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Alternation of inverse problem 
approach and deep learning 
for lens‑free microscopy image 
reconstruction
L. Hervé, D. C. A. Kraemer, O. Cioni, O. Mandula, M. Menneteau, S. Morales & C. Allier*

A lens-free microscope is a simple imaging device performing in-line holographic measurements. In 
the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by 
solving the inverse problem. This is usually performed by optimization algorithms relying on gradient 
computation. However the presence of local minima leads to unsatisfactory convergence when phase 
wrapping errors occur. This is particularly the case in large optical thickness samples, for example 
cells in suspension and cells undergoing mitosis. To date, the occurrence of phase wrapping errors in 
the holographic reconstruction limits the application of lens-free microscopy in live cell imaging. To 
overcome this issue, we propose a novel approach in which the reconstruction alternates between 
two approaches, an inverse problem optimization and deep learning. The computation starts with 
a first reconstruction guess of the cell sample image. The result is then fed into a neural network, 
which is trained to correct phase wrapping errors. The neural network prediction is next used as the 
initialization of a second and last reconstruction step, which corrects to a certain extent the neural 
network prediction errors. We demonstrate the applicability of this approach in solving the phase 
wrapping problem occurring with cells in suspension at large densities. This is a challenging sample 
that typically cannot be reconstructed without phase wrapping errors, when using inverse problem 
optimization alone.

A lens-free microscope is a minimalist setup for in-line holography1–3. The lens-free records only intensity meas-
urements in the sensor plane, the image of the sample is obtained through computation. A simple procedure 
consists in back-propagating the measurements, but in the absence of phase information, the reconstructed image 
is degraded by so-called ‘twin-image’ artefacts4. To overcome the lack of information, various inverse problem 
approaches have been used to better reconstruct the sample image, i.e. forward model based algorithms, which 
perform either parameter fitting and/or regularization with a gradient descent scheme5–8. However, if the opti-
cal thickness of the sample exceeds �/2 , the reconstructed image is still largely incorrect, as the phase values 
are reconstructed modulo 2π whereas true values can exceed this range. This is the case for cells in suspension 
and cells undergoing mitosis. Their images are systematically reconstructed with phase wrapping errors. This 
problem considerably limits the application of lens-free microscopy in live cell imaging. At low cell concentra-
tions, it is possible to apply a simple positive phase constraint to correct the phase wrapping errors9. But at large 
cell concentrations, the accumulation of phase wrappings errors in the reconstruction prevents the use of this 
method. Recent publications have introduced the use of convolutional neural network (CNN) to address phase 
unwrapping in digital holography microscopy10–15. The results obtained by Zhao et al.13 demonstrate that the 
CNN solution is robust to unwrap phase containing heavy noise and aliasing. A successfull unwrapping phase 
images of living mouse osteoblast up to phase shift of 13π has been shown. In the work of Ren et al.15, the CNN 
solution applied to digital holography allows to reconstruct phase directly from the hologram. Different deep 
learning approaches have been successful in improving lens-free holographic reconstruction results16,17 but they 
do not address phase wrapping issues. A specific CNN could be trained to transform a lens-free reconstructed 
image into an image free of phase wrapping, as obtained with a quantitative phase imaging technique18–20. A 
similar approach have been used to transform images between different imaging techniques21,22. However, the 
performance of image reconstruction using CNN is compromised by the problems of hallucination, generaliza-
tion and adversarial fragility23. The hallucination problem deals with insufficient network training, resulting in 
systematic CNN prediction errors. The generalization problem is a result of overtraining, where the CNN fails 
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to process unseen data. At last, in the adversarial fragility problem the CNN can produce widely differing results 
after adding imperceptible variations to the input. In sum, deep-learning is a data-driven approach which can 
deliver an outcome very close to the reality, however with an intrinsic lack of confidence in the results owing to 
the above-mentioned problems.

In order to perform phase unwrapping in lens-free microscopy with a CNN based-solution and address issues 
of deep learning, here we propose an approach that alternates between the deep learning and inverse problem 
approach (see Fig. 1). We start the process with a first incorrect reconstruction of the cell sample image. The 
result is then fed into a CNN, which is improving the reconstruction by removing phase wrapping errors. The 
CNN prediction is next used as the initialisation of a second reconstruction. The latter returns the final result. 
In the best case, the alternation approach can lead to an accurate result found trough the CNN prediction which 
better initializes the inverse problem approach. If the CNN returns an inaccurate prediction with no concordance 
to the measurements, we expect that the second reconstruction algorithm will retrieve a solution with a better 
data fit. Note that this approach differs from the three methods based on deep learning recently reviewed in24. 
Our alternation approach is not an end-to-end deep learning engine, it does not predict the sample image from 
the raw acquisition. It is neither a single-pass physics-informed deep learning engine, applied only once after 
inversion of the raw acquisition16,24. Nor is it a physics-informed deep learning engine, running the regulariza-
tion in place of a regular gradient-descent scheme25,26.

In this paper, we demonstrate the applicability of the proposed alternation approach in solving the phase 
wrapping problem that occurs in lens-free holographic reconstruction. The approach has been specifically devel-
oped for the reconstruction of images of cells in suspension. It has first been developed and assessed on simula-
tions and next validated on experimental acquisitions.

Results
Validation on simulated datasets.  Figure 2 shows the outcome of the proposed three-step reconstruc-
tion algorithm for three examples of the synthetic validation set corresponding to different cell densities—low, 
medium and high. The number of cells contained within the entire 1000× 1000-pixel image were 1001, 2547 
and 4569 corresponding respectively to densities of 358, 909 and 1627 cells/mm2 . Note, the hologram of the high 
density case is speckle-like. As expected, objects recovered by the first (old) reconstruction, shown in Fig. 2c 
are degraded, with the presence of numerous wrapping errors in the OPD map (occurring when L exceeds 
�/2 ). Absorption maps A show cells outlined with absorbing circle artefacts. In the high density case, the first 
holographic reconstruction results are barely intelligible. In comparison, L and A images predicted by the CNN 
(Fig. 2d) are better matched to the ground-truth images. The final (new) reconstruction results (Fig. 2e) have 
similar appearance as the CNN results. Figure S1 shows the convergence plots for these reconstructions, namely 
the data fidelity criterion, the regularization criterion and their sum as a function of the iterations (see Eqs. 3, 4 
and 5). Notably, Fig. S1 shows that the CNN used for phase unwrapping systematically introduces a large devia-
tion between the prediction of the model and the measurements. This error is corrected by the third step, which 
improves data matching and allows for a low regularization term. The peak signal-to-noise ratio (PSNR) values 
measured between results and ground truth are given in Fig. 2. The CNN increases the PSNR values by almost 
a factor two in comparison with the first reconstruction. The PSNR measured on the final reconstruction are 
slightly lower than what obtained on the CNN prediction. In order to better assess these results, Fig.  3 shows 
a quantitative comparison between reconstructed and ground truth values for the three different cell densities 
presented above. The values of the real and imaginary part of the cell refractive index, �nr_recons and �ni_recons 
respectively, were obtained from the reconstructions (see Eq. 7) and compared to their ground truth values. For 
the first reconstruction, even at low concentrations, there is no correlation between reconstructed and ground 
truth values. In comparison, the results obtained with the CNN and the second reconstruction are linearly cor-
related with the ground truth values. For the �nr_recons values, we found good correlations up to index values of 
0.05 and up to a cell density of 900 cells/mm2 (Fig.  3a,c). The slopes of the linear regressions are in the range of 
0.84 to 0.96 and the coefficients of determination R2 are all larger than 0.75. The best results are obtained with 
the second reconstruction which is slightly better than the CNN output. At the highest tested cell density of 
1618 cells/mm2 (Fig.  3e), values are correlated up to index values of 0.03. Regarding �ni_recons , the reconstructed 
imaginary part of the cell refractive index, the results correlate with the ground truth values only at the low 
concentration of 360 cells/mm2 (Fig.  3b). The slopes of the linear regressions are about 0.6 and the coefficients 
of determination R2 about 0.7. Again the results obtained with the second reconstruction are slightly better than 
what was obtained with the CNN.

Figure 1.   Overview of the data processing performed in the alternation approach.
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Validation on experimental data.  The alternation reconstruction method was further tested on the lens-
free acquisition of PC3 cells in suspension. Figures 4 and 5 show the results obtained on PC3 cells measured in 
a 20 µm thick chamber at low density ( N = 8450 cells corresponding to a density of 14× 106 cells/ml in Fig. 5) 
and high density ( N = 34,000 cells corresponding to a density of 57× 106 cells/ml in Fig. 4). Distance Z was 
determined to be 1830µm , a network was trained for this distance. In the absence of reference measurements 
obtained with quantitative phase imaging techniques18,19, we can only discuss the reconstructed images in a 
qualitative way. Figures 4 and  5 show that the results obtained on experimental data are in line with the results 

Figure 2.   Results of the alternation reconstruction method obtained on the synthetic validation set at low 
density (358 cells/mm2 ), medium density (909 cells/mm2 ) and high density (1627 cells/mm2 ). Subfigure (a) 
presents ground truth images (L and A) of the object, subfigure (b) presents holograms obtained by using 
Eq. (2). Results of first (old) holographic reconstruction (c), of the CNN step (d), and of the final (new) 
reconstruction (e). Images are 150× 150 pixels crops of the original images ( 1.67µm pitch). In (c,d,e), 
peak signal-to-noise ratio (PSNR) measurements are indicated in the top left of the results to assess the 
reconstruction versus ground truth.
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obtained previously on the synthetic data (Fig. 2). The first (old) holographic reconstruction results are barely 
intelligible. In comparison, L and A images predicted by the CNN and obtained by the final (new) reconstruc-
tion present clear pictures of rounded cells. All phase wrapping problems are thus efficiently solved. The maxi-
mum obtained OPD values are about 1µm which corresponds to a phase shift of approximately 5π (see Fig. 4h, 
� = 405 nm ). In agreement with the simulated data, the last reconstruction step improves the matching between 
our model and measured data (see convergence plot in Fig. S1). This improvement brought by the third step can 
also be seen on the resulting image. Figure 4j points out errors introduced by the CNN but corrected by the third 
step. Fluorescence microscopy was used to validate the positions and the shapes of the cells in the reconstructed 
images. Based on the comparison between the two modalities, we conclude that reconstructions from our alter-
nation approach recover well the low density sample and give satisfactory results at high densities. The red boxes 
in Fig. 5 show typical discrepancies which appear at large cell density in the presence of the largest cells. This in 
agreement with the simulation which pointed out that the CNN is effective at large cell density only up to a given 
refractive index value (Fig. 3c,d). With these results, we can therefore conclude that the alternation approach is 
effective up to a concentration of ∼ 1000 cells/mm2 , in agreement with results of the simulation study.

As a generalization test, we applied the proposed alternation reconstruction approach to the acquisitions of 
different cell lines in suspension. Supplementary figures depict the reconstruction of cell culture in suspension 

Figure 3.   Reconstructed �nr_recons and �ni_recons as a function of the ground truth values. The three lines of 
the figure correspond to three different cell densities, namely 358, 909 and 1627 cells/mm2 (see corresponding 
images in Fig. 2). The results obtained after each individual step of the alternation approach are shown, namely 
the first reconstruction (blue dots), the CNN output (orange dots) and the final reconstruction (green dots). The 
results of the linear regressions are indicated with values of slope and coefficient of determination ( R2).
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of Molt4 cells (Fig. S2), Jurkat cells (Fig. S3) and CHO cells (Fig. S4). The reconstruction results are similar to 
that obtained on PC3 cells (Figs. 4 and 5). The CNN performs phase unwrapping while the last reconstruction 
step improves the matching between the model prediction and the measurement (see Fig. S1). As a second 
test, we applied the method to the reconstruction of a sample not considered during the CNN training, namely 
the acquisitions of an adherent mammalian cell line. Figure 6 shows the results obtained on the acquisition of 
adherent PC12 cells treated with neuron growth factor (NGF). Distance Z for this experiment was evaluated at 
3500µm , a dedicated CNN was trained at this distance. Interestingly, in this case it is possible to clearly distin-
guish the three different steps of the alternation approach and their impact on the image reconstruction. After 
the first holographic reconstruction, the image appears degraded (Fig. 6a,d,h,l). The large thickness of the cells 
results in several phase wrapping artefacts. The neuron heads are reconstructed with negative values (see blue 
profile in Fig. 6g). Finer morphological features are not well reconstructed, for instance the neurites which are 

Figure 4.   Application of the alternation reconstruction method on PC3 non-adherent cells at low density. 
Estimated number of cells ≈ 8450 , corresponding to a volumetric density of ≈ 14× 106 cells/ml (measured 
in a 20µm thick chamber) or a surface density of ≈ 290 cells/mm2 . (a) Full field of view, final reconstruction. 
(b) Reconstructions of 6 selected regions of interest from image (a) and comparisons with their fluorescence 
microscope acquisitions. (c–g) Reconstruction of the seventh region of interest, with corresponding raw 
acquisition (c), first (old) reconstruction result (d), CNN output result (e), final (new) reconstruction result (f) 
and the comparison with the fluorescence acquisition (g). (h) OPD profiles through one cell (red line 1 in (b)). 
The maximum OPD on the final reconstruction is about 1000 nm which corresponds to a phase shift of about 
5 π . (i) OPD profiles through two cells (red line 2 in (b)). (j) OPD profile through two cells (red line in (f)). 
The black arrows indicate CNN errors (orange curve in (j) and red arrows in (e)) that are corrected by the last 
reconstruction (green curve).
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only 1 to 3 μm wide. The CNN prediction performs well phase unwrapping at the location of the neuron cell 
body (see orange profile in Fig. 6g), but the complexity of the scene is lost. The CNN prediction presents only 
rounded spots with positive phase values (Fig. 6b,e,i,m). Details such as the neurites are lost in the process (see 
orange profile in Fig. 6k). Obviously these details were not present in the training dataset, the CNN output is 
thus facing here a generalization problem. In addition, the CNN predicts the presence of rounded spots that 
are not present in the scene (see orange profile in Fig. 6o). The CNN output is thus facing here a hallucination 
problem. Notably, the final reconstruction corrects these CNN predictions (see green profiles in Fig. 6k,o). This 
example shows the good complementarity of the two algorithms. The CNN addresses the phase unwrapping 
and the final reconstruction retrieves the finer details that are lost in the CNN prediction. The PC12 cells could 
therefore be well reconstructed using the alternation approach whereas the complexity of these images was not 
accounted in the CNN training data set. As a last example, Fig. S5 depicts a case, namely the culture of adherent 
fibroblast cells, where the three steps approach was not successful. We observe errors introduced by the CNN 
that are not corrected by the last reconstruction. In particular, in Fig. S5c the CNN outputs two cells (red arrow 
A in Fig. S5c) whereas the first reconstruction present only one (Fig. S5b). In this case, the last reconstruction 
does not recover a single cell image (red arrow A in Fig. S5d) and outputs two cells instead. This last example 
indicates that the alternation method does not fully generalize when applied to samples of adherent cell culture.

Discussion
In this article, we introduce a novel reconstruction approach, based on alternations between an inverse problem 
approach and deep learning using CNN to improve lens-free image reconstruction. We have designed the CNN 
to perform phase unwrapping on the acquisition of cells in suspension. CNN has been trained on synthetic 
datasets and we demonstrate the generalization to real samples. On a sample of PC3 cells in suspension, we show 
an effective phase unwrapping up to phase shift of 5 π . With this method we succeeded in reconstructing cells 
in suspension at large cell densities of up to ∼ 1000 cells/mm2 . This allows us to observe 35,000 cells simultane-
ously in a field of view of 30 mm2 with our lens-free system. According to simulations, at this concentration, the 
method is quantitative for the determination of the cell refractive index (real part). Alternatively to the other 
CNN-based lens-free microscopy techniques17,18, our final image is obtained with a reconstruction step follow-
ing the CNN prediction. As an advantage, this last reconstruction can correct the prediction of the CNN when 

Figure 5.   Application of the alternation reconstruction method on PC3 non-adherent cells at high density. 
Estimated number of cells: ≈ 34,000 corresponding to a volumetric density of ≈ 57× 106 cells/ml (measured 
in a 20µm thick chamber) or a surface density of ≈ 1140 cells/mm2 . (a) Full field of view final reconstruction. 
(b) Reconstructions of 6 selected regions of interest (a) and their comparisons with the fluorescence microscope 
acquisitions. (c–g) Reconstruction of the seventh region of interest, with corresponding raw acquisition (c), first 
(old) reconstruction result (d), CNN result (e), final (new) reconstruction result (f) and the comparison with the 
fluorescence acquisition (g). Red boxes in (e–g) highlight the discrepancies between the two modalities.
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it is not in agreement with the measured data. In some cases, this third step allows the reconstruction of sample 
different from the original training data. As an example, we have shown that our approach is successful in recon-
structing the image of PC12 adherent cells. However, the alternation approach was not successful when tested 
on the acquisition of adherent fibroblast cells. Hence, the proposed alternation approach does not generalize to 
the large domain of adherent cell culture. In sum, the novel CNN-based solution allows to reconstruct the image 
of the cells in suspension free of phase wrapping errors. It extends thus the applicability of lens-free microscopy 
to the live imaging of cells in suspension.

Figure 6.   Results of the alternation reconstruction method applied to adherent PC12 cells treated with neuron 
growth factor. The first reconstruction results is shown in (a), CNN result in (b) and final reconstruction result 
in (c). (d–o) present detailed results corresponding to three regions of interest depicted by red boxes in (a). (g) 
OPD profile through two neuron cell bodies (red line in (d)). (k) OPD profile through two dendrites (red line in 
(h)). (o) OPD profile measured at the proximity of a cell, through two dendrites (red line in (l)).
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Method
The proposed alternation approach is a three-step algorithm (see Fig. 1). A first holographic reconstruction is 
initialized using a null sample, leading to the computation of a first guess of the sample image. The result of the 
first reconstruction is used as the input for a convolutional neural network, which has beforehand been trained to 
correct the object phase image from wrapping errors. The CNN is not trained with experimental image data, but 
instead with synthetic images. The network output is next used as initialization of the last holographic reconstruc-
tion step. In the following, we detail the different steps of the reconstruction algorithm and describe the synthetic 
CNN training. Next we present how we assess the reconstructions of the simulated floating cells in a quantitative 
manner. Finally we describe the lens-free setup and the cell lines used for the experimental validation.

Holographic reconstruction.  The holographic reconstruction generates an object description from inten-
sity measurements. It relies on a given physical description of the object and a forward model which allows to 
predict the measurements for a given object (see “Physical model”). The reconstructed object is obtained with an 
inverse problem approach, namely a gradient-based iterative process minimizing a given criterion (see “Inverse 
problem approach”).

Physical model.  Partially coherent illumination is diffracted by the object as shown in Fig. 7. The intensity of 
the generated interference pattern (hologram) at a distance Z behind the sample is recorded with a camera. The 
light field, at wavelength � , is described as a complex scalar field and the illumination light is described by a plane 
wave with normal incidence and with intensity normalized to one. The transmission of the sample is assumed 
to be directly related to L the optical path difference (OPD) and A its (negative) absorption coefficient. The light 
field E after the sample is:

i being the imaginary unit. By using the Fresnel propagator, hZ(r) = 1/(i�Z) exp(iπr2/(�Z)) , and taking into 
account the partial coherence of the light source by a convolution kernel K, and the uniform light intensity B 
(“background”), a direct model of the intensity measurement of image I is set as:

where ‘*’ is the convolution operator. I(L, A) is the measurement used in the subsequent data processing, it is 
sampled by the sensor. The unknowns L and A, have the same size as I. There are particular difficulties related 
to the lens-free setup. First, for any integer N, L+ N� results in the same transmission and consequently the 
same measurements. This will give rise to wrapping problems, as the reconstruction of L will be known modulo 
� values only. Second, the phase of the light field is not recorded by the detector. Therefore “half ” of the infor-
mation is lost during the detection process, giving rise to so-called ‘twin-image’ artefacts4. Furthermore, high 
intensity frequencies are lost due to partial coherence of the source, i.e. non-point and multi-spectral source. 
This is reflected in the forward model by the convolution kernel K. In this study, to compute such a kernel K, 
we perform two simulations on a Dirac object, one with total source coherence and one with partial source 
coherence (source dimension is taken into account and source spectrum is discretized, see Table 1 for source 
characteristics) giving rise to measurements Itotal and Ipartial . K is extracted by deconvolving Ipartial from Itotal.

Inverse problem approach.  The inverse problem approach used to retrieve the object from intensity measure-
ments is formulated as a regularized optimization problem. A criterion ǫ implementing a data fidelity term and 
a regularization term ζ for the unknowns L and A is set as:

Where I(L, A) is the direct model (see Eq. 2) and Imeas is the intensity measurement. As shown in Fig. 1, two 
reconstruction steps are performed in the proposed algorithm. The first reconstruction is intended to be a fast 

(1)E(L,A) = exp(2iπL/�+ A)

(2)I(L,A) = B|E(L,A) ∗ hZ |2 ∗ K

(3)ǫ(L,A) =
∫

dr
|I(L,A)− Imeas|2

Imeas
+ αζ(L,A)

Figure 7.   Principle of lens-free microscopy. A 2D object is illuminated by a partially coherent light. The 
intensity of the generated interference pattern at a distance Z behind the sample is recorded with a camera.
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step, with kernel K of Eq. (2) set to a Dirac distribution, limited to a low number of iterations (20) and with no 
attempt to phase unwrapping. For this first reconstruction the regularisation term is:

The first term of Eq. (4) is the total variation applied to the complex light field E to favor sharp edges. The spatial 
derivative of this term is not sensitive to � jumps of L and will not propagate wrapping artefacts. The second term 
is a sparsity constraint on L. The third term limits the absorbance of the object to positive values. In comparison 
with the first reconstruction, the second reconstruction performs a larger amount of iterations (70) and takes 
into account the coherence of the illumination source, using a kernel K. In addition, the regularization term is 
more complex. This is the optimization scheme that has been previously published in20. The regularization term 
in the second reconstruction is set to:

Compared to Eq. (4), the first term is now expressed with variable L, the OPD. This is possible since the object 
is assumed to have been unwrapped by the performed CNN step. The third term favors a smooth map of A and 
the last term implements the constraint that the unwrapped OPD must be positive. As shown previously7, the 
gradient of ǫ(L,A) can be analytically computed. The minimization of the criterion is performed by a conjugate 
gradient optimizer.

CNN for phase unwrapping of lens‑free acquisition.  The CNN step (see Fig. 1) takes place between 
the two holographic reconstruction steps and is processing the results of the first reconstruction to correct phase 
wrapping errors. Indeed, data fidelity term being insensitive to phase wrapping error, a regularized criterion 
such as defined in Eq. (3) will present local minima, which cannot be handled by gradient-based optimization. 
To overcome these local minima, we have trained a CNN to perform specifically phase unwrapping. The CNN 
needs to be trained on a set of input/target object pairs with phase wrapping errors. To this aim, we generated 
synthetic images of cells in suspension and the corresponding first reconstructions.

Synthetic data.  We generated synthetic images representing cells in suspension, with homogeneous spheres of 
random radius and with complex refractive index (see Fig. 8 and see Table 1). The relationship between OPD 
L, the absorption coefficient A and the refractive index of the cell n, the refractive index of the surrounding 
medium nmedium and the thickness of the cell T is given by:

Based on Eq. (2), the intensity measurement images I in the sensor plane are simulated for a given sample-to-
sensor distance Z, coherence of the illumination source and background B. Furthermore, to mimic the noise 
in the acquisition process, Poisson noise is added to the simulated hologram I. The number of cells is chosen 
randomly between 500 and 5000 (corresponding to a density range of 179–1792 cells/mm2). Their radii are uni-
formly drawn between 5 to 20µm , real and imaginary parts of the refractive index are drawn from a uniform 
distribution between 0.01 to 0.05 and 0 to 0.005 respectively. Figure 8 shows example images of the synthetic 
data. The results of the holographic reconstruction differ notably from the ground truth images, due to wrap-
ping errors and incomplete physical modelling (kernel K is set to Dirac in the forward model). This result is 

(4)ζ(L,A) =
�
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�
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Table 1.   List of setup and simulation parameters used to generate the synthetic dataset. Sim. param. 
simulation parameter, dist. distance, Backg. background in grey levels.

Setup parameter Values Sim. param. Values

Sample-source dist. 50mm Image size 1000 × 1000

Sample-sensor dist. Z 1270 µm± 5% Cells number 500–5000

Source wavelength � 0.450± 0.015µm Radius 5–20 μm

Source diameter 50 µm �nr 0.01–0.05

Sensor pixel pitch 1.67 µm �ni 0–0.005

Convolution Kernel K 1.75 µm Backg. B 105 ± 30%
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foreseeable and not a problem per se. The reconstruction merely aims at producing a valid object to be used as 
an input for the CNN network.

Training of CNN.  We constructed a simple CNN network consisting of 20 repetitions of a three layers pattern, 
namely a convolution layer ( 5× 5 pixel, 32 features), a batch normalization layer and a ReLU activation func-
tion (see a sketch of the CNN structure in Fig. 9). The final layer before the regression layer was a convolution 
layer with 2 features (L and A outputs) so as to match the ground truth image dimensions. The network does 
not perform any dimension changes, allowing images of any size to be used as training input. To train a CNN 
for unwrapping lens-free reconstructed phase images, the ground truth consisted of a synthetic dataset of 1000 
image pairs ( 1000× 1000 pixels for L and A) of cells in suspension. The CNN input contains the correspond-
ing reconstructed images ( Lrecons and Arecons ). Two sets of vignettes (size 121× 121 ) were extracted randomly 
from the reconstructed images and used during the CNN training. CNN training was implemented with the 
Matlab deep learning library using the Adam optimizer. We used 12,800 sets of vignettes per epoch (a set being 
a vignette couple (Lrecons ,Arecons) as input and a corresponding vignette couple as ground truth). Learning rate 
was set to 0.0001 and training was conducted over 10 epochs, lasting 10 h on a PC workstation with a single 
NVIDIA GTX Titan GPU.

Evaluation of the results obtained on synthetic datasets.  The simulated reconstructions have been 
quantitatively compared to the known ground truth, considering the cell relative refractive index values. From 
the reconstruction (Lrecons ,Arecons) , it is possible to retrieve for each cell the real imaginary parts of the relative 
refractive index according to the formula:

Figure 8.   Overview of the synthetic data generation method. A pair of synthetic images (ground truth) is 
generated, representing cells in suspension (L denotes the optical path difference and A the absorption). Using 
Eq. (2), the simulated intensity measurement image I is obtained for a given sample-to-sensor distance Z. The 
first reconstruction applied to I generates the simulated images Lrecons and Arecons . The presented images are 
400× 400 pixels ( 1.67µm pitch) crops of an image with 103 cells corresponding to a density of 358 cells/mm2.

Figure 9.   Design of the 20 layers convolutional neural network used for unwrapping of the holographic 
reconstruction. Each layer consists of three sub-layers, (5× 5) convolution layers, a batch normalization layer 
and a ReLU activation layer. No dimension changes are performed inside the network.
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where k is the index of the cell, S(k) the integration domain calculated knowing the position and radius of the 
cell, and V (k) the cell volume.

Description of the lens‑free setup.  To evaluate the alternation reconstruction method on experimental 
data, we carried out measurements using a Cytonote lens-free setup (Iprasense). Illumination is provided by a 
monochromatic LED source (at wavelength � = 457 nm with a spectral width of 20 nm ) located 50mm away 
from the sample. A CMOS detector of 6.4× 4.6mm2 with 3840× 2748 pixels ( 1.67µm pitch) was used to meas-
ure the diffraction patterns at a distance Z = 1−4mm from the sample.

Description of the cell samples.  PC3 cells were cultured in RPMi 1640 medium, containing 10% fetal 
bovine serum, 50 ng/mL geneticine and 1% of PenStrep. Cells were passed twice a week, using a 1:6 dilution. 
Cell density for experiments was typically 1× 105 cells/mL. PC3 cells contained a GFP expressing vector. PC12 
cells were cultured in proliferation medium, consisting of RPMi 1640 medium, supplemented with 10% Hi 
Horse Serum, 5% fetal bovine serum and 1% of PenStrep. They have been passed twice a week at a 1:10 dilu-
tion. To perform differentiation into a neuronal phenotype, cells were plated at a density of 1× 104 cells/mL in 
differentiation media, consisting of RPMi medium supplemented with 1% Hi Horse Serum and 50 ng/mL NGF.
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