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C O R O N A V I R U S

Potency and timing of antiviral therapy as determinants 
of duration of SARS-CoV-2 shedding and intensity 
of inflammatory response
Ashish Goyal1*, E. Fabian Cardozo-Ojeda1*, Joshua T. Schiffer1,2,3†

To affect the COVID-19 pandemic, lifesaving antiviral therapies must be identified. The number of clinical trials 
that can be performed is limited. We developed mathematical models to project multiple therapeutic approaches. 
Our models recapitulate off-treatment viral dynamics and predict a three-phase immune response. Simulated 
treatment with remdesivir, selinexor, neutralizing antibodies, or cellular immunotherapy demonstrates that rapid 
viral elimination is possible if in vivo potency is sufficiently high. Therapies dosed soon after peak viral load when 
symptoms develop may decrease shedding duration and immune response intensity but have little effect on viral 
area under the curve (AUC), which is driven by high early viral loads. Potent therapy dosed before viral peak 
during presymptomatic infection could lower AUC. Drug resistance may emerge with a moderately potent agent 
dosed before viral peak. Our results support early treatment for COVID-19 if shedding duration, not AUC, is most 
predictive of clinical severity.

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic is a devastating 
historical event, which is currently affecting nearly all of mankind. 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
incidence is surging in numerous cities and countries across the 
globe (1), and infection carries a high mortality rate, particularly 
among the elderly (2–4). While social distancing has slowed and 
even eliminated many local epidemics (5), it is not an economically 
viable long-term strategy. There is no evidence of widespread herd 
immunity, and a vaccine is unlikely to be developed and widely im-
plemented within the next 6 months. Therefore, second and third 
waves of infection are likely to occur over the next 2 years (6).

It is imperative that optimal treatment strategies of COVID-19 
are identified as quickly as possible to ensure lower fatality rates 
during subsequent local epidemics. To date, selection of antiviral 
agents has been empirical and guided by limited or absent data. 
While clinical trials are being fast-tracked to identify therapeutics 
that lower hospitalization and death rates, the planning phase for 
these trials is narrow. Therefore, effective tools are urgently needed 
to optimize clinical trial design and selection of therapeutic agents.

Here, we use mathematical models to project the possible impact 
of two small molecular agents, remdesivir and selinexor, as well as 
broadly neutralizing antibodies (bNAbs) and cellular immuno-
therapies. The goal of our models is to interpret emerging clinical 
trial data and, in turn, to perfect subsequent trials in terms of selec-
tion of antiviral agents, timing of therapy, dosage, treatment duration, 
avoidance of drug resistance, and selection of virologic end points. 
Overall, our simulations support initiation of therapy soon after 
symptoms develop and also suggest the urgent need for studies to 
identify virologic surrogates of SARS-CoV-2 severity.

RESULTS
SARS-CoV-2 natural history
We used four datasets of SARS-CoV-2 shedding in the absence of 
effective treatment to develop and validate a mathematical model. 
These data included 25 infected people: 11 from Singapore (7), 9 from 
Germany (8), 1 from South Korea (9), and 4 from France (10) (Fig. 1). 
Notably, sampling techniques differed across studies. In Singapore, 
South Korea, and France, samples were obtained with nasopharyngeal 
swabs, whereas in Germany viral loads were measured directly from 
sputum. Shedding was notable for an early peak, followed by three 
phases of viral decay including a rapid initial decline from peak, a slower 
period of decay of variable length, and a final abrupt viral elimination 
phase. Of note, we only captured the viral peak and the final rapid clear-
ance phase in a subset of study participants.

SARS-CoV-2 mathematical model
We developed a series of ordinary differential equations to fit to the 
viral load data (Fig. 1A; Materials and Methods). The equations 
capture the coupled interactions of susceptible cells, infected cells, 
SARS-CoV-2, and a mounting immune response. In keeping with 
the standard viral dynamics model (11, 12), virus enters susceptible 
cells and converts them to infected cells, which then produce virus 
at a fixed rate. The virus induces a cytopathic effect on infected cells 
even in the absence of immunity.

An early innate immune response and a late acquired immune 
response are known to be vital for clearance of SARS and Middle 
East respiratory syndrome (MERS) virus infections (13). In keeping 
with these observations, when we simulated our model without in-
nate and acquired immune terms (thereby limiting the mechanism 
of viral elimination to target cell limitation), model fit to the data 
was poor. We therefore added a two-stage immune response. The 
first stage accounts for the rate of infected cell elimination by the 
innate immune system and is governed by an exponent in the in-
fected cell death rate term; in accordance with previous models, we 
refer to this as the density-dependent immune response (14, 15). 
The second phase represents a slower acquired cytolytic response in 
which the per-cell killing rate saturates once the number of effector 
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cells exceeds a certain level. We model this with stages of presumed 
effector cell precursors that differentiate at rate q as a method to 
calibrate timing of this response (Materials and Methods).

Our model reproduced viral load kinetics in all 25 participants 
(Fig. 1B). In certain cases, the model only fit to available data from 
the later stages of shedding, whereas it recapitulated the entirety 
of viral expansion, peak, and decelerating clearance for the several 

study participants with available early data (S5, S14, S18, G1, G2, 
G5, and G7). In keeping with observations from a recent clinical 
trial (16), low-level shedding continued past 20 days for 8 of 
25 participants (S3, S6, G1, G2, G3, G5, G6, and G7), whereas viral 
elimination occurred earlier in the remaining infected people.

The component of the late acquired immune response responsi-
ble for elimination of infection remains unknown. Virus-specific 
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Fig. 1. Mathematical model recapitulation of untreated SARS-CoV-2 kinetics. (A) Mathematical model schematic including infection of susceptible cells (S), production 
of virus (V) by infected cells (I), an early density-dependent immune response governed by exponent k, and a mounting T cell response with sequential populations 
of T cells (M1, M2, and E), which kill infected cells when above a certain threshold. (B) Model fit to individual data. Shapes are individual viral loads, and lines are model 
load projections. S, Singapore; G, Germany; K, South Korea; F, France.
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antibodies (17, 18), as well as virus-specific CD4+ and CD8+ T cell 
responses (19–22), are noted as soon as a week after infection. To 
account for the fact that humoral immunity may be clearing infec-
tion, we also constructed a model in which neutralizing antibodies 
lower viral infectivity in a density-dependent manner (Materials 
and Methods). In this model, infectivity rate saturates once the total 
number of antibodies exceeds a certain level. We achieved equal 
fit to the data whether we assumed a cytolytic T cell–mediated 
response (Fig. 1B) or a neutralizing antibody response (fig. S1). We 
are therefore unable to identify which mechanism is responsible for 
late clearance of virus, although both models provide the same 
output with simulation of therapies.

While both models allow equivalent viral kinetics, for several 
reasons, we selected the cytolytic immune model for our therapy 
modeling. First, depletion of virus-specific T cells abrogates control 
of SARS in mice (23, 24); interferon signaling to T cells is vital to 
elimination of both MERS and SARS (25). Second, severe SARS-
CoV-2 is observed in solid organ transplantation patients on T cell–
suppressing therapies (26). Third, impaired T cell function is the 
primary risk factor for severe lung manifestations of nearly all other 
respiratory viruses (27, 28). Last, T cells play a vital role in mediating 
cytokine storm and acute respiratory distress syndrome following 
SARS (29, 30): The intensity of the cytokine response is projected 
indirectly in our model based on quantification of the cytolytic 
response.

Timing and intensity of innate and acquired  
cytolytic responses
We continuously quantified the value of the immune terms in all 
25 participants: The per-cell killing rate and total number of cells killed 
per day were extremely high during the first several days of infec-
tion in all participants (Fig. 2, A and B), coinciding with peak viral 
load. The acquired cytolytic immune response initiated at various 
time points across participants (days 5 to 14) and led to similar con-
temporaneous per-cell killing rates to innate immune responses, 
but much lower numbers of total cells killed per day relative to the 
innate response at peak viral load (Fig. 2B), but was sufficient and 
necessary to eliminate remaining infection (Fig. 1B).

Remdesivir pharmacokinetics and pharmacodynamics
We developed a pharmacokinetic (PK)/pharmacodynamic (PD) model 
of remdesivir (Fig. 3A), a broad-spectrum nucleotide analogue that 
targets SARS-CoV-2 replication in infected cells (31). The model 
links intravenous administration with plasma levels of free drug 
and concentrations of the drug’s active nucleoside triphosphate 
(NTP) component observed within peripheral blood mononuclear 
cells (PBMCs) in nonhuman primates (NHPs) (32) and captures 
the slow decay of NTP within this compartment (Fig. 3B). With 
multiple doses, we project fluctuating levels of NTP in target cells 
over time (Fig. 3C) followed by somewhat protracted decay after 
cessation of treatment.

We next simulated possible dose-response curves of antiviral 
efficacy, which capture the percentage of viral replication eliminated, 
according to micromolar concentration of drug. The percentage of 
viral replication suppression at a given intracellular drug concen-
tration is dependent on the intracellular EC50 of the drug, or the 
concentration of drug required to lower viral replication by 50% 
(Fig. 3D). Of note, the intracellular EC50 is unknown for remdesivir, 
particularly in vivo, making precise predictions of clinical trial 
outcomes impossible.

A B

Fig. 2. Early innate and late acquired killing rates of SARS-CoV-2–infected 
cells. Model projections of rates in 15 participants who cleared viral shedding. 
(A) Per-cell death rate mediated by innate responses (blue) and acquired immune 
responses (green). (B) Total death rate mediated by innate responses (blue) and 
acquired responses (green).

Fig. 3. Projected PK and PD of remdesivir therapy. (A) Complete model of 
remdesivir (RDV) including plasma levels of parent drug, intracellular levels of the 
active component (NTP), and antiviral efficacy of drug according to NTP concentra-
tion. (B) Projections of plasma remdesivir levels and intracellular NTP in PBMCs. 
Data points from NHP experiments are dots, while lines are model projections. 
(C) Simulated concentrations of the parent compound and intracellular levels of 
the active compound with a loading dose of 200 mg intravenously (IV) followed by 
nine daily doses of 100 mg intravenously. VL, viral load. (D) PD projections of anti-
viral efficacy according to drug concentration assuming different values for the 
in vivo EC50 of the drug. (E) Projected antiviral effects using combined PK and PD 
models at different assumed drug potencies.
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Last, we combined the PK and PD models as in Fig. 3A to project 
the percentage of viral replication inhibited over time at different 
assumed intracellular EC50 values (33, 34). With high assumed drug 
potency (EC50 = 0.8 M), antiviral effects are sustained over the 
10-day dosing interval and maintained for several days after drug 
delivery has stopped (Fig. 3E). At higher assumed EC50 values, rem-
desivir potency is projected to be lower.

Projections of SARS-CoV-2 outcomes assuming remdesivir 
treatment during early and late symptomatic phases
We next simulated therapy at day 10 of infection (Fig. 4A) when 
severely infected people often seek hospital care, and at day 5 of 
infection immediately after viral peak (Fig. 4B) when infected people 
often become symptomatic. In both cases, when remdesivir in vivo 
potency was assumed to be high (EC50 = 0.8 M), viral elimination 
occurred rapidly after initiation of therapy. This effect occurred be-
cause of unopposed removal of approximately 100 to 10,000 infect-
ed cells per day by an ongoing innate immune response (Fig. 2B).

Simulations with the assumption of a less potent version of rem-
desivir (EC50 = 8 or 80 M) resulted in a lower viral clearance slope. 
This result implies that viral clearance slope in clinical trials can be 
used in concert with our model to directly estimate the in vivo 
intracellular EC50 value of remdesivir in each treated patient. The 
model can then be used to project the effect of increasing or de-
creasing doses in subsequent trials (34).

Projections of SARS-CoV-2 outcomes assuming extremely 
early remdesivir treatment during the  
presymptomatic phase
We next performed simulations of therapy at very early time points 
during infection at and before peak viral load. Most infected people 
are presymptomatic at this stage, so these model realizations may 

most closely reflect implementation of a postexposure prophylaxis 
(PEP) strategy in which some people are already in the very early 
stages of infection at the time of first dose. Under this scenario, ex-
tremely potent (EC50 = 0.8 M) therapies at days 2 and 0 of infec-
tion resulted in immediate viral suppression (Fig. 4, C and D). With 
early, low, or moderate potency treatment, the model predicted 
therapeutic failure with prolonged SARS-CoV-2 shedding due to 
inadequate early immunity against the virus and the lack of deple-
tion of susceptible cells due to treatment-induced reduction in viral 
replication (Fig. 4D). Of note, projection of higher viral loads in 
these simulations beyond 10 days is less certain based on limited 
available data regarding drivers of acquired immune responses.

Projections of short course remdesivir
We next repeated the above exercise with a shorter 5-day course of 
treatment. Results were similar, although simulations under the as-
sumption of extremely early initiation of therapy did not lead to full 
SARS-CoV-2 suppression within this time frame (fig. S2). Simulated 
extremely early treatment with moderate or high drug potency showed 
suppression followed by viral rebound (fig. S2D). Notably, this same 
outcome was observed in the nasal passages of two rhesus macaques 
treated with remdesivir 12 hours after infection. These animals con-
temporaneously more efficiently eliminated virus from the lungs (35).

Predictors of therapeutic efficacy for remdesivir
We next assessed which unknown variables in our therapeutic 
model were most predictive of relevant therapeutic outcomes. As 
independent variables, we selected in vivo intracellular EC50, because 
the in vivo potency of remdesivir against SARS-CoV-2 in humans 
is unknown, as well as infection duration at the time of treatment 
initiation. As dependent variables, we selected shedding duration 
and viral area under the curve (AUC) because it is unclear which of 
these outcomes is a stronger predictor of progression to cytokine 
storm and respiratory failure, as well as transmissibility, in infected 
people. We also included the final tally of effector cells, as this out-
come may also be predictive of likelihood of cytokine storm (36).

Early initiation of a highly potent therapy was predictive of low-
er shedding duration whether given in the pre-peak asymptomatic 
phase or in the post-peak symptomatic phase beyond days 2 to 4 of 
infection. However, extremely early initiation of a lower potency 
therapy was predicted to prolong shedding relative to no treatment 
(Fig. 5A), due to insufficient early immunity against the virus and 
the lack of depletion of susceptible cells.

Both high drug potency and extremely early treatment initiation 
during the presymptomatic stage of infection were required to sub-
stantially lower viral AUC. Even highly potent therapy during the 
earliest symptomatic phase at days 4 to 5 had only a slight impact on 
AUC, reflecting the fact that most virus and infected cells are gener-
ated during the first 2 to 3 days of productive SARS-CoV-2 infec-
tion (Fig. 5B) (35).

Last, initiation of a highly potent therapy within 6 days of infec-
tion lowered the extent of the effector cell response in our simula-
tions by a full order of magnitude (Fig. 5C), which suggests that an 
early treatment strategy could lower deleterious infection associated 
with inflammation.

Theoretical kinetics of drug-resistant variants
On the basis of the mutation rate of positive single-stranded RNA 
(ssRNA) viruses of approximately 10−5 mutations per base pair per 

A B

C D

Fig. 4. Treatment projections of a 10-day remdesivir course assuming different 
potency and timing of treatment. Each set of simulations is performed under 
assumptions of high, medium, and low potency (EC50 = 0.8, 8, and 80 M, respec-
tively). Treatment initiation at time points generally consistent with (A) hospitalization 
(day 10 after first positive sample), (B) first symptoms (day 5 after first positive 
sample), (C) presymptomatic post-peak phase (day 2 after first positive sample), 
and (D) presymptomatic pre-peak phase (day 0). Overall, early potent treatment 
limits duration of infection. Prolonged shedding is predicted as a possibility with 
subpotent, early initiation of therapy due to inadequate activation of immunity.
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cell infection (37), and on the fact that two separate mutations may 
induce partial remdesivir resistance in SARS, which, in turn, leads 
to a less fit virus (38), we explored the theoretical possibility that a 
drug-resistant mutant could emerge during treatment. Under this 
hypothesis, we then estimated the probability that a drug-resistant 
mutant would emerge during therapy. When we assumed a potent 
therapy (EC50 = 0.8), the model projects that while single and 
double mutants emerge, they remain subdominant and do not mean-
ingfully extend duration of shedding if dosed during the sympto
matic phase of disease, although resistant strains may emerge and 
even predominate with early dosing (Fig. 6, A and B). However, if 
only moderate potency is assumed, then a single mutant with resist
ance is predicted to possibly induce more prolonged shedding, 
particularly if therapy is initiated before or during viral peak 
(Fig. 7, A and B).

If we assume that a single-point mutation in SARS-CoV-2 could 
theoretically induce complete drug resistance, then treatment 
failure may occur regardless of dosage timing. The resistant strain 
is predicted to predominate, raising the possibility of transmitted 
drug resistance (fig. S3).

Selinexor treatment predictions
Following SARS-CoV-2 infection and the nuclear import of viral 
genetic material at the cellular level, the nucleocytoplasmic export 
of viral proteins is essential for efficient viral replication mediated 
by exportin-1 (XPO1). Selinexor is a selective inhibitor of this key 
step of the late-stage assembly processes (39). Selinexor has been 
demonstrated to have dose-dependent activity against SARS-CoV-2 
replication. Selinexor is currently being tested in human clinical 
trials for COVID-19 treatment (40).

Using a multicompartment PK/PD model for selinexor (Fig. 8A), 
we first recapitulated plasma parent drug levels over time following 
a single dose (41) (Fig. 8B), PBMC drug levels under different as-
sumptions of drug absorption (Fig. 8C), and compensatory XPO1 
mRNA expression following dosing (Fig. 8D). We then simulated 
plasma and PBMC drug levels (assuming low and high estimates for 

drug absorption) with three times weekly doses over 4 weeks 
(Fig. 8E) as proposed in the clinical trial (https://clinicaltrials.gov/
ct2/show/NCT04349098?term=selinexor&draw=3&rank=14). After 
generating theoretical dose-response curves with different assump-
tions for in vivo EC50 (Fig. 8F), we projected compensatory XPO1 
mRNA expression (Fig. 8G) and drug efficacy over time (Fig. 8H).

As with remdesivir, the predicted efficacy of therapy on viral 
shedding depended on the timing of treatment and the intracellular 
in vivo EC50 (fig. S4, A to D). Lower shedding duration occurred 
with earlier timing of therapy. Lower viral AUC again required 
extremely early initiation of potent treatment (fig. S4D). The model 
again predicted the possibility of prolonged shedding with subpo-
tent early initiation of therapy (fig. S4D).

bNAb predictions
We next simulated a single infusion of hypothetical bNAbs with 
prolonged half-life. bNAbs are designed to stop infection of new 
cells rather than eliminate viral replication. We used a dual com-
partment PK model (Fig. 9A), estimated antibody levels over 
time following a single dose (Fig. 9B), generated theoretical dose-
response curves (Fig. 9C), and then projected antibody efficacy over 
time (Fig. 9D). The predicted efficacy of therapy on shedding again 
was dependent on timing of treatment and the in vivo EC50 (fig. S5, 
A to D). Once again, to lower duration of shedding and the number 
of effector cells depended on therapeutic potency, while effective 
lowering of viral AUC required extremely early initiation of potent 
treatment (fig. S5, E to G).

Immunotherapy predictions
As natural killer cell–based treatments are being developed and studied 
for COVID-19 (https://clinicaltrials.gov/ct2/show/NCT04280224), 
we generalized the potential hypothetical effects of a cellular im-
munotherapy, which would presumably decrease the life span 
of infected cells. We projected that such an intervention would 
need to increase this rate 10-fold to match the efficacy of a potent 
small molecular agent (Fig. 10, A to C). Immunotherapies were 

A B C

Fig. 5. Predictors of SARS-CoV-2 treatment outcomes with remdesivir. Heatmaps comparing variance in drug potency measured by in vivo EC50 (x axis) and timing of 
treatment initiation (y axis) for (A) shedding duration, (B) viral load AUC, and (C) extent of T cell response required for viral elimination. Potent therapy within the first 
5 days of infection limits shedding duration and the extent of the T cell response. However, only extremely early therapy during the presymptomatic phase of infection 
markedly lowers viral AUC. Subpotent therapy given during the extremely early presymptomatic stage may extend shedding duration at lower viral loads by limiting the 
immune response.

https://clinicaltrials.gov/ct2/show/NCT04349098?term=selinexor&draw=3&rank=14
https://clinicaltrials.gov/ct2/show/NCT04349098?term=selinexor&draw=3&rank=14
https://clinicaltrials.gov/ct2/show/NCT04280224
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projected to have limited efficacy if started before peak shedding 
(Fig. 10D).

DISCUSSION
SARS-CoV-2 infection is characterized by a stereotypical viral kinetic 
pattern with a high peak viral load during the first several days of infec-
tion, a subsequent short rapid decay period followed by a slower clear-
ance phase of variable duration, and finally rapid elimination phase. 
Our mathematical model reproduces these data and explains that the 
transition from first to second phase viral decay is governed by a density-
dependent term in which a massive die-off of infected cells occurs 
during peak viremia, as well as target cell elimination. Because an 
acquired immune response would continue to intensify rather than 
subside even after viral loads decrease, we attribute the density-dependent 
term to innate mechanisms. Our results suggest that this early response 
results in the quick elimination of millions of infected cells.

Viral clearance rate slows considerably once the viral load decreases 
below a threshold of ~105 RNA copies. A late slowly expanding 

acquired immune response is predicted to induce eradication of in-
fected cells in the upper airway 2 to 20 days later. The timing of this 
final response appears to be variable among infected people in ac-
cordance with heterogeneous shedding duration during COVID-19 
infection (42). Moreover, it is unknown whether cessation of viral 
replication in the nasopharynx guarantees the same result in the 
lung or other anatomic compartments (8). Viral dynamics under 
therapy differ markedly within the nasal passage and lung in a rhesus 
macaque model of remdesivir treatment for COVID-19 (35).

We are not able to differentiate whether neutralizing antibodies 
or cytolytic T cells are responsible for late clearance of infection, as 
both modeling approaches allow excellent model fitting to the data. 
On the basis of the fact that normal T cell function is a prerequisite 
for the rapid clearance of other viral infections, including SARS and 
MERS (24, 25), and because excess T cell responses may contribute 
to cytokine storm and acute respiratory distress syndrome (30), we 
elected to assume that T cells govern elimination of infected cells. 
However, our therapeutic model generates equivalent outcomes 
whether we assume cell-mediated or humoral viral elimination.

Fig. 6. Projections of remdesivir drug resistance during therapy. Simulations 
are with assumed high potency (EC50 = 0.8 M) and the assumption that mutants 
confer partial drug resistance. Treatment initiation is at time points generally 
consistent with hospitalization (day 10 after first positive sample), first symptoms 
(day 5 after first positive sample), presymptomatic post-peak phase (day 2 after 
first positive sample), or presymptomatic pre-peak phase (day 0). (A) Projections 
of no treatment, treatment with no assumed drug resistance, and treatment with 
assumed drug resistance. (B) Projections of assumed drug resistance with trajectories 
of sensitive strains, single mutants, and double mutants. Here, DOT represents the 
day of the start of the treatment.

Fig. 7. Projections of remdesivir drug resistance during therapy. Simulations 
are with moderate potency (EC50 = 8.0 M) and the assumption that mutants con-
fer partial drug resistance. Treatment initiation is at time points generally consist
ent with hospitalization (day 10 after first positive sample), first symptoms (day 5 
after first positive sample), presymptomatic post-peak phase (day 2 after first posi-
tive sample), or presymptomatic pre-peak phase (day 0). (A) Projections of no treat-
ment, treatment with no assumed drug resistance, and treatment with assumed drug 
resistance. (B) Projections of assumed drug resistance with trajectories of sensitive 
strains, single mutants, and double mutants. Here, DOT represents the day of the 
start of the treatment.
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We simulated antiviral therapies on top of our natural history 
model to shed light on the possible impact of the timing and potency 
of antiviral therapies on outcomes. While accurate prediction is 
impossible in the absence of clinical trial data, our observations highlight 
the importance of considering off-treatment viral dynamics to under-
stand treatment effects. Our results can guide future study design 
and assist in interpretation of forthcoming trial data in multiple ways.

First, it is critical to know whether in vitro potency assessments 
of remdesivir, selinexor, and bNAbs can be projected onto human 
infection. We previously demonstrated that in vivo EC50 values for 
antiviral agents can exceed estimates derived from cell culture ex-
periments by a multiple of 5 to 10 (34). A similar observation has 
been hypothesized for HIV targeting monoclonal neutralizing anti-
bodies (43). It is unclear whether this discrepancy occurs because of 

Fig. 8. Projected PK and PD of selinexor therapy. (A) Complete model of selinexor including plasma levels, PBMC levels, inhibition of XPO1-mediated cellular export of 
viral proteins, and inhibition of viral replication in a dose-dependent fashion. (B) Single-dose model drug levels (line) reproduce observed data points at different doses. 
(C) Projected PBMC levels assuming low and high selinexor absorption rates. (D) Predicted fold change in compensatory XPO1 mRNA expression after a single dose with 
model fits to data. (E) Projected plasma (black) and PBMC (red; dashed = high absorption and solid = low absorption) selinexor levels with three times weekly dosing for 
4 weeks. (F) PD projections of antiviral efficacy according to drug concentration assuming different values for the in vivo EC50 of the drug. (G) Predicted fold change in 
compensatory XPO1 mRNA expression after multiple doses. (H) Projected antiviral effects using combined PK and PD models at different assumed drug potencies.
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low blood levels in tissue, different cell metabolism of drug in tissue, 
or higher protein binding in vivo. Whatever the case, if in vitro 
potency measurements of selinexor and remdesivir overestimate 
in vivo activity, or if higher intracellular levels are required 
than in plasma, then these drugs may be less effective in clinical 
trials. Higher dosing may be a necessary solution to circumvent 
this issue.

Second, effective dosing after symptom development predicts 
rapid subsequent elimination of infected cells. Most current clinical 
trials are focused primarily on hospitalized patients, whereas our 
results and those from two other COVID-19 models suggest that 
treatment in the days immediately following symptom onset will 
decrease the duration of detectable viral shedding (44, 45). Our 
model also predicts that early treatment (before viral peak, usually 

A B

C D

Fig. 9. Projected PK and PD of neutralizing antibody therapy. (A) Complete bicompartment model of bNAb therapy with lowering of viral infectivity according to 
antibody concentration. (B) Projections of plasma bNAb levels from simulations of VRC01 treatment. (C) PD projections of antiviral efficacy according to antibody concen-
tration assuming different values for the in vivo EC50. (D) Combination simulations of PK and PD models demonstrating antiviral activity as a function of time.

A B

C D

Fig. 10. Treatment projections of cytolytic immunotherapy assuming different potency and timing of treatment. Each set of simulations is performed under as-
sumptions of high, medium, and low potency based on multiplicative effect on infected cell death rate. Treatment initiation is at time points generally consistent with 
(A) hospitalization (day 10 after first positive sample), (B) first symptoms (day 5 after first positive sample), (C) presymptomatic post-peak phase (day 2 after first positive 
sample), and (D) presymptomatic pre-peak phase (day 0). Overall, early potent treatment limits duration of infection, but extremely early therapy fails. Prolonged shed-
ding is predicted as a possibility with subpotent, early initiation of therapy due to inadequate activation of immunity.
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<5 days post-infection) will limit the extent of the cytolytic immune 
response required to clear infection. If either of these outcomes are 
correlates of progression to severe disease, as appears to be the 
case clinically (46), and transmission risk, then as with HIV (47), 
influenza (48), and Ebola (49), early test and treat is a vital, currently 
overlooked strategy.

Third, effective dosing soon after onset of symptoms (usually 
post-peak and >5 days post-infection) is predicted to have a less sub-
stantial effect on viral load AUC. This phenomenon occurs because 
the amount of virus produced per hour at the early peak is far high-
er than the amount produced per day during the lower viral load 
second decay phase. This finding provides a cautionary message: If 
subsequent disease severity and development is imprinted during 
the high viral load, presymptomatic acute phase of infection, then 
early antiviral therapy could theoretically eliminate further shed-
ding without altering clinical outcomes. Moreover, if extremely 
high viral load periods are responsible for most transmissions, as 
suggested by the median 5-day serial interval of infection (50), then 
early elimination of shedding may not significantly lower transmis-
sibility either. Overall, this result highlights the urgent need for 
studies that identify early viral and immune correlates of severe disease 
and transmissibility. Preliminary studies suggest that presenting 
viral load may affect disease severity (51) but are not discriminated 
by viral AUC and are also potentially biased by variable timing of 
samples.

Fourth, if therapy is initiated during the presymptomatic stage 
of infection [usually <5 days post-infection and most likely to be 
captured during PEP trials (52)], then the outcomes of the clinical 
trial are predicated on the potency of antiviral therapy. Subtherapeutic 
treatments may even prolong infection by blocking adequate trig-
gering of innate immunity and total depletion of susceptible cells, 
and thus, these therapies may be predisposed to drug resistance. Of 
note, our model’s predictions differ in this respect from those 
derived from other existing intra-host models of SARS-CoV-2 that 
do not emphasize the role of the immune response in eliminating 
infected cells (44, 45). On the basis of these different projections, 
we suggest sampling at late time points during PEP trials. While 
we emphasize that our model’s projections of higher late viral loads 
following subpotent extremely treatment are uncertain based on 
limited knowledge of thresholds required for induction of effective 
acquired immune response, it is nevertheless notable that this out-
come has been observed in the nasal passages of remdesivir-treated 
rhesus macaques (35).

Fifth, our hypothetical approach suggests that while emergence 
of low-level drug-resistant strains may occur commonly during 
COVID-19 treatment with remdesivir, this is unlikely to predispose 
to treatment failure, provided that the drug is potent against the 
predominant susceptible strain. Resistant variants may be present 
at low levels relative to susceptible strains, making transmission of 
resistance less likely. Important exceptions may occur in immuno-
compromised hosts who might shed respiratory viruses for longer 
and at higher levels, thereby increasing the chance of de novo resist
ance (53), or in the context of only moderately potent antiviral therapy. 
Of note, these hypotheses are relevant and require experimental 
validation.

Last, our model projects a high likelihood of success for neutral-
izing antibodies and cellular immunotherapies provided that they 
achieve adequate potency and are dosed soon after development of 
symptoms.

Our model has important limitations. Most critically, it cannot 
be used to predict trial outcomes but rather establishes important 
principles to consider when designing and interpreting trials. We 
also do not frequently capture viral expansion during the first few 
days of SARS-CoV-2 infection: While parameter values for viral 
infectivity and replication rate may vary across infected people, the 
limited amount of early infection data prevents us from identifying 
the degree of variance in these parameters. Similarly, we lack 
adequate resistance data on all of our simulated therapies.

In summary, our model provides a broad platform for assess-
ment of all major types of therapies. Our results demonstrate the 
need to differentiate whether duration of viral shedding or viral 
AUC is the more relevant surrogate of COVID-19 severity. If AUC 
is most predictive of poor outcomes, then all forms of antiviral ther-
apy outside of potent PEP are unlikely to provide clinical benefit. 
However, if shedding duration is the best surrogate, then an early 
test and treat approach is highly promising for limiting the likelihood 
of severe disease.

MATERIALS AND METHODS
Study design
We used ordinary differential equation models to analyze the in-host 
SARS-CoV-2 dynamics in infected individuals and the potential 
in vivo effect of different treatment strategies. First, we fit models 
to the viral load data from different sources using a nonlinear-
mixed effects approach. Second, we used PK models to fit ob-
served plasma concentration of remdesivir and its active nucleoside 
triphosphate form in PBMCs and blood and PBMC concentrations 
of selinexor. Third, we simulated dose-response curves for antiviral 
effect of remdesivir and selinexor using different possible EC50 
based on in vitro estimations against SARS-CoV-2. Fourth, we 
simulated therapy at different times during infection to analyze the 
potential reduction of SARS-CoV-2 shedding. Last, we repeated 
projections of therapy including the emergence of resistance to 
therapy.

SARS-CoV-2 viral load data
We analyzed viral load data from persons infected with SARS-
CoV-2 who were monitored and received supported therapy in hos-
pitals in Singapore (n = 11), Germany (n = 9), South Korea (n = 1), 
and France (n = 4). Persons who had less than four data points or 
had oscillatory viral dynamics were excluded. These data are all 
published before our analysis.

The first dataset was obtained from SARS-CoV-2–infected pa-
tients followed at four hospitals in Singapore from 23 January to 
23 February 2020 (7). All patients had travelled from Wuhan, China 
in the 2 weeks before enrollment. Viral load observations were ob-
tained from different specimens (blood, stool, and urine samples), 
but we analyzed those coming from nasopharyngeal swabs. Cycle 
threshold was obtained with reverse transcription polymerase chain 
reaction (RT-PCR) at multiple times during the first 2 weeks after 
enrollment.

The second dataset was obtained from infected patients enrolled 
and treated in a single hospital in Munich, Germany from 23 to 
27 January 2020 (8). For all patients, the infection was reported to 
happen after contact with an index case. Viral load observations were 
obtained daily from sputum, pharyngeal swabs, and stool using RT-
PCR. We analyzed viral RNA concentrations from sputum.
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The third dataset was from the first SARS-CoV-2–infected case 
in South Korea, a 35-year-old Chinese citizen coming from Wuhan, 
China (9). Nasopharyngeal swab viral loads were obtained daily 
from day 2 of symptom onset using RT-PCR.

The fourth dataset came from four patients admitted to hospitals 
in Paris or Bordeaux, France with viral loads obtained from naso-
pharyngeal swabs using RT-PCR (10). We analyzed viral load data 
digitized from the published study.

When viral load observations were only published in cycle 
threshold (Ct) values, we converted them to copies per swab using 
the relation values in (54). We assumed a lower limit of detection of 
100 copies per sample.

PK data
PK data of remdesivir were gathered from (32), where NHPs intra-
venously received remdesivir at a dose of 10 mg/kg at day 0, and the 
plasma concentration of remdesivir and its active nucleoside tri-
phosphate form in PBMCs were recorded over 24 hours. We 
digitize these data and used them to fit our PK model of remdesivir. 
PK selinexor data were gathered from (41) for model fitting.

Mathematical modeling of SARS-COV-2 dynamics
To understand the observed SARS-CoV-2 shedding dynamics, we 
developed a viral infection model modifying previous models of 
virus dynamics (11, 12, 55). In this model, susceptible cells (S) are 
infected at rate VS by SARS-CoV-2 (V). SARS-CoV-2–infected 
cells (I) are cleared in two ways: (i) by an innate response with density-
dependent rate Ik (14, 15) and (ii) an acquired response with 
rate ​​  m ​E​​ r​ _ ​E​​ r​ + ​​​ r​ ​​ mediated by SARS-CoV-2–specific effector cells (E). 
The exponent k describes by how much the first death rate depends 
on the infected cell density. The Hill coefficient r parameterizes 
the nonlinearity of the second response and allows rapid saturation 
of the killing. Parameter  defines the effector cell level by which 
killing of infected cells by E is half-maximal. SARS-CoV-2 is pro-
duced at a rate  and cleared with rate . In the model, SARS-
CoV-2–specific effector cells rise after n stages from precursors cells 
(Mi = 1…n). The first precursor cell compartment (M1) proliferates in 
the presence of infection with rate IM1 and differentiates into the 
effector cell at a per capita rate q during each intermediate stage. 
Last, effector cells die at rate E. The best instance of the model is 
expressed as a schematic (Fig. 1A) and, here, as a system of ordinary 
differential equations

	​​

​ dS ─ dt ​  =  − VS

​ 

​ dI ─ dt ​  =  VS −  ​I​​ k​ I − m ​  ​E​​ r​ ─ 
​E​​ r​ + ​φ​​ r​ 

 ​ I

​   
​ dV ─ dt ​  =  I − V

​  
​ ​dM​ 1​​ ─ dt ​   =   ​IM​ 1​​ − ​qM​ 1​​

​  

​ ​ dM​ i=2…n​​ ─ dt ​   =  q(​M​ i−1​​ − ​M​ i​​)

​  

​  dE ─ dt ​  = ​ qM​ n​​ − ​​ E​​ E

  ​​	

The neutralizing antibody model in fig. S1 is equivalent, but in this 
case, equation E represents an antibody response and equations for 

S and I are as follows. The acquired immune response affects the 
infectivity term rather than infected cell life span

	​​

​​ dS ─ dt ​  =  − ​(​​1 − m ​  ​E​​ r​ ─ 
​E​​ r​ + ​φ​​ r​ 

 ​​)​​VS​

​   

​​ dI ─ dt ​  = ​ (​​1 − m ​  ​E​​ r​ ─ 
​E​​ r​ + ​φ​​ r​ 

 ​​)​​VS −  ​I​​ k​ I​

​   
​ dV ─ dt ​  =  I − V

​  
​ ​dM​ 1​​ ─ dt ​   =   ​IM​ 1​​ − ​qM​ 1​​

​  

​ 

 

​dM​ i=2…n​​ ─ dt ​   =  q(​M​ i−1​​ − ​M​ i​​)

​  

​  dE ─ dt ​  = ​ qM​ n​​ − ​​ E​​ E

  ​​	

Fitting viral load data and model selection
We fit different instances of our model in Eq. 1 to the SARS-COV-2 
shedding data using a nonlinear mixed-effects modeling approach 
(see table S1) (56). Briefly, we obtained a maximum likelihood esti-
mation of the population median (fixed effects) and SD (random 
effects) for each model parameter using the stochastic approxima-
tion expectation maximization (SAEM) algorithm embedded in the 
Monolix 2019R2 software (www.lixoft.eu). For a subset of parameters, 
random effects were specified, and the SD values were estimated. 
Measurement error variance was also estimated assuming an 
additive error model for the logged V. We simultaneously fit each 
model to the viral load data of 25 patients from the four datasets. 
The parameters associated with the effector cell compartment were 
only estimated for those study participants who cleared infection 
during the observed data.

For each model fit, we assumed t = 0 as the time of first positive 
viral load for each person. However, we defined the initial value as 
the time of infection, i.e., when I(tinit) = 1 cell. Because infection 
starts before the first detected viral load, we have that tinit < 0. We 
fixed other initial values as S(tinit) = 107 cells, ​V(​t​ init​​ ) = ​I(​t​ init​​) _   ​​, 
M1(tinit) = 1 cell, and Mi = 2…n(tinit) = E(tinit) = 0. We fixed parameter 
 = 15 day−1 (55), E = 1 day−1, and  = 100 cells. We assumed this 
value of  because of the low percentage (~2%) of activated T cells 
that start growing at the moment of viral load drop (57). We esti-
mated the remaining parameters including the time of infection tinit.
To determine the most parsimonious model among the instances 
for the available SARS-CoV-2 shedding data, we computed the log-
likelihood (log L) and the Akaike information criteria (AIC = −2log 
L + 2m, where m is the number of parameters estimated). We assumed 
that a model has similar support from the data if the difference be-
tween its AIC and the best model (lowest) AIC is less than two (58).

PK modeling of remdesivir
To reproduce the PK data of remdesivir, we used a simple two-
compartment model, where the first compartment represents the 
amount of remdesivir in plasma (CP, volume VP) and the second 
compartment denotes the amount of its active nucleoside triphos-
phate form in PBMCs (Ca, volume Va). Here, we assume that rem-
desivir gets metabolized to its active nucleoside triphosphate form 
at rate kpa, whereas remdesivir and its active nucleoside triphosphate 
form are eliminated from their respective compartments at rates 
kc and ka, respectively. The model is given by

http://www.lixoft.eu
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	​​  ​dC​ P​​ ─ dt  ​  =  − ​k​ pa​​ ​C​ P​​ − ​k​ c​​ ​C​ P​​​	

	​​  ​dC​ a​​ ─ dt  ​  = ​ k​ pa​​ ​C​ P​​ − ​k​ a​​ ​C​ a​​​	

As the drug concentration was recorded in M, we convert 
the amount of the drug given in mg to M by dividing CP and Ca by 
conversion factors V1 and V2, respectively. Here, V1 and V2 are a 
combination of the volume of the distribution of two compartments 
(VP and Va) and the molar mass of two forms of remdesivir (MP and 
Ma). The relationship follows, ​​V​ 1​​ = ​​V​ P​​ ​M​ P​​ _ 

​10​​ 3​
  ​​ and ​​V​ 2​​ = ​​V​ a​​ ​M​ a​​ _ 

​10​​ 3​
  ​​.We fit this 

model to the PK data from NHP (32), using a nonlinear least squares 
approach using an initial dose of 10 mg/kg. We adapted the dose in 
humans (200 and 100 mg) assuming a normal weight of 70 kg.

PK modeling of selinexor
We used a two-compartment model of therapy for selinexor in which 
oral dose (Cd) is absorbed and converted to plasma levels (Cp) at rate 
ka. The drug in the plasma is then transported to the target site of 
infection and are then absorbed into cells (Cn, volume of distribu-
tion Vn) at rate kpn. Drug activity is mediated by Cn, which inhibits the 
XPO1-mediated nuclear export of viral material to the cytoplasm, 
thus inhibiting viral replication. The concentration of XPO1 mRNA 
is captured by variable x, which is produced at rate  and cleared at 
rate d. XPO1 and the intracellular drug interact at rate r, and this rate 
is limited by the high intracellular drug concentration; this results in 
overexpression of XPO1 mRNA expression (41). This is depicted in 
Fig. 8 and shown in the form of ordinary differential equations below

	​​  ​dC​ d​​ ─ dt  ​  =  − ​k​ a​​ ​C​ d​​​	

	​​  
​dC​ p​​

 ─ dt  ​  = ​ k​ a​​ ​C​ d​​ − ​k​ p​​ ​C​ p​​​	

	​​  ​dC​ n​​ ─ dt  ​  = ​ k​ pn​​ ​C​ d​​ − ​k​ n​​ ​C​ n​​​	

	​​  dx ─ dt ​  =   + rx ​  ​C​ n​​ / ​V​ n​​ ─ x + ​C​ n​​ / ​V​ n​​ ​ − dx​	

PK modeling of bNAbs
The PK of an intravenously injected bNAb was simulated using a 
simple biphasic exponential model, CB(t) = Y1e−k

1
t + Y2e−k2t. In this 

model, k1 and k2 represent the distribution and clearance rates of 
the bNAb, whereas Y1 and Y2 describe the coefficients associated 
with them. We fixed parameters Y1 = 2200 g/ml, Y2 = 150 g/ml, 
and k1 = 1.1 day−1 following estimates for the bNAb VRC01 (43). 
We also fixed ​​k​ 2​​ = ​0.69 _ 180 ​​ day−1 to reflect the long half-life of 3 months.

PD modeling
We modeled antiviral efficacy (ϵ) of each treatment approach as a func-
tion of the drug concentration C(t) as ​ϵ(t ) = ​  C(t) _ C(t ) + E ​C​ 50​​

​​,  where EC50 is 
the half-maximal effective concentration. Remdesivir and selinexor 
were assumed to inhibit viral production rate (), whereas bNAbs 
were hypothesized to inhibit the viral infectivity (), both by a factor 
of 1 − ϵ(t).

To calculate the efficacy of remdesivir, we assumed that the active 

form (Ca) has the antiviral effect, i.e., ​ϵ(t ) = ​ 
​​C​ a​​(t) _ ​V​ 2​​ ​
 _ 

​​C​ a​​(t) _ ​V​ 2​​ ​  + E ​C​ 50​​
​​. The antiviral 

effect of intracellular selinexor was calculated in an equivalent fashion 
(Fig. 8A). We used values of EC50 from those estimates in vitro 
against SARS-CoV-2 [10 nM for selinexor (59) and 0.77 M for 
remdesivir (31)] to hypothetical in vivo values up to 100 times the 
in vitro value.

We also explored the antiviral effect of a hypothetical bNAb using 
the form ​ϵ(t ) =  ​  ​C​ B​​(t) _ ​C​ B​​(t ) + E ​C​ 50​​​​    and varied values of EC50 between 1 and 
1000 M. Last, we modeled the potential antiviral effect of immuno-
therapies by enhancing the early death rate of infected cells () by 
factors of 50, 100, and 200%.

Modeling the emergence of resistance to remdesivir
We adapted the model in Eq. 1 to allow the emergence of resistance 
to remdesivir. We base the modifications on the fact that two 
separate mutations may induce partial resistance to remdesivir in 
SARS-CoV-1, which, in turn, leads to a less fit virus (38). In the case 
of SARS-CoV-1, two single mutations can induce to a less sensitive 
virus with 2.4- and 5.0-fold increase in the remdesivir EC50. When 
the combined mutations emerged, it mediated a 5.6-fold increase in 
the remdesivir EC50. We included these findings in the model by 
assuming that infected cells (Is) that produce sensitive virus (Vs) can 
transition into infected cells (Ir1 and Ir2) that produce less sensitive 
virus (Vr1 and Vr2), due to one mutation during the viral replication 
cycle. These two viral populations have an increased EC50 (2.4- and 
5-fold higher). Similarly, we assumed that Ir1 and Ir2 can transition 
into infected cells that produce the more resistant strain Vr12 (with 
5.6-fold higher EC50) after another mutation. We also allowed reversal 
mutation events. We assumed a mutation probability of  = 10−5 per 
infection event. Under these assumptions, total viral load is defined 
as V = Vs + Vr1 + Vr2 + Vr12 and total number of infected cells as I = 
Is + Ir1 + Ir2 + Ir12. With these modifications, the model becomes

	​​

​ dS ─ dt ​  =  − VS

​ 

​ ​dI​ s​​ ─ dt ​  =  (1 − 2 )  ​SV​ s​​ + S(​V​ r1​​ + ​V​ r2​​ ) −  ​I​​ k​ ​I​ s​​ − ​  ​mE​​ r​ ─ 
​E​​ r​ + ​φ​​ r​ 

 ​ ​I​ s​​

​     

​ ​dI​ r1​​ ─ dt ​   =   ​SV​ s​​ + (1 − 2 )  ​SV​ r1​​ +  ​SV​ r12​​ −  ​I​​ k​ ​I​ r1​​ − ​  ​mE​​ r​ ─ 
​E​​ r​ + ​φ​​ r​

 ​ ​I​ r1​​

​     

​ ​dI​ r2​​ ─ dt ​   =   ​SV​ s​​ + (1 − 2 )  ​SV​ r2​​ +  ​SV​ r12​​ −  ​I​​ k​ ​I​ r2​​ − ​  ​mE​​ r​ ─ 
​E​​ r​ + ​φ​​ r​

 ​ ​I​ r2​​

​     

​ ​dI​ r12​​ ─ dt ​   =  S(​V​ r1​​ + ​V​ r2​​ ) + (1 − 2 )  ​SV​ r12​​ −  ​I​​ k​ ​I​ r12​​ − ​  ​mE​​ r​ ─ 
​E​​ r​ + ​φ​​ r​

 ​ ​I​ r12​​

​     ​  ​dV​ s​​ ─ dt ​   =  (1 − ​ϵ​ s​​ ) ​I​ s​​ −  ​V​ s​​​  

​ ​dV​ r1​​ ─ dt ​   =  (1 − ​ϵ​ r1​​ ) ​I​ r1​​ −  ​V​ r1​​

​   

​ ​dV​ r2​​ ─ dt ​   =  (1 − ​ϵ​ r2​​ ) ​I​ r2​​ −  ​V​ r2​​

​   

​ ​dV​ r12​​ ─ dt ​   =  (1 − ​ϵ​ r12​​ ) ​I​ r12​​ −  ​V​ r12​​

​   

​  ​dM​ 1​​ ─ dt ​   =   ​IM​ 1​​ − ​qM​ 1​​

​  

​ ​dM​ i=2…n​​ ─ dt ​  = q(​M​ i−1​​ − ​M​ i​​)

​  

​ dE ─ dt ​  = ​ qM​ n​​ − ​​ E​​ E

  ​​	

		  (2)
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Here, ​​ϵ​ s​​ = ​ 
​​C​ a​​(t) _ ​V​ 2​​ ​
 _ 

​​C​ a​​(t) _ ​V​ 2​​ ​  + E ​C​ 50​​
​​, ​​ϵ​ r1​​ = ​ 

​​C​ a​​(t) _ ​V​ 2​​ ​
 _ 

​​C​ a​​(t) _ ​V​ 2​​ ​  + 2.4 × E ​C​ 50​​
​​, ​​ϵ​ r2​​ = ​ 

​​C​ a​​(t) _ ​V​ 2​​ ​
 _ 

​​C​ a​​(t) _ ​V​ 2​​ ​  + 5 × E ​C​ 50​​
​​, and ​​

ϵ​ r12​​  = ​  
​​C​ a​​(t) _ ​V​ 2​​ ​  _ 

​​C​ a​​(t) _ ​V​ 2​​ ​  + 5.6 × E ​C​ 50​​
​​  are the antiviral effects of remdesivir in block-

ing virus production for each viral population.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/sciadv.abc7112/DC1
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