Table 2.
Methods | Precision | Recall | Exact Matching | ||||||
---|---|---|---|---|---|---|---|---|---|
SPE | PRO | PAT | SPE | PRO | PAT | SPE | PRO | PAT | |
BERT | 0.9951 | 0.9985 | 0.9961 | 0.9962 | 0.9990 | 0.9938 | 0.9839 | 0.9956 | 0.9795 |
LSTM | 0.9871 | 0.9932 | 0.9438 | 0.9764 | 0.9919 | 0.9387 | 0.9327 | 0.9868 | 0.9151 |
Pre-trained LSTM | 0.9940 | 0.9978 | 0.9924 | 0.9915 | 0.9979 | 0.9934 | 0.9646 | 0.9794 | 0.9631 |
CNN | 0.9740 | 0.9769 | 0.9320 | 0.9716 | 0.9758 | 0.9204 | 0.9327 | 0.9502 | 0.8770 |
Pre-trained CNN | 0.9947 | 0.9958 | 0.9855 | 0.9903 | 0.9964 | 0.9823 | 0.9631 | 0.9690 | 0.9218 |
Bayes Classifier | 0.9300 | 0.9601 | 0.8956 | 0.8946 | 0.9775 | 0.8227 | 0.7130 | 0.9078 | 0.5168 |
Kea | 0.7321 | 0.1154 | 0.3499 | 0.3751 | 0.1076 | 0.1198 | 0.1010 | 0.0981 | 0.0190 |
WINGNUS | 0.6227 | 0.1786 | 0.1552 | 0.3904 | 0.1650 | 0.1017 | 0.1098 | 0.1552 | 0.0835 |
SPE represents specimen type, PRO represents procedure type, and PAT represents pathology type.