
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20264  | https://doi.org/10.1038/s41598-020-77136-5

www.nature.com/scientificreports

Lesions in the right Rolandic 
operculum are associated 
with self‑rating affective 
and apathetic depressive 
symptoms for post‑stroke patients
Stephanie Sutoko1,2*, Hirokazu Atsumori1,2, Akiko Obata1,2, Tsukasa Funane1,2, 
Akihiko Kandori1,2, Koji Shimonaga3,4, Seiji Hama2,4, Shigeto Yamawaki5 & Toshio Tsuji6

Stroke survivors majorly suffered from post-stroke depression (PSD). The PSD diagnosis is commonly 
performed based on the clinical cut-off for psychometric inventories. However, we hypothesized 
that PSD involves spectrum symptoms (e.g., apathy, depression, anxiety, and stress domains) and 
severity levels. Therefore, instead of using the clinical cut-off, we suggested a data-driven analysis 
to interpret patient spectrum conditions. The patients’ psychological conditions were categorized 
in an unsupervised manner using the k-means clustering method, and the relationships between 
psychological conditions and quantitative lesion degrees were evaluated. This study involved 
one hundred sixty-five patient data; all patients were able to understand and perform self-rating 
psychological conditions (i.e., no aphasia). Four severity levels—low, low-to-moderate, moderate-
to-high, and high—were observed for each combination of two psychological domains. Patients with 
worse conditions showed the significantly greater lesion degree at the right Rolandic operculum (part 
of Brodmann area 43). The dissimilarities between stress and other domains were also suggested. 
Patients with high stress were specifically associated with lesions in the left thalamus. Impaired 
emotion processing and stress-affected functions have been frequently related to those lesion regions. 
Those lesions were also robust and localized, suggesting the possibility of an objective for predicting 
psychological conditions from brain lesions.

Structural brain abnormalities caused by brain infarction and hemorrhage bring complex impairments related 
to physical-cognitive functions and psychological conditions. Post-stroke depression (PSD) is closely linked to 
(affective) depression and apathy symptoms. Patients lacking self-acceptance due to stroke-evoked disabilities 
and having irrational expectations of their recovery course (high insistence on recovery) may develop both symp-
toms. Even though both result in negative effects on a patient’s quality of life1,2, those symptoms are considered 
distinct and separate domains. A previous study based on computed tomography imaging reported that lesion 
location may affect different symptoms. The severity of depression was related to lesions in the left frontal lobe; 
the symptomatic apathy was associated with the damage of bilateral basal ganglia3. Those symptoms affected 
serotonergic and dopaminergic neurotransmitter pathways differently4, and effects of those symptoms on lesions 
were also less likely overlapped (12–21%; brainstem lesions). The improvement of physical abilities was claimed 
to reduce depressive and apathetic symptoms2. However, the apathy domain was a better predictor of functional 
recovery than the depressive symptoms5.

More than 50% of reported stroke patients suffered from apathy and/or depression, with varied possibilities 
of apathy without depression (20–28%), depression without apathy (12–20%), and both psychological symptoms 
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(15–21%) across sites2–4. The variations of psychological condition and even affected left hemispheric lesion might 
be caused by methodological differences across studies6. The diagnostic discrepancy is likely to have been a result 
of using divergent types of psychometric inventories with particular cut-offs. Furthermore, the applied cut-off 
interpreted psychological condition from a binary perspective of severity level (diagnosed vs. non-diagnosed; 
low vs. high). Here, however, we argue for a higher-order interpretation on the basis of multiple severity levels 
(i.e., a spectrum) of apathetic-depressive symptoms or even other psychological domains (e.g., anxiety, stress).

As discussed above, the implementation of cut-offs on patient’s scores of psychometric inventories may 
bring about a limited interpretation for the dataset. Therefore, rather than using the pre-set clinical cut-offs, we 
suggest data-driven and unsupervised categorization of patient data based on two psychological domains. The 
existent of lesions had been associated with psychological conditions as mentioned above, but the relationship 
between a spectrum of severity levels and quantitative lesion degrees has not been studied before. Therefore, in 
the current study, we aimed to understand the spectrum of psychological domains and severity levels for stroke 
patients and its relationships with brain lesion degrees.

Results
Four clusters interpreting psychological conditions for stroke patients.  Unsupervised categori-
zation requires the pre-determined cluster number. In order to avoid any assumptions, the cluster number was 
optimized. The optimization target was the clustering efficiency evaluated by a parameter, namely, explained 
variance (range 0–100%). As the cluster number increases, the explained variance parameter gradually increases 
and reaches a plateau as shown in Fig. 1. The difference of explained variance for two sequential cluster numbers 
was initially high (for the increase from two clusters to three) and gradually decreased (for the increases from 
three clusters to four, four to five, and so on). The smallest cluster number (i.e., two clusters) revealed around 
87% explained variance; the largest cluster number (i.e., ten clusters) brought almost 100% explained variance. 
When the increase of explained variance becomes insignificant, further increasing the cluster number will not 
result in better clustering. In order to determine the optimum cluster number, the elbow method7,8 was applied 
on the plot of explained variance against cluster number. A first-degree line between the most-distant points 
(two and ten clusters) was fitted. The distance between points ([cluster number, explained variance]; red dots in 
Fig. 1) and the line was computed. The longest distance was obtained by the point of four clusters (98% explained 
variance). Therefore, four was selected as the optimum cluster number. The optimum cluster number for clas-
sifying patient data based on other combinations of psychological domains (e.g., apathy–anxiety, depression–
anxiety, and so on) was also four clusters (data not shown).

Distinct lesion characteristics for each cluster.  The patient data on depression-plotted-against-apathy 
scores were categorized into four clusters. Forty-two, 51, 50, and 22 patient data were categorized for clusters 1, 2, 
3, and 4, respectively. Figure 2 shows the lesion maps visualized in six ways—anterior, posterior, top, bottom, left, 
and right views. The colored patches on brain identify the lesion degrees averaged across patients. These maps 
improved the process of exploratory data analysis. The lesion characteristics were distinct for each cluster. While 
all clusters revealed major lesions in the occipital lobe (Fig. 2A2–D2), the prefrontal lesions were observed only 
for clusters 2 and 3 (Fig. 2B1, C1). Cluster 2 was distinguished from cluster 3 based on lesions found in the left 
precentral–postcentral–superior parietal gyri (Fig. 2B3 vs. C3). Clusters 1 and 4 revealed lesions in the orbital 
part of inferior frontal gyrus with specific left (Fig. 2A4) and right (Fig. 2D4) laterality for respective clusters. 
Besides the lesion locations, the lesion degree (percentage) may be useful to explain cluster characteristics. For 
example, even though both clusters 1 and 4 showed lesions in the middle and inferior temporal gyri, a greater 
lesion degree was observed for cluster 4 (Fig. 2C6 vs. D6).

Figure 1.   Plot of explained variance against cluster number in categorizing patient data based on their apathy 
and depression scores. By using the elbow method, the optimum cluster number was found to be four.
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Cluster effect on brain lesion degree at the right Rolandic operculum and the left thala‑
mus.  The psychological domains are displayed in 2-axis scatter plots in which each axis represents a psy-
chological domain (Fig. 3). There are two clustering characteristics. First, each psychological domain was cat-
egorized into four severity levels, such as low, low-to-moderate, moderate-to-high, and high. Clusters then 

Figure 2.   Lesion maps for each clusters (A–D for clusters 1, 2, 3, and 4, respectively) visualized in anterior (A1–
D1), posterior (A2–D2), top (A3–D3), bottom (A4–D4), left (A5–D5), and right (A6–D6) views. Color bar 
represents the lesion degree in percentage. A, P, R, and L denote anterior, posterior, right, and left, respectively.
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characterized the same level for both psychological domains (low apathy and low depression, high apathy and 
high depression; clusters 1 and 4 in Fig. 3A1). This clustering characteristic was found in the combined domains 
of apathy–depression (Fig. 3A1), apathy–anxiety (Fig. 3B1), depression–perceived stress (Fig. 3E1), and anxi-
ety–perceived stress (Fig. 3F1). Second, each psychological domain was categorized into three severity levels, 
such as low, moderate, and high. While two clusters represented the same level for both psychological domains 
(e.g., low apathy and low perceived stress, high apathy and high perceived stress; Fig. 3C1), two other clusters 
were specified by the moderate-low (moderate apathy and low perceived stress; cluster 3; Fig. 3C1) and low-
moderate (low apathy and moderate perceived stress; cluster 2; Fig. 3C1) levels for psychological domains. A 
similar clustering characteristic was observed in the combined parameters of apathy–perceived stress (Fig. 3C1) 
and depression–anxiety (Fig. 3D1).

The cluster number had been ordered depending on the levels of psychological domains. The most-distant 
clusters (i.e., clusters with low and high psychological scores; clusters 1 and 4) were noticeable; the in-between 
clusters (i.e., clusters with low-to-moderate and moderate-to-high psychological scores) were determined by the 
distance between those centroids and the centroids of most-distant clusters. The cluster having a centroid closer 
to the centroid of the cluster with high psychological scores was assigned to the moderate-to-high cluster (i.e., 
cluster 3), and vice versa for the low-to-moderate cluster (i.e., cluster 2). Furthermore, the comparisons between 
clusters were assessed using a one-way analysis of variance (ANOVA). The significant results were visualized 
in p value maps on the brain template (Fig. 3A2–F2). There are three points highlighted from these results. 
First, a significant difference (one-way ANOVA, F(3,161) = 2.95–4.26, p < 0.05) between clusters was observed for 

Figure 3.   Psychological characteristics (A1–F1) for each cluster based on apathy–depression (A), apathy–
anxiety (B), apathy–perceived stress (C), depression–anxiety (D), depression–perceived stress (E), and anxiety–
perceived stress (F) clustering. Differences between clusters are also displayed in p value maps (A2–F2). Black, 
blue, and green arrows indicate lesions in the right Rolandic operculum, right inferior occipital gyrus, and left 
thalamus.
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lesions in the right Rolandic operculum (black arrows; Fig. 3A2–F2). Lesions in the right inferior occipital gyrus 
(blue arrows; Fig. 3A2–E2) also frequently brought significant differences between clusters (one-way ANOVA, 
F(3,161) = 2.19–4.68, p < 0.1). Second, the cluster effects on lesions in the lobule VIIB of left cerebellum (one-way 
ANOVA, F(3,161) = 2.35–2.99, p < 0.1) were distinctly associated with the depression and anxiety scores. Third, 
the lesions differing significantly between clusters specified by the perceived stress score (one-way ANOVA, 
F(3,161) = 2.40–3.25, p < 0.1) were found in the left thalamus (green arrows; Fig. 3F2).

Figure 4 shows bar plots to evaluating the lesion degree at particular regions (right Rolandic operculum, 
right inferior occipital gyrus, left thalamus, lobule VIIB of left cerebellum) between clusters. The Tukey–Kramer 
post hoc analysis was performed on the lesion data of above-mentioned regions, significant differences between 
cluster 4 and other clusters (i.e., cluster 4 vs. 1, cluster 4 vs. 2, or cluster 4 vs. 3) have also been confirmed (p < 0.1). 
Stroke patients with worse psychological condition (high psychological scores; cluster 4) were associated with 
greater averaged lesions than those in other clusters (Supplementary Table S1).

Discussion
In the current study we investigated the relationships between patients’ psychological conditions and brain 
lesion degrees. The psychological conditions were categorized through a data-driven and unsupervised method, 
the k-means clustering method, without the use of clinical cut-offs. Four clusters were found to appropriately 
define the psychological conditions of stroke patients. These clusters were then assumed to represent a spectrum 
of symptoms and severity levels. Lesions in the right Rolandic operculum contributed to worse psychological 
conditions (high apathy, depression, anxiety, and perceived stress).

Acute stress with sudden rise in blood pressure and/or cerebral blood flow has been reported to cause thalamic 
hemorrhages9,10, and chronic stress exposure could heighten the severity of post-stroke secondary neurodegen-
eration in the thalamus11. Posttraumatic stress disorder (PTSD) patients showed less activation in the thalamus, 
anterior cingulate gyrus, and medial frontal gyrus than controls did12, and their ratio of cortical to subcortical 
perfusion changed significantly during flashbacks13. Stress may be affected as in the theory of brain abnormali-
ties suggested by Duggal14. That is, a thalamic infarct disturbing the thalamic amygdala pathway involved in 
processing fear and traumatic memories might induce the onset of PTSD. We obtained a result that the high 
lesion degree in the left thalamus was associated with high perceived stress. This result is consistent with previ-
ous studies in which stress and thalamus abnormalities (e.g., lesion, hypoactivation, hypo- or hyper-perfusion, 
etc.) were related to each another.

Meanwhile, the high severity level for other psychological domains (i.e., apathy, depression, and anxiety) was 
associated with the high lesion degree at the right Rolandic operculum (i.e., post-central operculum). Several 
studies have reported relationships between the Rolandic operculum and psychology (or emotion) with or with-
out an external factor (disease) and/or intervention (substance abuse). The role of the operculum is also related 
to emotion processing through music15,16 and facial expression17. Mean diffusivity of the Rolandic operculum is 

Figure 4.   Comparisons of lesion degree at the right Rolandic operculum, right inferior occipital gyrus, left 
thalamus, and lobule VIIB of left cerebellum between clusters 1 (blue, cyan, yellow, and red bar plots for clusters 
1, 2, 3, and 4, respectively) based on apathy–depression (A), apathy–anxiety (B), apathy–perceived stress (C), 
depression–anxiety (D), depression–perceived stress (E), and anxiety–perceived stress (F) clustering. Error bars 
represent the standard errors of lesion degree for each cluster.
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positively correlated with indices of empathizing-cooperativeness18 and depressive symptoms19, and hypoactiva-
tion in the right parietal and central operculum is associated with impaired emotion processing due to alcohol 
dependence20. Furthermore, hypoactivation was observed not only in the Rolandic operculum but also in the 
Heschl gyrus, insula, parahippocampal gyrus, posterior cingulate cortex, and inferior frontal gyrus of major 
depressive disorder (MDD) patients19.

Even though the number of study was scarce, it was reported that PSD was associated with cerebellar lesions, 
including the lobule VIIB of left cerebellum21. Effects on the specific left laterality was found and addressed by the 
asymmetric cerebellar functions22. Furthermore, the prefronto-cerebellar network contributes to the function of 
emotional processing23,24; the network disruption may cause the impaired function25. A cerebellar damage showed 
a psychosis-related effect26. The pathological mechanism was hypothetically explained by errors of information 
interpretation and modulation27. The errors may extend to the sensory processing, and the damage of sensory-
related regions, such as the occipital cortex (vision) also suggested the psychotic condition28. The interrelationship 
between temporoocipital-parietal (sensory) and fronto-limbic-insula (including thalamus) regions proposed the 
fear network model29. This network may explain a manifestation of anxiety illness.

Infarctions in the frontal lobe were observed for patients with post-stroke anxiety (PSA); the occipital infarc-
tions also showed a tendency of higher PSA risk (p < 0.1)30. The current dataset presented the limited frontal 
lesions; we were unable to confirm the effect of frontal lesions on psychological domains. Therefore, the effects 
of worse psychological domains should be evaluated via the brain network concept which its disruptions can be 
caused by damages (i.e., lesion) of one or more associated regions. The unperformed network analysis may also 
explain the region inconsistency31 found between studies, and those regions might be organized in a network.

Disoriented networks have been associated with psychological symptoms previously. An abnormal increase 
of connectivity between subgenual prefrontal cortex and the default mode network (DMN) was found in MDD 
patients32. Based on the meta-analysis (five sites with 1,300 patients and 1,128 normal controls), the DMN 
within-connectivity was found to be reduced for the MDD patients33. Therefore, the DMN has also been studied 
for stroke patients with or without depressive symptoms. Stroke patients reportedly have reduced DMN within-
connectivity involving the left medial temporal lobe, posterior cingulate, and medial prefrontal cortices that may 
be related to the cognitive impairments34. Network dysfunctions such as reduce d DMN within-connectivity 
involving left middle temporal cortex and precuneus35 and affective network36 have been used to predict the 
severity of PSD symptoms. Egorova et al.37 reported that the network dysfunction related to depressive symptoms 
was not necessarily associated with network lesions. This result raised a hypothesis of brain plasticity in network 
recovery. Thus, a future study should address the point of view of connectivity analysis.

Besides playing a role in emotion processing, the Rolandic operculum functions as the sensory system for 
gustatory and visceral sensation together with the cingulate-operculum network38,39. The gastrointestinal tract 
has been reported being sensitive to emotion (depression, anxiety, stress); the connection between brain and 
gastrointestinal organs is explained by the theory of a gut-brain axis (top-down and bottom-up)40. Negative 
emotion triggers the excretion of cortisol that induces local immune activity, alters intestinal permeability, and 
reduces the probiotics level40,41. This phenomenon brings two questions—(1) Is controlling parts of the brain 
(e.g., Rolandic operculum and/or thalamus) feasible for the purpose of modifying negative psychological condi-
tions and specifically easing gastrointestinal symptoms (top-down)? and (2) Is the dietary control more sensitive 

Figure 5.   Dataset information with the inclusion criteria.
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in suppressing negative psychological conditions (bottom-up)? Answering these questions expectedly brings a 
strategic treatment for PSD.

The relationship between psychological conditions and lesions has been indicated in the previous and current 
studies, but the nature of the relationship is still unclear. There are two hypotheses: direct and indirect relation-
ships, respectively drawn from previous results and the current results. The direct relationship suggests that the 
particular lesion locations may induce worse psychological conditions14. Meanwhile, the indirect relationship 
suggests that the associated disabilities caused by the particular (and other) lesions bring psychological conse-
quences. Patients deny their disabilities, and this denial strongly affects their mental conditions and rehabilita-
tion process42. This issue becomes a constraint and our future objective. In order to confirm these hypotheses, a 
further analysis should be done by investigating the impaired and recovered functions related to the currently 
found lesions.

Besides, there are two limitations. First, the psychological measurement was not set to be the exactly same 
timing for all patients because the admission timing to the rehabilitation ward depended on the patients’ condi-
tions. Even though the reliability of multiple psychological measurements (e.g. onset and follow-up measure-
ments) was apparently confirmed in the group analysis43,44, the relationships between lesions and psychological 
domains may be dynamic and temporal-dependent within a short interval (1 week vs. 1 month after stroke 
onset)43. Furthermore, personal traits (e.g., neuroticism)45 and dependence in activities of daily living (ADL)46 
highly influenced the development of depressive symptoms over the rehabilitation course. In order to minimize 
the temporal effects, we excluded patient data with delayed admissions to the rehabilitation ward. However, 
we did not control the personality factor. A better experimental design should be carried out in a future study. 
Second, the lesion locations were treated here as if they were tightly related to the psychological domains; the 
laterality effect has never been discussed and should also be addressed further.

In spite of the above mentioned limitations, the current study demonstrated that the risk of worse psycho-
logical conditions can be monitored using only the information of lesion degree measured at the initial hospital 
admission. Comparing its findings with those of previous studies of wide brain lesions, one sees that we have 
successfully localized robust and specific lesions, aiming at a more accurate evaluation. Therefore, the appropriate 
treatment for mitigating worse psychological conditions (e.g., PSD) can be incorporated with other rehabilitation 
courses (e.g., for motor functions), and the speedy recovery of stroke patients is anticipated.

The relationships between psychological conditions of stroke patients and brain lesion degrees were evaluated. 
Patients with high perceived stress were associated with the high-degree lesions in the left thalamus, whereas 
other psychological domains (apathy, depression, and anxiety) were significantly associated with high-degree 
lesions in the right Rolandic operculum. The current findings suggest that using lesion degree analysis to evaluate 
the risk of worse psychological conditions would help in designing personalized rehabilitation plans for stroke 
patients.

Methods
Subjects.  The current dataset was obtained from a retrospective study. Two hundred seventy-two stroke 
patients’ data have been collected in the rehabilitation ward of Hibino Hospital, Hiroshima. Two hundred eight 
patients (170 males; 66.9 ± 9.8 years old; 39–86 years old) were brain infarction cases; the others were either 
brain (62 patients; 47 males; 60.7 ± 11.5 years old; 34–80 years old) or subarachnoid (2 males; 58- and 65-years 
old patients) hemorrhage cases. Only brain infarction cases were analyzed in the current study. Patients with 
severe conditions could not immediately transferred to the rehabilitation ward after the stroke onset. Therefore, 
the intervals of stroke onset, imaging, and measurement of psychological conditions were widely distributed 
across patients. In order to minimize the effects of measurement intervals, 34 patients were excluded according 
to the including criteria: the elapsed time from stroke onset to psychological measurement is equal to or less than 
31 days and the time interval between MRI and psychological measurements is equal to or less than 40 days. 
The only patients without histories of major psychological disorders were analyzed; therefore, two patients with 
histories of major psychiatric disorders (e.g., major depression disorder, bipolar disorder, schizophrenia, schiz-
oaffective disorder) were also excluded. Even though all patients were able to understand the instructions of 
performed tests, low Mini-Mental State Assessment scores (less than 20) were found in seven patients. The risk 
of aphasia might be heightened; thus, those patients were also excluded from the dataset. In total, 165 patient 
data (134 males; 66.8 ± 9.6 years old; 39–86 years old) were used in the current study. Among 165 patient data, 
31 patients had experienced recurrent stroke. Figure 5 shows the dataset information with the inclusion criteria.

Patients’ severities were evaluated from the factors of paresis and limitations in ADL. The six-stage 
Brunnstrom approach was used to quantify motor functions of lower limbs (five patient data were unavailable; 
stage 1–2: 6 patients; stage 3–4: 13 patients; stage 5–6: 141 patients), upper limbs (stage 1–2: 6 patients; stage 
3–4: 13 patients; stage 5–6: 141 patients), and fingers (stage 1–2: 2 patients; stage 3–4: 12 patients; stage 5–6: 
146 patients). Furthermore, the dependency from disabilities was assessed using the Functional Independence 
Measure (FIM), which was consisted of 18 items (13 and 5 for motor and cognitive items, respectively)5. Patients’ 
disabilities were evaluated by the seven-point scale (scores 1 and 7 for complete dependence and independence, 
respectively) for each item (126 total FIM score). The total FIM score of the current dataset was 99.3 ± 21.0 (range 
36–126). From these factors, patients were mostly in mild-to-moderate severities.

This study was approved by the ethics committee of the Shinaikai Hibino Hospital and the Hiroshima Uni-
versity Epidemiological Research. All experiments were conducted in compliance with relevant regulations and 
the latest version of the Declaration of Helsinki. Informed consent was obtained from either patients or those 
authorized to provide consents on behalf of patients, including family members or guardians, before we started 
any measurements.
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Imaging and non‑imaging data.  Patient data were classified into two types: imaging and non-imaging 
data. Imaging data were obtained from T2-weighted brain scans using a 1.5-T MRI scanner (Signa EXCITE, 
XI, ver. 11.0, GE Healthcare, Milwaukee, WI). In order to quantify the brain lesions, five steps were performed. 
First, brain scans were normalized (e.g., non-linear spatial normalization)47,48 and standardized across patients 
following the spatial registration of Montreal Neurological Institute brain template (2 × 2 × 2 mm3 voxel size). 
Second, brain lesions were identified by a doctor (KS), and the lesions were manually labeled using MRIcron soft-
ware (https​://www.cabia​tl.com/mricr​on/). The lesion data were not smoothed. The lesion analysis is described 
in detail elsewhere4,49,50. Third, brain regions were labeled following the Automated Anatomical Labeling51–53 
(AAL, i.e., into 116 regions). Fourth, lesion and total voxels were calculated for each labeled region. Fifth, the 
ratio between lesion and total voxels (in percentage unit) was computed for each region (This ratio was also 
referred to here as the “lesion degree measure”). Figure 6 shows coefficients of variation (CV; σ/µ) for region’s 
lesions across patients. The low CV value represents low variability across patient, and vice versa. No lesion 
was observed in some frontal regions (CV = 0). Cognitive data, motor-function data, and psychological data 
were collected, but in the current study we focused on only the psychological data. Psychological conditions 
including apathy, depression, anxiety, and perceived stress were assessed using Japanese versions of the Apathy 
Scale (0–42 range; 12.1 ± 7.3)3–5,54–56, Hospital Anxiety (0–21 range; 4.8 ± 3.5) and Depression Scale (0–21 range; 
5.1 ± 3.4)2,4,57,58, and Perceived Stress Scale (0–56 range; 19.4 ± 7.3)59,60. Both imaging and non-imaging data were 
collected within 1 month after admission to the rehabilitation ward.

Clustering.  Without defining any cut-off for categorizing patients based on psychological conditions, data-
driven and unsupervised k-means clustering was performed. The input of the k-means algorithm could be 
psychological scores from two domains or more. However, in order to clearly interpret the resulting clusters, 
patients were evaluated based on combinations of only two psychological domains: apathy–depression, apa-
thy–anxiety, apathy–perceived stress, depression–anxiety, depression–perceived stress, and anxiety–perceived 
stress. The number of clusters (cluster number) was optimized within a range of 2–10 clusters. The centroid was 
obtained at each clustering, and good clustering was revealed by a short distance between the centroid and its 
cluster member (i.e., low intra-cluster similarity) and long distance between the centroid and other cluster mem-
bers (i.e., high inter-cluster similarity) in the Euclidean space. The explained variance parameter was quantified 
by the ratio between total variance minus within-cluster variance and total variance. Furthermore, the elbow 
method7,8 was empirically applied on the plot of explained variance against cluster number. Psychological scores 
of patients were then clustered by the optimum cluster number. Afterwards, each patient would be labelled 
according to the clusters. The brain lesion degrees were analyzed based on the same clusters. Furthermore, the 
cluster effect on the brain lesion degree was statistically evaluated using either a two-sample t-test or one-way 
analysis of variance (ANOVA), depending on the cluster number (two, or more than two clusters).

Received: 21 May 2020; Accepted: 4 November 2020

Figure 6.   Coefficient of variation map for the lesion data across brain regions depicted from (A) right and (B) 
views. A and P represent anterior and posterior, respectively.

https://www.cabiatl.com/mricron/
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