Skip to main content
. 2020 Nov 20;10:20265. doi: 10.1038/s41598-020-77258-w

Table 2.

Summary of keyword extraction performance for pathology reports.

Methods Precision Recall Exact Matching
SPE PRO PAT SPE PRO PAT SPE PRO PAT
BERT 0.9951 0.9985 0.9961 0.9962 0.9990 0.9938 0.9839 0.9956 0.9795
LSTM 0.9871 0.9932 0.9438 0.9764 0.9919 0.9387 0.9327 0.9868 0.9151
Pre-trained LSTM 0.9940 0.9978 0.9924 0.9915 0.9979 0.9934 0.9646 0.9794 0.9631
CNN 0.9740 0.9769 0.9320 0.9716 0.9758 0.9204 0.9327 0.9502 0.8770
Pre-trained CNN 0.9947 0.9958 0.9855 0.9903 0.9964 0.9823 0.9631 0.9690 0.9218
Bayes Classifier 0.9300 0.9601 0.8956 0.8946 0.9775 0.8227 0.7130 0.9078 0.5168
Kea 0.7321 0.1154 0.3499 0.3751 0.1076 0.1198 0.1010 0.0981 0.0190
WINGNUS 0.6227 0.1786 0.1552 0.3904 0.1650 0.1017 0.1098 0.1552 0.0835

SPE represents specimen type, PRO represents procedure type, and PAT represents pathology type.