Table 1.
Study | N | # Emot. categories | # Stimuli per category (unique) | Induction method | Relevant preprocessing | Feature selection | Classification algorithm |
---|---|---|---|---|---|---|---|
Kassam et al.24 | 10 | 9 | 2 | Participant-generated scenario immersion | No spatial smoothing | Voxels with the most stable activation profile | Gaussian Naive Bayes |
Z-scoring | |||||||
Anatomical normalization | |||||||
Kragel and LaBar25 | 32 | 7 | 4 |
Movies Music |
No spatial smoothing | All grey matter voxels | Partial least squares discriminant analysis |
Mean centering | |||||||
Anatomical normalization | |||||||
Saarimäki et al.29 | 48 |
5 (study 1) 6 (study 2) |
10 (study 1) 6 (study 2) |
Participant-generated scenario immersion Movies |
No spatial smoothing | Voxels most sensitive to manipulation using ANOVA | Linear neural network with no hidden layers |
Z-scoring | |||||||
Anatomical normalization | |||||||
Saarimäki et al.30 | 25 | 15 | 4 | Narrative-guided scenario immersion | No spatial smoothing | Voxels most sensitive to manipulation using ANOVA | Linear neural network with no hidden layers |
Z-scoring | |||||||
Anatomical normalization | |||||||
Wager et al.32 | 2159 | 5 | Variable | Variable | Meta-analysis (peak based) | Whole brain | Bayesian spatial point process model |
Binarized data | |||||||
Anatomical normalization |