prausnitzii, Lactobacillus spp., Desulfovibrio ssp., Enterococcus 
spp.

49

Firmicutes (Clostridium spp.). Bacteroidetes (Barnesiella spp.) 50

Bacterodies, Prevotella, Porphyromonas, Lactobacillus, Bifidobacterium, Clostridium 51

Bilophila wadsworthia, Gammaproteobacteria 52, 53

Eggerthella lenta, Bifidobacterium, Enterococcus 54

Bacteroidetes, Firmicutes, Actinobacteria 55

Hydrolyzable Tannins Bacteroides, Prevotella, Ruminococcus, Coriobacteriaceae 64

Clostridium, Bifidobacterium, Lactobacillus, Bacteroides 65, 66

Bifidobacterium, Clostridium 67

Carotenoids Bacteroidetes, Proteobacteria; Butyricimonas, Bilophila, Parabacteroides; Verrucomicrobia, 
Akkermansia

78

Helicobacter pylori 79

Proteobaceria, Bacterioides, Actinobacteria, Bifidobacterium 80

Fibers and butyrates Clostridia, Actinobacteria, Bifidobacteriales 93

Firmicutes, Bacteroidetes, Ruminococcaceae, Lachnospiraceae, Eubacteriaceae, Porphyromonadaceae 94
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