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Machine learning methods provide powerful tools to map physical measurements to scientific 
categories. But are such methods suitable for discovering the ground truth about psychological 
categories? We use the science of emotion as a test case to explore this question. In studies of 
emotion, researchers use supervised classifiers, guided by emotion labels, to attempt to discover 
biomarkers in the brain or body for the corresponding emotion categories. This practice relies on the 
assumption that the labels refer to objective categories that can be discovered. Here, we critically 
examine this approach across three distinct datasets collected during emotional episodes—measuring 
the human brain, body, and subjective experience—and compare supervised classification solutions 
with those from unsupervised clustering in which no labels are assigned to the data. We conclude with 
a set of recommendations to guide researchers towards meaningful, data-driven discoveries in the 
science of emotion and beyond.

Psychology became a science in the mid-19th century when scholars first used the research methods of physiol-
ogy and neurology to search for the physical basis of mental categories that were inherited from ancient Western 
mental philosophy—categories that describe thinking, feeling, perceiving and acting. Scientific leaders of the 
day (e.g.1,2) warned that these common-sense categories, which philosophers call “folk psychology”3–7, would 
not map cleanly to physical measurements. Nonetheless, scientists have persisted for more than a century in 
their attempts to map measurements of the brain, body, and behavior to common-sense mental categories for 
cognitions, emotions, perceptions and so on. Many empirical efforts within psychological science rely on the 
assumption that Western folk category labels constitute the biological and psychological ‘ground truth’ of the 
human mind across cultures (e.g., mapping categories such as attention, emotion, or cognition onto functional 
brain networks8), while other efforts are more neutral in their assumptions, inferring only that the category 
characterizes a participant’s behavior (e.g., rating of experience conditioned on experimenter-provided folk 
labels9). Recently, however, a growing number of scientists have questioned the utility of folk category labels for 
organizing a science of the mind and behavior, noting the persistent difficulty of cleanly mapping these categories 
onto measurements of brain activity, physiological changes in the body, and behavior10–18.
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In this paper, we re-examine one aspect of the hypothesis that a natural description of the human mind—i.e., 
the biological organization of behavior and human experience—may require stepping back from the assumption 
that folk categories describe the ground truth. We do this in the context of machine learning to examine how 
unsupervised and supervised machine learning approaches can be used to build interpretative models from 
psychology measurements, across three quite different experimental settings. Unsupervised machine learning 
approaches can discover meaningful structure in data without assigning labels, providing a potentially valuable 
tool for scientific discovery in mapping biology to psychology. Supervised learning, by contrast, looks for struc-
ture in data that matches assigned labels. By comparing the results of supervised and unsupervised machine 
learning analyses, we can assess the extent to which psychological categories can reasonably be considered the 
ground truth for what exists in some objective way. Our goal is to demonstrate the importance of critically exam-
ining the labels being used, not to explain the discrepancies between supervised and unsupervised solutions or 
to provide evidence for a particular hypothesis. This is a proof-of-concept paper, rather than a strong inference 
paper, with the goal of encouraging researchers to start approaching psychology in a somewhat different way, 
regardless of theoretical stance. We are not suggesting that theory is unimportant in psychological science. We 
are instead hypothesizing that focusing empirical efforts on folk categories and building theory around those 
may not be the best (or only) approach. We use emotion categories as our example because they are complex 
phenomena that are hypothesized to be organized as a taxonomy, and there have been numerous debates about 
the “ground-truth” categories. As a consequence, the domain of emotion is a clear test case in which labels that 
enforce strict category boundaries are traditionally imposed on the data in supervised classification methods. 
Whether these boundaries exist and can be discovered using unsupervised approaches is highly debated (for a 
discussion, see19,20). We selected datasets that were representative of current published research being conducted 
in the science of emotion, covered a range of induction techniques that have been shown to be effective21 and 
common measurement modalities (self-report, psychophysiology, and fMRI), and were available to us in suf-
ficient quantity such that variability could be adequately assessed. We present findings from supervised and 
unsupervised analyses of three existing datasets and show that, across all three datasets, supervised and unsu-
pervised methods do not produce concordant results. We conclude the paper with a set of recommendations and 
future directions for machine learning investigations to guide researchers towards using unsupervised methods 
to discover biologically meaningful and reproducible discoveries about the nature of emotion and the human 
mind more generally.

Emotion categories: the example.  In the last decade, a number of researchers have applied supervised 
machine learning techniques to various types of data in an attempt to build classifiers that can identify ‘biomark-
ers,’ ‘signatures,’ or ‘fingerprints’ for pre-defined mental categories (for a review, see22). The science of emotion 
provides a particularly useful example of the problems encountered when using this approach to search for the 
physical basis of the human mind. Scientists begin with emotion categories for anger, sadness, fear, and so on, 
and then select stimuli, such as scenarios, movie clips, or music, that they expect will evoke the most frequent 
or common instances of each category (see Table 1 for details of previous studies). These studies typically select 

Table 1.   Summary of past MVPA studies of BOLD data. These studies all claim to identify unique patterns of 
brain activity for specific emotion categories, yet these patterns are inconsistent across studies. Other existing 
MVPA studies of affect (e.g.,38), and conceptual knowledge (e.g.,39) are less relevant and so are not listed here.

Study N # Emot. categories
# Stimuli per category 
(unique) Induction method

Relevant 
preprocessing Feature selection

Classification 
algorithm

Kassam et al.24 10 9 2 Participant-generated 
scenario immersion

No spatial smoothing

Voxels with the most 
stable activation profile Gaussian Naive BayesZ-scoring

Anatomical normaliza-
tion

Kragel and LaBar25 32 7 4 Movies
Music

No spatial smoothing

All grey matter voxels Partial least squares 
discriminant analysis

Mean centering

Anatomical normaliza-
tion

Saarimäki et al.29 48 5 (study 1)
6 (study 2)

10 (study 1)
6 (study 2)

Participant-generated 
scenario immersion
Movies

No spatial smoothing
Voxels most sensitive 
to manipulation using 
ANOVA

Linear neural network 
with no hidden layers

Z-scoring

Anatomical normaliza-
tion

Saarimäki et al.30 25 15 4 Narrative-guided 
scenario immersion

No spatial smoothing
Voxels most sensitive 
to manipulation using 
ANOVA

Linear neural network 
with no hidden layers

Z-scoring

Anatomical normaliza-
tion

Wager et al.32 2159 5 Variable Variable

Meta-analysis (peak 
based)

Whole brain Bayesian spatial point 
process modelBinarized data

Anatomical normaliza-
tion
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stimuli that optimally differentiate emotion categories, and participants are exposed to these stimuli while the 
experimenters take measurements of their brains, bodies, and/or behavior. Scientists then aim to find evidence 
in the observed data for the relevant emotion categories by using supervised machine learning methods. Clas-
sifiers that are sensitive and specific to a distinct emotion category across participants and contexts22 are then 
taken as evidence that the patterns or class representatives that those classifiers determine are the biomarkers 
of the categories. Guided by this logic, several recent studies have reported that they have identified unique 
patterns of brain activity, autonomic nervous system (ANS) changes, or subjective experience that discriminate 
emotion categories such as fear, anger, sadness, happiness, etc.9,23–32. To the extent that these studies have identi-
fied markers that are truly representative of different emotion categories, and generalize across populations and 
contexts, these studies may be taken by researchers as evidence that emotion categories have a reliable biological 
and mental basis.

However, a natural description of the human mind (i.e., the biological organization of behavior and human 
experience) may require stepping back from the assumption that folk categories describe the ground truth about 
emotions (or indeed any psychological domain). There are at least two reasons why the science of emotion is a 
particularly good test case to explore this question. First, the assumption that a single solution will serve as the 
best classifier across situations, stimuli, samples, and so on, is inherent in the language and modeling approaches 
used (e.g., using a single label per instance rather than multiple labels, often using deterministic rather than 
probabilistic models, etc; see Table 1) A close look at the published findings so far reveals that the patterns 
reported to be associated with a given emotion category, such as ‘fear,’ have not been consistent across studies. For 
example, individual studies report patterns of ANS activity that distinguish one emotion category from another, 
but the actual patterns vary across studies for a given emotion category, even when the studies in question use the 
same methods and stimuli and sample from the same population of participants (e.g.,25,31). Similar cross-study, 
within-category variation is observed for multivoxel pattern analysis (MVPA) of blood oxygen level dependent 
(BOLD) signals across the brain (e.g., compare26,29,32; for a discussion, see16). There are several possible reasons 
why this has been the case. Methodological considerations might explain variation in these classification-based 
results33,34. For example, in brain imaging studies, small sample sizes, different affect induction methods, issues 
with the alignment of brains across participants, variable preprocessing workflows, and the use of variable clas-
sification algorithms might all contribute to the instability of solutions across studies (see Table 1). It is also 
possible that current functional brain imaging measures are insufficiently sensitive or comprehensive to identify 
the biomarker for a given emotion category. There may also be more than one biomarker for each category, or 
perhaps a single biomarker exists but multiple models capture this ground truth in different ways. But it may also 
be that the relationship between the presumed emotion categories, used to generate the labels for the analysis 
and the physiological response measured in the body or brain, are simply more complex than can be fit with a 
consistent relationship between the two. A purely methodological explanation may be insufficient for explain-
ing the variation in classification-based results across studies, however, given that methodological advances for 
over a century have not substantially reduced the considerable variation that is observed within an emotion 
category across different measurement methods yielding different types of data (e.g., self-report, physiology, and 
brain imaging). Instead, the within-category variation that has been observed for decades (see20,35) is consistent 
with the variation observed in classification-based results, and therefore supports the hypothesis that there is 
an opportunity to discover something meaningful about the nature of emotion. Specifically, it suggests at least 
two avenues of inquiry; one would be to systematically test for one or more models across multiple datasets and 
modalities given a categorization. Another is to look more carefully at the relationship between the structure 
implied by the labels and the intrinsic structure of the acquired data across different modalities; it is an approach 
towards the latter inquiry that we describe here.

A second reason to question whether biology and behavior are best accounted for by a single set of emo-
tion categories, each with a single biomarker, comes from evidence of considerable within-category variability 
and cross-category similarity in measurements of neural activity, ANS activity, and behavior. For example, in 
the domain of peripheral physiology, measurements of heart period or respiration are tied to the metabolic 
demands that support current or predicted actions in a given situation (e.g., cardiac output goes up when a per-
son is about to run, but not when a person freezes and is vigilant for more information to resolve uncertainty or 
ambiguity40,41). People vary in their physical actions across instances of the same emotion category that occur 
in different situations (e.g., when experiencing fear, a person may run away, freeze, or attack); as a consequence, 
instances of fear will vary in their physiological features42. Similar within-category variation and between-cat-
egory similarities have been observed in expressive facial movements43,44, and in neural correlates, including 
magnitude of the BOLD response36,45,46, functional connectivity47,48, and single neuron recordings49. Instances of 
an emotion category also vary in their affective features (e.g., some instances of fear can feel pleasant and some 
instances of happiness can feel unpleasant46. This magnitude of variation, which has been replicated numerous 
times in the study of emotion over the past century50 strengthens the possibility that imposing a single label on 
data may restrict or even obscure the discovery of meaningful, alternative categories in the emotion domain.

With these observations in mind, we ask whether the use of predetermined labels in building supervised 
classifiers might be contributing to the apparent contradiction between above-chance classification and vari-
ation across studies. Specifically, we examined whether unsupervised clustering provides a useful alternative 
to supervised clustering in the discovery of meaningful categories when studying the domain of emotion. Our 
unsupervised clustering methods consistently treat the number of clusters as a statistical parameter to be learned 
which, in principle, allows researchers to discover a more flexible and variable category structure should it exist, 
while also discovering similarities across people, should those exist. We present findings from supervised and 
unsupervised analyses applied to three rather diverse datasets on emotion: (1) an archival dataset during which 
16 participants immersed themselves in auditory scenarios for instances labeled as inducing happiness, sadness, 
and fear during functional magnetic resonance imaging (fMRI)51, (2) an ambulatory peripheral physiology study 
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during which peripheral physiological signals were recorded from 46 participants throughout daily life; physi-
ological changes (specifically, a change in interbeat interval, the time between heartbeats) triggered self-report 
measurement episodes in which participants freely labeled their emotional experiences52, and (3) a publicly 
available self-report dataset in which 853 participants viewed a subset of 2185 movie clips and reported on their 
experiences with categorical (yes/no) ratings of 34 emotion words or Likert ratings of 14 affective dimensions9. 
We subjected each dataset to a supervised classification approach with emotion category labels, as well as an 
unsupervised, data-driven approach which included statistically validated methods to determine the number 
of clusters that are objectively supported by the data. Because it is difficult to ask the same question across three 
different datasets that have been collected in different ways, with different constraints, we analyzed each dataset 
with the supervised and unsupervised approaches that were most appropriate for that particular data, while 
trying to the extent feasible to keep the tenets and features of the analyses consistent.

Results
Example 1: blood oxygen level dependent (BOLD) data from Wilson‑Mendenhall et al.51.  Our 
first set of analyses involved an archival dataset51 from a study during which sixteen participants underwent 
fMRI scanning while immersing themselves in auditory scenarios labeled by experimenters according to their 
intention to induce experiences of happiness, sadness, or fear. Participants heard a total of 60 scenarios associ-
ated with each emotion category, for a total of 180 trials across 6 runs of scanning. We analyzed whole-brain 
blood oxygen level dependent (BOLD) signals from 9 s windows during which participants listened to, and 
immersed themselves in, a single auditory scenario. Additional participant demographic and task details are 
reported in the “Methods” section. Evidence suggests that participants were simulating highly embodied emo-
tional experiences when immersing themselves in the auditory scenarios. Wilson-Mendenhall et al.53 analyzed 
the same dataset used in Example 1 and observed increased activity in primary motor cortex and premotor cor-
tex and in primary somatosensory cortex while participants were lying still in the scanner, and increased activity 
in primary visual cortex while participants’ eyes were closed. The researchers also observed increased activity in 
brain areas that are typically considered to be important for emotion, such as the ventromedial prefrontal cortex 
and the anterior insula, as well as primary interoceptive cortex, the thalamus, hypothalamus, and subcortical 
nuclei that regulate the autonomic nervous system, immune system, and metabolic systems.

To study whether a supervised classifier could recover the experimenter labels, we first conducted supervised 
classification of the BOLD data to examine classifier performance when using the folk emotion labels. Specifically, 
we used a 3D Convolutional Neural Network54 with sixfold cross validation, iterating across all combinations of 
training on each participant’s data from five runs and testing on a left-out run (see Supplementary Materials for 
classifier details). Mean within-participant accuracy was calculated by averaging the accuracy across all cross-
validation folds. Chance level was defined as one divided by the number of categories, or 1/3 (33.3%), and the 
mean accuracy was compared to chance performance using a one-sample t-test. The classifier achieved a statis-
tically significant above-chance mean within-participant accuracy of 46.06% ( t(15) = 9.07 , p < 0.01 ; Fig. 1a).

We next used an unsupervised clustering method—a Gaussian Mixture Model (GMM55)—that allowed us 
to statistically determine the number of clusters which best described the data for each participant. GMMs have 
been used to successfully cluster BOLD data in several domains of research (e.g.,56–58). To validate the sensitivity 
of the GMM to detect true categories in the data, we first tested our model using synthetic data generated accord-
ing to a generative process described in59. The synthetic data were designed to imitate BOLD data with clear, 
discoverable categories (which were classified above-chance when using a supervised approach; Supplementary 
Fig. 5a). We included this validation step to ensure that the GMM would be able to successfully cluster the data 
if the relevant signal was present. Specifically, for each emotion category, we considered several randomly chosen 
regions in the brain with varying BOLD amplitude during each trial. Each of these regions was assigned a single 
radial basis function to generate a BOLD amplitude whose spatial center and width was chosen uniformly within 
limits of a standard human brain. The synthesized brain image for each trial was a weighted combination of these 
basis functions for the specific emotion category active during that trial. Zero-mean Gaussian noise was added at 
the last step to account for measurement noise. We then tested the sensitivity of our GMM model on the synthetic 
BOLD data using a concatenation of Principal Components Analysis (PCA60) to reduce the dimensionality of 
the data followed by the Gaussian Mixture Model (GMM) to discover clusters in the lower-dimensional data 
(using Bayesian Information Criteria (BIC61) to jointly estimate the number of PCA components and GMM 
clusters that best described the data). We found that the GMM was able to discover clusters in the synthetic data 
(Supplementary Fig. 5b). To measure our model’s ability to detect clusters in the synthetic data, we labeled the 
discovered clusters by the most prevalent label of the data within that cluster and then compared the propor-
tion of samples within a given cluster whose category labels corresponded to the assigned cluster label. Even at 
extremely low (indeed, unlikely, given values reported in the literature ranging from 0.35 to 203.637) signal-to-
noise ratio (SNR) values, the accuracy of the model was higher than chance (accuracy was 40% at an unlikely 
SNR of 10−2 , compared to chance of 33.3%). Therefore, we concluded our GMM sufficient sensitive to detect 
clusters that correspond to categories in real BOLD data if, in fact, clear, discoverable categories exist in the data. 
Additionally, the use of BIC for model order selection, which considers the likelihood of the model and a penalty 
term for the number of parameters, ensured that we had a sufficient sample to discover clusters. BIC is valid 
when sample sizes are much larger than the number of parameters in the model61, and in our case, each subject 
had 180 trials, which is two orders of magnitude larger than the maximum number of clusters (3) in the data.

We then applied the same methods to estimate the GMM clusters that best described the actual BOLD 
data from the experiment. The results revealed variability in the number of clusters that best described each 
participant’s BOLD data (Fig. 1b). Furthermore, the clusters were heterogeneous, comprised of combinations 
of trials labeled as belonging to fear, happiness, and sadness categories, with no clear correspondence between 
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the discovered clusters and the trial labels (Fig. 1c). We also examined the valence and arousal features of the 
scenarios within each cluster (available from the original dataset) but again observed no clear correspondence 
between these features and the clusters (Supplementary Fig. 2). Although we were unable to determine the 
features that the clusters were reflecting, our validation procedure with synthetic data, especially at low SNR, 
suggests that it is unlikely that the lack of correspondence between category labels and the clusters we discovered 
was due to insensitivity of the unsupervised method to detect fine-grained features in the stimuli.

We repeated the same supervised classification and unsupervised clustering analyses using BOLD data from 3 
s post-stimulus intervals after each auditory scenario was finished, but before participants rated their experience 
of valence or arousal. During these post-stimulus intervals, participants were instructed to continue immersing 
themselves in the scenario. Results from these analyses were highly similar to those that used the 9 s immersion 
period. Specifically, we observed above-chance classification accuracy in the supervised analysis. Chance level 
was defined as one divided by the number of categories, or 1/3 (33.3%), and the mean accuracy was compared 
to chance performance using a one-sample t-test. The classifier achieved a statistically significant above-chance 
mean within-participant accuracy of 47.78% ( t(15) = 25.01 , p < 0.01 ; Supplementary Fig. 3a). The number of 
estimated clusters from the unsupervised analysis varied across participants, and clusters contained a mixture of 
trials from each of the three labeled emotion categories (fear, happiness, sadness; Supplementary Fig. 3b,c). The 

Figure 1.   [BOLD Data] Results from supervised and unsupervised analyses of BOLD data from the 9 s 
scenario immersion. (a) Supervised clustering: Mean ± SEM classification accuracy from within-subject CNN 
supervised classification. The red line represents chance level accuracy (33.3%). (b,c) Unsupervised clustering: 
(b) Histogram of number of participants fit by 1, 2, or 3 GMM clusters. Specifically, eight participants had one 
discovered cluster, six had two, and two had three. (c) Correspondence between discovered clusters and emotion 
category labels for two example participants (corresponding to Participant IDs 1 and 2 in part a) with two (left) 
and three (right) discovered clusters respectively. Bars represent the proportion of the trials from each emotion 
category found within each cluster. Blue bars represent trials labeled as fear, orange bars happiness, and yellow 
sadness. The total proportion of categories in each cluster sums to 1. The mixing proportion πk reported below 
each cluster is the probability that an observation comes from that cluster, which is representative of the size of 
the cluster.
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valence and arousal features of trials were also mixed within each cluster (Supplementary Fig. 4). More details 
on this analysis are provided in the Supplementary Materials.

Example 2: autonomic nervous system data from Hoemann et al.52.  In our second comparison 
of supervised vs. unsupervised approaches, we examined the results of a study with 46 participants who freely 
labeled their emotions throughout their daily life experiences while ambulatory peripheral physiological signals 
were recorded. It is important to note in this context that in a majority of studies, experimenters label stimuli 
as belonging to a specific emotion category and assume that participants would categorize the stimuli in the 
same way. For example, a video clip of a puppy frolicking in a park is likely to be labeled with the folk category 
“happiness” (i.e., is thought to induce an instance of “happiness” in all participants), yet some participants may 
not experience happiness when viewing this video clip (e.g., those who have just experienced a death of a pet or 
those who have a fear of dogs). In contrast, this study provides a useful examination of participant-, rather than 
experimenter-, generated labels. The participant-generated emotion labels captured variation in the categories 
participants used to describe affective experiences. These labels included but were not limited to the traditional 
folk categories of Western psychology, but they refer to categories of states that often involve intense experiences 
of affect (i.e., of pleasure/displeasure and arousal), two basic features that are used to characterize emotions 
(e.g.,19,62). Additionally, the labels were generated from an explicit prompt that asked participants to list an emo-
tions they were feeling. In the words of William James, “there is no limit to the number of possible different 
emotions which may exist, and why the emotions of different individuals may vary indefinitely, both as to their 
constitution and as to objects which call them forth” (1, pg. 454).

For 14 days over a 3-week period, participants’ electrocardiogram (ECG), impedance cardiogram (ICG), 
and electrodermal activity (EDA) were measured, along with their bodily movement and posture. Hoemann 
et al.52 used a novel biological-triggering approach to experience sampling, where participants were prompted 
to label their experience via a mobile phone app when they exhibited a pronounced and sustained change in 
interbeat interval (i.e., the time between successive heart beats) in the absence of physical movement. During 
each sampling event, participants freely labeled their current emotional experience and provided valence and 
arousal ratings on a 100-point sliding scale from − 50 (very unpleasant/deactivated) to 50 (very pleasant/acti-
vated). Physiology data from 60 s windows (30 s before and after a change in interbeat interval), were analyzed. 
EDA data were excluded from analyses due to difficulty differentiating these signals from artifacts and because 
EDA changes typically occur on a slower time scale than was used in the present analyses. It was also possible 
to derive respiration rate (RR) from the data using the ICG signal and impedance pneumography (e.g.,63,64), but 
we chose not to derive this measure because it is unlikely that meaningful RR changes would’ve occurred within 
the window of measurement. Six cardiovascular measures were used in the analysis at each sampling event, as 
detailed in Table 2. For more detail on the study design and available data, see the “Methods” section.

We first conducted a supervised analysis of this dataset using each participant’s three most commonly used 
emotion words as the labels, because the emotion labels were subject-specific and variable in number, and we 
only classified data from corresponding events. An average of 72.74 (28.46) events were used for classification 
per subject across all three labels, with a minimum of 33 and a maximum of 158 events. To classify each par-
ticipant’s physiology data based on their top three most commonly used emotion words, we trained and tuned 
a fully-connected neural network using fivefold cross-validation, dividing each participant’s data into 5 groups 
and iterating across all combinations of training on 4/5ths of the data and testing on the left-out 1/5th. Mean 
within-participant accuracy was calculated by averaging the accuracy across all cross-validation folds. Chance 
accuracy for this dataset could not be fairly defined as the reciprocal of the number of categories, because the 
number of events per label varied for each participant. We were unable to use oversampling methods65 to mitigate 
imbalances across categories (i.e., class imbalances) given the limited number of samples (an average of 72.74 
per participant). We instead evaluated statistical significance of the mean accuracy across participants using a 
permutation test that maintained the imbalances. Specifically, we re-ran the classification 1000 times for each 
participant using shuffled training set labels. For each iteration of the permutation test we averaged the accuracy 

Table 2.   Cardiovascular measures derived from peripheral physiological data. Table adapted with permission 
from52.

Feature Definition Interpretation

Interbeat interval (IBI) Time (in ms) between heartbeats (inverse of heart rate) IBI describes how fast the heart is beating; greater IBI values indicate 
slower heart rate

Respiratory sinus arrhythmia (RSA) High frequency variability in IBI which occurs within the respiratory 
frequency

RSA is an estimate of parasympathetic (PNS) influence on the heart; 
greater RSA values indicate PNS activation

Pre-ejection period (PEP) Time (in ms) between the beginning of electrical stimulation of the 
heart and the opening of the aortic valve

PEP is an inverse estimate of cardiac contractility and sympathetic 
(SNS) control of the heart; greater PEP values indicate reduced 
contractility and SNS withdrawal

Left ventricular ejection time (LVET) Time (in ms) between the opening and closing of the aortic valve LVET describes how long it takes the heart to pump out blood; 
greater LVET values are associated with greater blood volume

Stroke volume (SV) Volume (in mL) of blood ejected by the heart with each beat SV describes blood flow; greater SV values indicate greater blood 
flow per heartbeat

Cardiac output (CO) Volume (in L) of blood circulated in the body per unit of time (m) CO describes blood flow over time; greater CO values indicate 
greater blood flow
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across participants, resulting in a distribution of 1000 mean values for chance-level performance (chance dis-
tribution shown in Supplementary Fig. 7). Our observed mean accuracy across-participants (47.1%) fell within 
the 5% tail of the chance distribution, indicating statistically significant above-chance accuracy of our classifier 
at detecting whether a participant’s data was labeled according to one of their top three most commonly used 
emotion words. The per subject accuracy plot is shown in Fig. 2.

The results of our supervised analysis were substantially different from those which resulted from an unsu-
pervised analysis reported in52. The unsupervised analysis used a variant of Gaussian Mixture Modeling called 
Dirichlet Process Gaussian Mixture Modeling (DP-GMM55,66) to discover the number of clusters in the ANS data 
for each participant. The researchers found variable numbers of clusters for each participant, with a many-to-
many correspondence between participant-derived emotion labels and discovered clusters in the data (Fig. 2). 
Participants’ valence and arousal ratings also varied substantially within and across the clusters they found.

Example 3: self‑reports of experience from Cowen and Keltner9.  In our final comparison of super-
vised vs. unsupervised approaches, we re-analyzed self-report ratings of experience from9, in which 853 par-
ticipants provided ratings of 2185 evocative video clips. A subsample of participants labeled their emotional 
experience after viewing the film clips by choosing from among a set of 34 emotion words provided by the 
experimenters; each participant viewed 30 clips and made categorical (yes/no) ratings of the 34 emotion words 
for each clip, where a value of 0 indicated a participant was not experiencing an instance of that emotion category 
during the clip, and a value of 1 reflected that a participant was experiencing an instance of that emotion category 
while viewing the clip. A different subsample of participants rated their affective experiences; each participant 
in this subsample viewed 12 video clips and rated them along 14 affective dimensions such as valence, arousal, 
effort, safety, etc., on a nine-point bipolar Likert scale (scale end-point labels were specific to each dimension, 
but 5 was always anchored at neutral).

A traditional supervised analysis was not possible for this data set because the category labels that would be 
used for supervision would have to come from participants’ ratings. To contrast the SH-CCA reported in9 (see 
Supplementary Materials for an overview of their methods), we analyzed these data using an unsupervised clus-
tering approach for the average yes/no emotion ratings of the 34 emotion categories across the 2185 film clips. 

Figure 2.   [ANS Data] Results from supervised and unsupervised analyses of ANS data. (a) Mean ± SEM 
classification accuracy for the top three emotion words used per participant. The red line represents the mean 
of the null distribution for chance performance of the group. (b) Distribution of participants by number of 
discovered physiology clusters resulting from DP-GMM. (c) Correspondence between the discovered clusters 
and the top three participant-specific emotion categories for three representative example participants with four, 
five, and seven clusters respectively (corresponding to Participant IDs 40, 32, and 26 in part a, with respective 
classification accuracy levels of 82.26%, 74.27%, and 73.80%). Bars represent the proportion of participant-
generated emotion category per cluster. The total proportion of categories in each cluster sums to 1. The total 
number of emotion category labels used by example participants 40, 32, and 26 were 26, 17, and 9, respectively. 
The mixing proportion πk reported below each cluster is the probability that an observation comes from that 
cluster, which is representative of the size of the cluster.
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A GMM was not appropriate to cluster these data because the emotion category ratings were not continuous. 
Instead, we applied Latent Dirichlet Allocation (LDA67) to discover clusters in the data. LDA is similar to GMM 
in that it is a mixture model, but LDA works on a collection of discrete data. It was originally developed for text 
corpora to discover a set of topics across a collection of documents in an unsupervised fashion. We also used 
LDA in this setting to perform statistical “topic modeling”, in a different sense; that is, to discover the number 
of abstract “topics” or emotion categories (i.e., discovered clusters) occurring across all ratings of video clips. 
Technically, each “topic” is represented as a different probability distribution over the 34 rated emotion categories. 
In LDA, a perplexity plot67 is used to evaluate the goodness-of-fit of the model given a fixed number of topics; 
its minimum indicates a suitable number of topics that optimizes the model’s performance. Our perplexity plot 
for the ratings of these video clips showed no clear minimum value (i.e., no statistically significant minimum 
value; see Supplementary Materials for details) across the 34 emotion categories, indicating that the 34 emotion 
categories could not be reliably reduced to a smaller number of separable clusters (i.e., no unique solution was 
possible; Fig. 3). In other words, the LDA analysis suggested that it was not possible to discover clear ‘clusters’ 
(i.e., lower dimensional representation) in these data. As a consequence, it was not possible to examine the 
distribution of affective features within clusters. Our finding of no lower dimensional representation using LDA 
was inconsistent with the conclusion of 24 to 26 categories in9, as well as a principal components analysis of the 
emotion category ratings (Supplementary Fig. 6) in which a scree plot followed by a parallel analysis68 indicated 
that only five clusters best explain systematic variance, while other ways of determining the PCA trunctation 
returned either larger values or even no truncation (consistent with the LDA analysis). In the absence of any 
clear consensus, one might decide that indeed there is no unambiguous structure in the data.

Keeping in the spirit of our first two analyses, where emotion categories were used as labels applied to BOLD 
and ANS data, we also approached the self-report data with a second analytic strategy. In this analysis, we used 
participants’ categorical emotion word ratings as the labels for the supervised analysis and the 14-dimensional 
vectors of mean affective ratings for the same clips as the inputs to our classification and clustering analyses. 
According to9, “75% of the videos elicited significant concordance for at least one category of emotion across 
raters [false discovery rate (FDR) < 0.05 ], with concordance averaging 54% (chance level being 27%, obtained 
from simulated raters choosing randomly with the same base rates of category judgment observed in our data)” 
(pg. 3). However, when we analyzed the data we discovered that a smaller percentage of film clips could be 
unambiguously assigned to a single category. We assigned a label to each clip according to the highest rated 
emotion category for that video (e.g., if Clip 1 had a mean rating of 0.7 for sadness, 0.4 for fear, and 0.2 for anger, 
it was assigned the label sadness). Then, to ensure we had a sufficient number of samples for classification, we 
analyzed only data labeled as an emotion category that was assigned to at least 2.9% of the videos (because 34 
emotion words were rated, we chose a threshold of 1/34, or 2.9%). Using this criterion, we observed only 41.6% 
of the videos elicited concordance with a single folk emotion category. Out of the 34 emotion categories, nine 
categories were the highest rated category for more than 2.9% of videos (adoration, aesthetic appreciation, 
anxiety, awe, disgust, fear, nostalgia, romance, sexual desire). Thus we classified videos labeled with these nine 
categories (908 video clips out of 2185).

We then conducted a supervised classification of the 14 dimensional vectors of affective features for each 
video clip, using the nine emotion categories as labels for the corresponding videos. Specifically, we trained and 
tuned a neural network55 using eightfold cross-validation, splitting the data into 8 groups and iterating across 
all combinations of training on 7/8ths of the data and testing on 1/8th of the data, to test whether a classifier 
could accurately detect the assigned video clip label at a rate above chance. Mean within-category accuracy was 
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Figure 3.   [Self-Report] Perplexity plot to discover the number of topics in LDA of emotion category self-report 
data. The x-axis represents the number of topics (discovered categories) and the y-axis represents the perplexity 
validation. There is no clear minimum value across the 34 categories, preventing us from identifying a clear 
clustering solution.
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calculated by averaging the accuracy across all cross-validation folds. Chance level was defined as the reciprocal 
of the number of categories, or 1/9 (11.11%), and the mean across-category accuracy was compared to chance 
performance using a one-sample t-test. The classifier achieved a statistically significant above-chance mean 
across-category accuracy of 47.04% ( t(8) = 3.79 , p < 0.01 ; Fig. 4a).

We then examined the correspondence between participant-defined folk category analysis of affective features 
to an unsupervised analysis of affective features using GMM. A GMM was appropriate for this dataset because 
the 14 dimensional vectors of affective features are continuous variables that can be modeled with a Gaussian 
mean and variance. Again using the Bayesian Information Criteria (BIC) to discover the number of clusters, we 
found a three cluster solution of videos (see BIC curve in Fig. 4b). After estimating these three clusters in our data 
using a GMM, we examined the correspondence between the clustering and the emotion category labels of the 
videos within each cluster. The discovered clusters were comprised of a mixture of videos labeled with the nine 
emotion categories. For example, Cluster 1 was comprised of a mixture of videos labeled as adoration, aesthetic 
appreciation, awe, nostalgia, romance, and sexual desire, 6 out of the 9 available labels (Fig. 4c).

Discussion
We critically examined the use of emotion category labels in machine learning analyses across three studies, each 
sampling a different type of experiment and domain of data. In all three cases we contrasted the results of clas-
sification analyses supervised by labels with those from unsupervised approaches and observed that the methods 
did not produce concordant results. We obtained above-chance classification accuracy in the supervised analyses 
of all three datasets, suggesting that there is some information related to some of the emotion category labels. 
When analyzing these same datasets using unsupervised approaches, however, the clusters we discovered did 

Figure 4.   [Self-Report] Results from supervised and unsupervised analyses of self-report data. (a) Mean ± SEM 
classification accuracy for the most dominant six emotion category labels. The red line represents chance level 
accuracy (11.11%). (b) Plot of the BIC criterion used to discover the number of clusters in the GMM model. 
The x-axis represents the number of clusters to use and the y-axis represents the BIC value; the minimum 
value of BIC is the one chosen by the BIC criterion (here the minimum is 3 clusters). (c) Correspondence 
between clusters and the emotion category labels. Bars represent the proportion of trials from the dominant 
nine emotion categories within each discovered cluster. The total proportion of categories in each cluster sums 
to 1. The mixing proportion πk reported for each cluster is the probability that an observation comes from that 
cluster, which is representative of the size of the cluster.
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not consistently correspond with the emotion category labels in any of the three cases. Validation of our analyti-
cal procedures with synthetic fMRI data demonstrated that the clusters discovered by unsupervised analyses 
in that case were reliable, and therefore explainable in some way. However, we were unable to determine the 
simple, easily-nameable features that the clusters were reflecting because the datasets tested were not designed 
for this purpose.

There are two possible explanations for this outcome that are worth emphasizing, either of which suggest 
extreme caution when interpreting the results of machine learning analyses to test psychological hypotheses. 
First, it is possible that the emotion category labels used in these three datasets (and most past studies of emotion 
categories) veridically reflect biological and psychological categories that exist in nature and are stable across 
contexts and individuals, and that latent emotion constructs do in fact, produce distinct, if graded, responses in 
brain, body, and behavior. If this possibility is correct, then we would expect above-chance accuracy for super-
vised classification because there is some reliable signal in the data that can be classified. Unsupervised analysis 
of this same data could result in clusters that meaningfully correspond to the labels, but could also result in 
clusters that do not correspond to the labels in any meaningful way because unsupervised clustering is completely 
dependent on the measurements taken. The inability of unsupervised methods to detect meaningful structure 
in the data could be due to an issue with the measurements. Specifically, if the data are too sparse, contain too 
much noise from other sources, or have undergone too much data reduction, the models may not be able to 
detect the structure in the data that meaningfully corresponds to emotion categories. In this situation, the dis-
covered clusters are still reliable and therefore describing meaningful structure, but the structure is not reflective 
of emotion categories. For example, it is possible that the unsupervised clustering did not pick up on the signal 
in the measurements related to emotion categories if those signals are small compared to other signals that were 
unintended or not of interest to the experimenter; in this case, the clustering would be based on characteristics 
that are epiphenomenal to emotion (i.e., correlated features in the data that do not necessarily have anything to 
do with the ground truth labeling, such as time of day, what a participant had for breakfast, etc).

There is a second possible explanation for our findings, one that was originally suggested by William James 
and a growing number of modern scientists and philosophers: Western folk emotion categories may not be 
equally useful for making sense of the biological signals. There may be substantial contextual differences, indi-
vidual differences, and cultural differences in how a human brain makes biological signals meaningful when 
creating emotional events to guide action. Past studies have observed substantial variation in the biological and 
psychological features of emotion categories, both within and across participants42,43,52, and across cultures69–71, 
suggesting that emotion categories are better thought of as populations of highly variable, context-specific 
instances72,73. A populations view of emotion categories draws on Darwin’s population thinking, in which a bio-
logical category, such as a species, consists of a population of variable individuals (74; for a discussion, see42,72,73). 
In a populations view, the magnitude of variation far exceeds the amount proposed in a classical or prototype 
view. A populations view treats variation among individual instances within a category as real and meaningful, 
and posits that the prototype of a biological category, as a single representation, is an abstract, statistical summary 
that need not exist in nature (for an extended discussion, see42,75). If this possibility is correct, then it would still 
be possible to achieve above-chance classification using a supervised approach, due to other commonalities in 
the data that the classifier could use to differentiate the data. Several studies have attempted to overcome this con-
cern by constructing models that generalize across different types of stimuli (e.g., emotion induction with movie 
clips vs. music) within the same participants (e.g.,24,26) or the same stimuli across different individuals (e.g.,24). 
Nonetheless, these published studies were classifying a restricted range of emotional instances in each category. 
They did not sample the full range of heterogeneous instances of emotion category that have been observed in 
everyday life (as discussed in32). Instead, they cultivated a relatively small number of “stereotypical” instances per 
category. This is not an unreasonable observation given that most studies on emotion use stimulus sets that are 
curated using scientists’ intuitions about the nature of emotion categories that may therefore fail to capture the 
full range of variation in real world emotional responses. Furthermore, most studies do not attempt to generalize 
across both stimulus type and participants at the same time, the notable exception being a classification study 
performed on a meta-analytic database32). This study, which classified activation maps from different studies, 
across stimulus types and induction methods, noted systematic differences in how experimenters induced differ-
ent emotion categories across studies; and indeed, methodological variables such as stimulus type and method of 
induction were classified above chance levels. Consistent with these observations, the first data set we examined 
(51 contained more stimulus variation than is typical for most published studies using machine learning (see 
Table 1 for the number of unique stimuli per category that is typical of past studies), and the second data set52 
used an objective, empirical criterion for sampling stimulus events. Taken together, our results may suggest the 
possibility that supervised machine learning is capable of discovering signal that is stipulated by the stimuli used 
to manipulate emotion, but that signal may not be sufficiently strong to be detected with unsupervised analyses 
alongside other real world variability in other features. This makes the accuracy of the labels critical, since they 
impose the viewpoint from which that structure is discovered, and thus suggests the need for careful, cross-
study, skeptical interpretation of supervised results until validity of the labels can be scientifically determined.

Implications for future research.  The present findings do not allow us to discern which of these two 
interpretations is correct, but they do highlight several important implications and course corrections for future 
research. First, there is increased burden on researchers using supervised learning with category labels to think 
about and empirically explore the validity of their labels, and potential constraints in their stimulus sets and 
methods, rather than assuming that the labels are the ground truth and then sampling with that assumed pro-
totype or stereotype in mind. Studies that ask participants to report on their emotional experiences find wide 
variation in the number and granularity of their emotion categories72,76, and consequently, the emotion labels 
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typically used in supervised classification analyses, which correspond to Western folk emotion categories, may 
not accurately encompass the repertoire of biological categories that describe all individuals equally well in all 
situations and therefore fail to provide the best mapping to biological data (for a discussion, see14). It is also 
important to consider the possibility that instances of emotion might be categorized in multiple ways, simulta-
neously, which is often referred to as a ‘mixed’ emotion (as discussed in77). Future studies should consider com-
binations of emotion words as descriptors of emotional instances to better capture the complexity of emotional 
experiences.

To cultivate a robust and replicable science, researchers must design studies in a way that allows for an explicit 
test of whether the category labels they apply are the best way to estimate the structure in their data. Specifically, 
it would be optimal to sample many domains of features at higher dimensionality. This would include sampling 
biological and psychological features in the same study in a temporally sensitive way. An ideal study would meas-
ure a person’s internal context (e.g., the person’s metabolic condition, the past experiences that come to mind) 
and external context (e.g., whether a person is at work, school, or home, who else is present, broader cultural 
conditions). In addition to measuring internal and external context, an ideal study would also measure a broad 
set of mental features that might describe an instance of emotion, such as appraisal features (how the situation 
is experienced; e.g., as novel or familiar, requiring effort, or conducive to one’s goals, etc78,79) and functional 
features (the goals that a person is attempting to meet during the instance; e.g., to avoid a predator, to feel closer 
to someone, to win a competition, to gain social approval, etc80,81, all of which vary in dynamic ways over time. 
Combining these measures with an objective, empirical way of sampling stimulus events (as in52) would provide 
an optimal way to accurately capture and interpret meaningful structure in machine learning analyses of emotion.

Additionally, future researchers should pay special attention to variable patterns of measurements across 
individuals or studies associated with the same labels, especially if these differing patterns result from classifica-
tion using similar stimuli and/or methods. At the very least, researchers must start using more than one machine 
learning method to analyze their data to discover the extent to which their modeling methods are responsible for 
any observed inconsistencies. We recommend that researchers routinely compare supervised and unsupervised 
approaches on their data and report both or at least use multiple supervised classification algorithms or feature 
selection methods on the same dataset to explore implications of methodological decisions on their solutions.

Finally, we echo recent suggestions that as a field, we must substantially increase the power of future 
studies82–85. Increasing the number of participants is not enough—the number of unique, variable stimuli per 
category is also important. Gonzalez-Castillo et al.86 demonstrated that scanning a smaller number of subjects 
for a long duration reveals patterns of whole-brain BOLD responses that are not seen in traditional neuroimag-
ing studies when a large number of subjects are scanned for only a short duration86. Increased within-subject 
power will make it more likely that studies will either find something meaningful with unsupervised methods 
or to find more consistent results with a supervised approach. Most current datasets have too few instances and 
low signal, which does not allow researchers to rule out sparsity or noise as the reason for a lack of identifiable 
structure when using unsupervised clustering. Finally, if studies are designed with the possibility of discovering 
new categories (rather than merely confirming the existence of an experimenter’s preferred folk categories), and 
those studies are adequately powered to detect reliable clusters that explain more variance than the categories, 
then researchers will be better positioned to discover new mental categories to be studied in more depth.

Conclusion
The present study highlights the importance of questioning assumptions and the validity of using folk labels 
in the study of psychological categories. Our findings of inconsistency between supervised and unsupervised 
approaches can reflect two possibilities: (1) category labels in the study of emotion may reflect biological cat-
egories that exist in nature, and the observed inconsistency is due to measurement error or methodological 
considerations, or (2) these category labels are not useful as biological kinds that are stable across individuals and 
contexts. Instead, these words may refer to populations of highly variable, context-specific instances. The goal 
of the present study was not to demonstrate which of these possibilities is correct, but rather, to suggest that the 
variability observed in past studies of emotion classification may be reflecting a real discovery that should not be 
dismissed as error. Rather than claiming a particular truth, we are highlighting the fact that the current analytic 
strategy of using folk psychology categories to guide study development and data analysis should be considered. 
While we used the domain of emotion as a test case to highlight the importance of questioning category labels, 
the implications of our findings and suggestions for future research apply to research on psychological categories 
across a variety of domains, and may ultimately provide a way forward in identifying mental categories that more 
cleanly map to measurements of brain activity, physiological changes in the body, and behavior.

Methods
Dataset 1: fMRI BOLD data.  Data overview.  We used data previously reported in51, which includes 
comprehensive study design details. Briefly, 16 participants (8 female, ages 19 to 30 years) participated in the 
study. Participants completed a series of two training sessions, one 24–48 h prior to the scan and the second im-
mediately before the fMRI scan, in which they listened to auditory scenarios intended to induce the emotion cat-
egories of fear, sadness, and happiness. During the scan participants heard a shorter, core form of each scenario 
during a 9 s trial and were instructed to fully immerse themselves mentally in each scenario as they listened. 
Following each 9 s trial, there was a 3 s post-stimulus interval during which participants continued immersing 
themselves in the scenario. Participants heard 30 unique scenarios for each of the three folk emotion categories. 
Each scenario was presented twice, resulting in a total of 180 trials. Given the assumption of past emotion clas-
sification studies (e.g.,24,26,29,30) that all trials for a given emotion category should share the same pattern of neural 
activation, we included all repeating trials in our analyses. In other words, we assumed that stimuli would induce 
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the same brain response on each presentation. Scenarios varied in valence and arousal, with some scenarios in-
tended to evoke typical valence/emotion combinations (i.e., pleasant happiness) and others intended to induce 
atypical combinations (i.e., unpleasant happiness). All subjects provided informed consent, and all recruitment 
procedures and experimental protocols were approved by the Institutional Review Board of the original study’s 
institution (Emory University Institutional Review Board). All methods were carried out in accordance with 
relevant guidelines and regulations.

The supervised classification and unsupervised clustering analyses explained below were conducted twice, in 
an identical manner. Analyses were first conducted on whole-brain beta maps from the 9 s scenario immersion 
window of each trial, and then repeated on whole-brain beta maps from the 3 s post-stimulus interval after the 
auditory scenario was presented, while participants were still immersing themselves in the scenario.

Preprocessing.  fMRI preprocessing steps were conducted in AFNI87 and were identical to those in51: slice time 
correction, motion correction, spatial smoothing (6 mm FWHM Gaussian kernel), and percent signal change 
normalization for each run. Spatial smoothing has not typically been performed in published MVPA studies 
of emotion. The issue of spatial smoothing in MVPA studies is complex, however, and the utility of smoothing 
depends on the data and question at hand88. In the absence of functional alignment across individuals, we expect 
that signals useful for clustering and classification at this spatial scale will be relatively low frequency and that 
smoothing will improve performance.

Data from each 9 s trial was then convolved with a canonical hemodynamic response function to generate 
a single “beta” value for each trial, resulting in 60 “beta maps” each for the nominal emotion categories of fear, 
sadness, and happiness. Beta maps were also generated for the 3 s post-stimulus interval for each trial using this 
same method.

Supervised classification.  To test whether a supervised classification algorithm could detect distinguishable 
patterns of neural activity for emotion categories, we carried out within-subject classification using a 3D con-
volutional neural network (CNN; additional details of the neural network configuration are in Supplementary 
Materials). This analysis was conducted using the deep learning toolbox in MATLAB (https​://www.mathw​orks.
com/produ​cts/deep-learn​ing.html). The 3D CNN was used to classify data as belonging to one of three possible 
conditions: happiness, sadness, or fear. Classification was conducted on whole-brain data, and the neural net-
work was used to automatically perform feature selection, as is common in many image classification reports89. 
Specifically, dropout layers were used on the input feature layer as well as subsequent hidden layers to optimize 
the automatic feature selection procedure and regularize the neural network weights. The classifier was trained 
using a leave-one-run-out procedure where training was performed on BOLD data from 5 runs and testing 
was applied to the data from the remaining 6th run. Cross-validation was performed across all iterations of 
leaving-one-run-out and accuracy was calculated as an average percentage of correct classification across all 
cross-validation runs. Chance level performance was defined as the reciprocal of the number of categories, or 
33.3%. A one-sample t-test against chance level accuracy was conducted to determine whether mean classifier 
performance across participants was significantly above chance.

Unsupervised clustering.  Our unsupervised clustering approach used a combination of dimension reduction 
and Gaussian Mixture Modeling, as described next.

Principal component analysis (PCA).  We applied PCA to the high-dimensional (total number of fMRI voxels) 
beta maps. Dimension reduction was necessary to enable reliable cluster estimation given the limited number 
of data samples available. Statistical assumptions that underlie the choice of PCA for this purpose are described 
in Supplementary Materials but we note here that the number of principal components used was determined 
jointly with the number of Gaussian Mixture Model clusters identified, using the Bayesian Information Criterion 
(BIC, see Supplementary Materials for details). The result of the PCA was a feature vector αt for each trial for 
each participant.

Probabilistic graphical model.  To replace the assumption that the labels are known, we applied an unsuper-
vised generative probability model for automatically discovering brain labels from the data αt . The probabilistic 
graphical model (PGM) that describes our probabilistic dependence/independence assumptions is shown below 
(Fig. 5). Circles indicate random variables and the statistical dependence between pairs of random variables is 
shown by directed arrows (graph edges). Shaded circles indicate that the random variable is observed, while clear 
circles indicate that it is unobserved. Rectangles show repetitions of each random variable (e.g. over emotion 
category or run) with the number of repetitions shown in the right bottom corner of the rectangle.

The input features to the PGM were the low-dimensional representation of beta maps, the random vectors 
αt , with dimension D equal to the number of retained principal components obtained from PCA for each trial 
t and for each participant (we do not use additional indices for each participant to simplify the notation). There 
are a total of T trials per participant, each with an unknown brain label Ŵt to be estimated and an emotion label 
�t . The key innovation here is this distinction; while �t is known, supplied by the experiment designer, the Ŵt ’s 
are unknown and latent. We assume that each value of Ŵ depends on both the associated � and a latent “mixing 
coefficient” γbl , indexed by both cluster label b and emotion index l. For each participant, there is a mixture of B 
Gaussian distributions, or soft clusters, each of which is associated to a brain label. The Gaussian distribution for 
brain label b has a mean µb and a covariance matrix � shared across the brain labels. In other words, the mixture 
of B Gaussian distributions models all the trials for each participant (i.e., the total of T trials are soft-clustered 
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into B clusters, each of which is represented by a distinct Gaussian distributions). The GMM mixing proportions 
for each participant’s γbl is the prior probability that the given beta map comes from the bth cluster given label l.

Gaussian mixture modeling.  Based on the model shown in the PGM, we estimated the parameters of a GMM 
for each participant across all trials and all emotion category labels. Given a vector αt calculated by PCA, and an 
emotion category label l, the GMM has the form:

where b represents the labels of underlying brain activity, b = 1, 2, . . . ,B , � takes on the values of each a priori 
emotion labels, γbl is the probability of observing brain label b given label l, and mub and Sigma are the GMM 
model parameters. � is taken to be diagonal (reasonable since we applied PCA first) and shared across brain 
labels. Maximum likelihood estimates of the GMM parameters are obtained using an iterative Expectation-
Maximization algorithm (1). Note that B along with the number of PCA components (D, dimension of α ) are 
determined using the Bayesian Information Criteria (BIC) across a range of possible values for both (see Sup-
plementary Materials for details).

Dataset 2: autonomic nervous system data.  Data overview.  Here we report on analyses of data from 
a concurrent study52 in which ambulatory peripheral physiology and self-report data from each of 46 partici-
pants was collected for 14 days over a 3-week period. The signals acquired included electrocardiography (ECG), 
impedance cardiography (ICG), and electrodermal activity (EDA), along with participant’s bodily movement 
and posture. During the 2 week period, participants were prompted to respond to a survey via a smartphone 
device whenever their interbeat interval (IBI) exhibited a pronounced increase or decrease sustained over more 
than 8 s in the absence of any physical movement or posture change. The IBI-change threshold was tailored for 
each individual participant throughout the study to produce an appropriate number of survey prompts per day. 
The survey asked what participants were doing when they received the prompt and included a rating of their 
overall valence and arousal on a scale from − 50 to 50 (unpleasant to pleasant; low to high arousal), and free 
labeling of the emotions they were experiencing. Participants received an average of 9 prompts a day. All sub-
jects provided informed consent, and all recruitment procedures and experimental protocols were approved by 
the Institutional Review Board of the original study’s institution (Northeastern University Institutional Review 
Board). All methods were carried out in accordance with relevant guidelines and regulations.

Preprocessing.  Raw physiology data was preprocessed using the researchers’ in-house Python pipeline that 
involved signal dependent filtering, quality control checks and feature extraction. EDA data were excluded from 
the analyses due to issues with differentiating these signals from artifacts, as well as the slower time scale on 
which changes in EDA typically occur. As part of the initial processing, researchers calculated six measures: 
respiratory sinus arrhythmia (RSA), interbeat interval (IBI), pre-ejection period (PEPr), left ventricular ejection 
time (LVET), stroke volume (SV), and cardiac output (CO). For each of the six measures, at each event, they 
calculated a change score as a difference of means between the 30 second period before and after the change 
in interbeat interval that triggered the survey prompt. This resulted in a data vector of length 6 for each event, 
which was used as input in the analysis.

Supervised classification.  Because both the number and value of emotion category labels were specific to each 
subject, we only classified events corresponding to the top three emotion words for each participant. On aver-
age, for a single participant, we classified 72.74 (28.46) events out of 122.87 (18.05) total events. We trained and 
tuned a fully-connected neural network using cross-validation, employing dropout layers to prevent overfitting. 
We ran within-subject classification using a fivefold cross validation approach. Because participants varied in the 
number of times they used each label, chance performance could not be defined as simply the reciprocal of the 
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Figure 5.   [BOLD Data] Probabilistic graphical model for GMM analysis.
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number of categories. Instead, we used a permutation test to evaluate statistical significance. Specifically, we ran 
1000 permutations of shuffled training labels followed by classification, averaging the classification accuracies 
across all participants for every iteration of the permutation. This resulted in a null distribution comprised of 
1000 group mean chance accuracies. We compared the actual group mean performance to the null distribution 
of chance performance obtained by this process.

Unsupervised clustering.  To cluster the data vector of each event for each participant, the researchers who 
conducted this study52 used Dirichlet Process Gaussian Mixture Model (DP-GMM) to discover the number 
and membership of clusters for each participant. DP-GMM is an infinite mixture model55,66 with the Dirichlet 
Process as a prior distribution on the number of clusters. In practice, the approximate inference algorithm uses 
a truncated distribution, not the infinite one, with a fixed maximum number of clusters, but the number of clus-
ters nonetheless depends on the data (see52 for more details). They used the Scikit-learn implementation of DP-
GMM90, using number of events as the initial number of clusters for each participant. Full covariance type was 
used with Dirichlet Process weight concentration prior and mean of the data as the mean prior. Since the Scikit-
learn implementation of DP-GMM tends to give slightly different results based on random_state parameter, 
the method was run 100 times and the solution with the highest lower bound value on the likelihood was kept.

Dataset 3: self‑report data.  Data overview.  Self-report data used in our analysis was taken from9. In 
that study, 853 participants provided ratings for 2185 film clips. A subset of participants provided ratings of 14 
affective dimensions on a nine-point Likert scale. Each video clip was rated by nine participants, and we used 
the mean rating for each clip for each of the 14 affective dimensions as input to our analyses. A separate subset 
of participants made categorical (yes/no) ratings of 34 emotion categories. We used mean response data, where 
a value of 1 indicated that the given emotion category was chosen by all participants, and a value of 0 indicated 
that the category was never chosen. Each film was rated by 9 to 17 participants. All subjects provided informed 
consent, and all recruitment procedures and experimental protocols were approved by the Institutional Review 
Board of the original study’s institution (the Institutional Review Board at the University of California, Berke-
ley). All methods were carried out in accordance with relevant guidelines and regulations.

Latent Dirichlet Allocation.  We conducted analyses on the mean response data for each video using a topic 
modeling approach based on Latent Dirichlet Allocation (LDA) to discover the abstract topics occurring in the 
collection of videos. In general, Latent Dirichlet Allocation (LDA) is a generative statistical model that allows 
sets of observations to be explained by latent topics that explain the similarity between parts of the data67. In 
LDA, the data from a text corpus of documents is analysed, where words in documents are used to determine 
both the distribution over topics and the distribution of topics over the documents. Thus in this case the assump-
tion is that each subject’s response corresponds to an unknown number of unknown topics and the same is true 
for each clip In LDA, each data point is viewed as a mixture of various topics where each data point is consid-
ered to have a set of topics that are estimated by means of the LDA algorithm. The assumption typically made 
in LDA is that the topic distribution has a sparse Dirichlet prior, which is guided by the assumption that each 
data point only corresponds to a small set of topics and that each topics itself is a distributions over a small set 
of actual emotion categories. Or goal using LDA was to find a low-dimensional set of topics (so here discovered 
emotion categories) that could capture all the 34 emotion categories on which the clips were rated. Thus if low-
dimensional structure was statistically justified in the ratings according to the LDA model, meaning that the 
emotion categories could be grouped into a smaller number of “emotion topics”, LDA is presumed to be able to 
discover that structure. The LDA model is shown as a probabilistic graphical model in Supplementary Figure 1. 
More detail on the LDA model is reported in Supplementary Materials.

Supervised classification.  To test whether we could successfully classify video clips as belonging to specific emo-
tion categories based on ratings of 14 affective features, we trained and tuned a fully connected neural network 
using cross-validation. First we labeled the video clips based on the highest rated category across subjects (i.e., 
we choose the category with the maximum mean rating as the label for each video clip). Then, to ensure we had 
enough instances for classification of each category, we chose only those categories that were used as labels for 
more than 2.9% of the total video clips, which is the percentage of data samples per emotion category if data 
was uniformly distributed among 34 emotion categories. In other words, we only classified categories that were 
chosen as the highest rated category for more than 67 out of 2185 clips. Only nine emotion categories met these 
criteria: adoration, aesthetic appreciation, anxiety, awe, disgust, fear, nostalgia, romance, sexual desire, resulting 
in classification of 980 videos. The classifier was trained with a sixfold cross validation approach; to impose a 
more balanced class distribution we over-sampled the minority classes (i.e, the class with the least number of 
samples) to be equivalent in frequency to the majority class (i.e., the class with the most number of samples). 
The average accuracy was calculated as the percentage of correct classifications across all validation sets. Chance 
level performance was defined as the reciprocal of the number of categories, or 11.11%. A one-sample t-test 
against chance level accuracy was conducted to determine whether mean classifier performance across emotion 
categories was significantly above chance.

Unsupervised clustering.  Similar to the fMRI analysis, here we adopted a GMM clustering technique to cluster 
the video clips based on their 14 dimensional affective features. Each of the 14 features is a mean rating across 
a subset of subjects, which varies from 1 to 9. The 14 dimensional affective features are, therefore, continuous 
bounded values in each dimension and can be fit reasonably well by a GMM. The number of cluster was deter-
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mined using the BIC across a range of possible values for the the number of clusters, similar to what was done 
in Dataset 1.

Data availability
Datasets 1 and 2 are available from the corresponding authors upon request. Dataset 3 is publicly available 
through the cited manuscript.

Code availability
The code to analyze data is available from corresponding authors upon request.
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