Skip to main content
. 2020 Nov 20;9:e59704. doi: 10.7554/eLife.59704

Figure 5. LRRC8A is dispensable for activation of the NLRP3 inflammasome.

(A) IL-1β release was determined by ELISA on supernatants from wild-type (WT) or Lrrc8a knockout (KO) bone-marrow-derived macrophages (BMDMs). Naïve or LPS-primed (1 µg mL−1, 4 hr) BMDMs were stimulated with either vehicle, ATP (5 mM), nigericin (Nig, 10 µM), silica (300 µg mL−1) or imiquimod (IQ, 75 µM) for 2 hr (n = 5). (B) Cell death determined by an LDH assay of cells treated in (A) (n = 3). (C) Western blot of Triton x-100 insoluble crosslinked ASC oligomers and soluble total BMDM cell lysates (cell lysate + supernatant) probed for ASC and caspase-1. LPS-primed (1 µg mL−1, 4 hr) WT or Lrrc8a KO BMDMs were stimulated with either nigericin (Nig, 10 µM), ATP (5 mM) or imiquimod (IQ, 75 µM) for 2 hr (n = 3). (D) IL-1β release from LPS-primed (1 µg mL−1, 4 hr) WT or Lrrc8a KO BMDMs pre-treated with a vehicle control (DMSO), flufenamic acid (FFA, 100 µM) or NS3728 (NS3, 10 µM) and then stimulated with ATP (5 mM) or nigericin (10 µM) for 2 hr (n = 3). (E) Western blot of Triton x-100 insoluble crosslinked ASC oligomers and soluble total BMDM cell lysates (cell lysate + supernatant) probed for ASC, caspase-1 and IL-1β. LPS-primed (1 µg mL−1, 4 hr) WT or Lrrc8a KO BMDMs were pre-treated with a vehicle control, flufenamic acid (FFA, 100 µM) or NS3728 (NS3, 10 µM) and stimulated with nigericin (10 µM, 2 hr) (n = 5). (F–G) IL-1β detected by ELISA in the peritoneal lavage (F) or plasma (G) from WT mice. Mice were pre-treated intraperitoneally (i.p.) with a vehicle control, NS3728 (NS3, 50 mg kg−1) or MCC950 (MCC, 50 mg kg−1) and LPS (1 µg). 4 hr after injection with LPS, mice were anaesthetised and injected with additional vehicle control, NS3728 (NS3, 50 mg kg−1) or MCC950 (MCC, 50 mg kg−1) before i.p. injection of ATP (100 mM, 500 µL, 15 min) (n = 5). (H–I) IL-1β detected by ELISA in the peritoneal lavage (H) or plasma (I) from Lrrc8a KO and WT littermates as treated in (F) (n = 3–5). **p<0.01, ***p<0.001, ****p<0.0001 determined by a one-way ANOVA with Dunnett’s (vs vehicle control) post hoc analysis (F,G) or a two-way ANOVA with Tukey’s post hoc analysis (A,B,D,H,I). Values shown are mean plus the SEM.

Figure 5.

Figure 5—figure supplement 1. Loss of LRRC8a does not affect myeloid populations in the peritoneum.

Figure 5—figure supplement 1.

(A–B) IL-6 detected by ELISA in the peritoneal lavage (A) or plasma (B) from wild-type mice. Mice were pre-treated intraperitoneally (i.p.) with a vehicle control, NS3728 (NS3, 50 mg kg−1) or MCC950 (MCC, 50 mg kg−1) and LPS (1 µg). 4 hr after injection with LPS, mice were anaesthetised and injected with additional vehicle control, NS3728 (NS3, 50 mg kg−1) or MCC950 (MCC, 50 mg kg−1) before i.p. injection of ATP (100 mM, 500 µL, 15 min) (n = 5). NS3728 treatment did not significantly alter IL-6 levels. Injection of MCC950 significantly enhanced IL-6 release in the peritoneum and plasma compared to vehicle. (C–G) Flow cytometry of immune cells in naïve peritoneal lavage from WT or Lrrc8a KO mice (n = 3–5). Representative gating strategy (C) and quantification of immune cells (D–G). Immune cells were initially gated on CD45+ve/CD11b+ve cells and cell populations were identified as follows: neutrophils (LY6Ghi), monocyte-derived-macrophages (MDMs) (LY6G-ve/MHCIIhi/F4/80-ve), resident macrophages (Mϕ) (LY6G-ve/F4/80hi), and Ly6Chi monocytes (LY6G-ve/MHCII-ve/F4/80-ve/CX3CR1hi/Ly6Chi). ns not significant, **p<0.01 determined by a one-way ANOVA with Dunnett’s (vs vehicle control) post hoc analysis (A,B) or an unpaired t-test (D–G). Values shown are mean plus the SEM.