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Machine learning to predict early 
TNF inhibitor users in patients 
with ankylosing spondylitis
Seulkee Lee, Yeonghee Eun, Hyungjin Kim, Hoon‑Suk Cha, Eun‑Mi Koh & Jaejoon Lee*

We aim to generate an artificial neural network (ANN) model to predict early TNF inhibitor users in 
patients with ankylosing spondylitis. The baseline demographic and laboratory data of patients who 
visited Samsung Medical Center rheumatology clinic from Dec. 2003 to Sep. 2018 were analyzed. 
Patients were divided into two groups: early-TNF and non-early-TNF users. Machine learning models 
were formulated to predict the early-TNF users using the baseline data. Feature importance analysis 
was performed to delineate significant baseline characteristics. The numbers of early-TNF and non-
early-TNF users were 90 and 505, respectively. The performance of the ANN model, based on the area 
under curve (AUC) for a receiver operating characteristic curve (ROC) of 0.783, was superior to logistic 
regression, support vector machine, random forest, and XGBoost models (for an ROC curve of 0.719, 
0.699, 0.761, and 0.713, respectively) in predicting early-TNF users. Feature importance analysis 
revealed CRP and ESR as the top significant baseline characteristics for predicting early-TNF users. Our 
model displayed superior performance in predicting early-TNF users compared with logistic regression 
and other machine learning models. Machine learning can be a vital tool in predicting treatment 
response in various rheumatologic diseases.

Tumor necrosis factor (TNF) inhibitors are important drugs in treating patients with ankylosing spondylitis 
(AS)1,2, especially those incapable of using non-steroidal anti-inflammatory drugs (NSAIDs). Even though TNF 
inhibitors are useful for NSAID non-responders, they are not used as a first-line treatment for AS owing to their 
cost, adverse effects3, and increased chances of infection4. In Korea, medical insurance permits TNF inhibitors 
for patients with uncontrolled AS who have been treated with at least two kinds of NSAIDs continuously for 
three months3. However, there is insufficient NSAID treatment response in over 40% of patients5. Thus, NSAID 
non-responders inevitably suffer for months.

If we can predict the subset of patients who will need TNF inhibitors at an earlier phase, adequate treatment 
can be provided at an appropriate time and potential damages can be avoided. There have been reports of several 
factors that affect the start of TNF inhibitor use in AS6. However, there is no precise predictive model as to who 
should begin TNF inhibitors earlier than the others.

As the relationships of clinical variables with phenotypes are not linear but rather complex, newer machine 
learning methods outperform conventional statistical models in predictions using clinical variables7–9. Rheu-
matologic diseases are no exception. Several machine learning methods have been developed, which can predict 
survival10, disease activity 11,12, or drug failure13 in various rheumatologic diseases. These models have shown 
better predictive abilities compared with conventional methods. Therefore, previous studies have convinced us 
that machine learning will perform with greater accuracy in generating models in identifying the target popula-
tion for the early use of TNF inhibitors in AS.

Herein, we present an artificial neural network (ANN)14 model for predicting the target population for the 
early use of TNF inhibitors in AS using baseline characteristics. The model combines demographic and labora-
tory data and identifies the subgroup that will require TNF inhibitors within six months of their diagnosis. We 
compare the performances of our ANN model with conventional statistical methods and other machine learn-
ing methods. We perform feature importance analysis with our best performing model to delineate the factors 
that are important in training the exact model. To our knowledge, this is the first attempt to generate a machine 
learning model to predict the early use of TNF inhibitors in patients with AS.
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Results
Patient summary.  The number of patients with AS who fulfilled the inclusion criteria was 882. After 
excluding the ineligible patients, the numbers of patients in the early-TNF and non-early-TNF user groups were 
90 and 505, respectively. Figure 1 shows the enrollment process. Table 1 compares the early-TNF users and non-
early-TNF users with respect to their baseline demographic characteristics and laboratory data. Demographic 
data were similar in both groups. The baseline laboratory results including white blood cell (WBC) count, hemo-
globin (Hb), platelet count, erythrocyte sediment rate (ESR), and C-reactive protein (CRP) were significantly 
different. The acute-phase reactants were higher in early-TNF users.

Prediction model optimization.  We trained multiple prediction models using baseline demographics 
data and laboratory data through various learning methods including a conventional statistical method (logistic 
regression) and machine learning (support vector machine (SVM), random forest (RF), XGBoost, and ANN). 
The ANN, XGBoost and RF models were significantly different in terms of their detailed settings. Therefore, we 
trained them repeatedly by changing the architecture and hyperparameter set to achieve the best predictions. 
The best ANN model has five layers, except for the output layer. Each layer has 60 hidden nodes (Fig. 2a). The 
chosen hyperparameter set was 0.00003, 20, and 200 in the learning rate, batch size, and number of epochs, 
respectively. The accuracy and AUC of the ROC curve of our model were 0.878 and 0.783, respectively, in pre-
dicting early-TNF users (Fig. 2b). The F1 score of the ANN model reached higher than 95% confidence interval 
for a random prediction when the models had 60 hidden nodes with 5–10 hidden layers. F1 score decreased 
when the number of hidden nodes was above 60. With 60 hidden nodes, the AUC of the ROC curve decreased 
from 5 to 10 hidden layers (Supplementary Fig. S1a–b). In this setting, 0.00003 was the most appropriate value 
for the learning rate (Supplementary Fig. S1c–d). This results showed that more complex models do not neces-
sarily yield better performances. In addition, ANN models, which have similar architectures and hyperparam-
eters, provide comparable performances with the model with the best characteristics, indicating the robustness 

882 Matched inclusion criteria

  89 not enough baseline laboratory data
153 not enough baseline demographic data

  40 previous history of TNF inhibitor use
  21 were diagnosed more than one year 
       before the enrollment date  
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640

599
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   3 Underlying malignancy
   1 Underlying malignancy + infection (HIV)

Figure 1.   Enrollment process of this research. Eight hundred eighty-two patients matched our inclusion 
criteria; Eighty-nine patients did not have enough baseline laboratory data. One hundred fifty-three patients 
did not have at least one of demographic information. Forty patients had a previous history of TNF inhibitor 
use. Twenty-one patients had been diagnosed with AS at other hospitals for more than one year prior to the 
enrollment date. Three patients had an underlying malignancy, and one patient had an underlying malignancy 
and infection (HIV). Finally, five hundred ninety-five patients remained after the exclusion process. Ninety 
patients were designated as ‘early-TNF users; this included patients who used TNF inhibitors within six months 
of their diagnosis. Five hundred five patients were designated as ‘non-early-TNF users; this included patients 
who did not use TNF inhibitors until six months after their initial diagnosis.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20299  | https://doi.org/10.1038/s41598-020-75352-7

www.nature.com/scientificreports/

of our ANN method. We applied a similar process with the XGBoost and RF models (Supplementary Fig. S1e–l). 
Hyperparameter set for the maximum depth of a tree, learning rate, and gamma of the XGBoost were 9, 0.1, 
and 1, respectively. And the maximum depth of a tree, number of trees, minimum sample split, and minimum 
leaf samples of the RF were none (no limit), 30, 1, and 2. In the sensitivity analysis, we observed robust perfor-
mances in predicting early-TNF users by changing methods to divide the test dataset (AUC = 0.766 without the 
cross-validation method, and AUC = 0.791 with the independent test dataset divided in advance, Supplementary 
Fig. S2).

Performance of various prediction models.  We checked the accuracy, AUC of the ROC curve, F1 
score, and AUC of the precision-recall curve to evaluate the performances of various models. The accuracies 
of the logistic regression, SVM, RF, XGBoost, and ANN models were 0.846, 0.853, 0.856, 0.838, and 0.878, the 
AUCs of the ROC curve of sensitivity and specificity were 0.719, 0.699, 0.761, 0.713, and 0.783, the F1 scores 
were 0.272, 0.272, 0.276, 0.274, and 0.420, and the AUCs of the precision-recall curve were 0.349, 0.366, 0.429, 
0.345, and 0.541, respectively (Fig. 3). Among these methods, ANN showed the best performance in predicting 
early-TNF users. The better performance of the ANN model compared to the logistic regression model suggests 
that the relationship between clinical information and the predictive outcome is nonlinear.

F1 score and the AUC of the precision‑recall curve with balanced test dataset.  Although the 
F1 score and the AUC of the precision-recall curve of the ANN model were better than those of other methods 
and a random prediction, the performance were low numerically. The main reason for the low performance was 
the use of an imbalanced dataset. Thus, we checked the F1 score and AUC of the precision-recall curve using a 
balanced test dataset, which showed comparable performances in terms of the accuracy and AUC of the ROC 
curve (Supplementary Fig. S3).

Feature importance of the trained model.  The ‘black box’ nature of neural networks is a critical barrier 
to analyze the features that are used in training neural network models15. Several methods have been suggested 
to evaluate feature importance despite this limitation. We calculated feature importance scores by a ‘risk back-
propagation’ method (See “Methods”)16. The top two important features to train the prediction model were the 
CRP and ESR levels (Fig. 4). We also evaluated feature importance by XGBoost and RF, and results showed that 
CRP and ESR ranked 1st and 2nd places, respectively (Supplementary Fig. S4). Other features showed inconsist-
ent results when different machine learning methods were applied.

Discussion
We presented a machine-learning model to determine which AS patients will use TNF inhibitors in the early 
onset of the disease. To the best of our knowledge, this is the first attempt in this regard that has used machine 
learning. We have shown that the model obtained through an ANN can predict early TNF inhibitor users more 
accurately than conventional statistical models. Furthermore, the ANN model could suggest the most influential 
factors about the correlation between baseline clinical data and outcome by the feature importance analysis of 
each clinical variable.

Table 1.   Comparing baseline characteristics of two groups: early-TNF users and non-early-TNF users. WBC 
white blood cell, Hb hemoglobin, BUN blood urea nitrogen, AST aspartate aminotransferase, ALT alanine 
aminotransferase, HLA-B27 human leukocyte antigen-B27. *Data are presented as mean (standard deviation) 
unless otherwise indicated. † p Value were obtained by t-test (continuous variables) and chi-square test 
(categorical variables). ‡ p Value is statistically not reliable because of small samples of negative HLA-B27 in 
early-TNF users.

Characteristics Early-TNF users* Non-early-TNF users* p Value†

Age (years) 35.69 (13.63) 34.22 (12.81) 0.345

Female (%) 22 (24.44) 107 (21.12) 0.581

Weight (kg) 67.30 (12.81) 68.59 (14.80) 0.390

Height (cm) 166.95 (8.06) 168.63 (12.99) 0.104

WBC count 9135 (2702) 7757 (2110) < 0.001

Hb (g/dl) 12.95 (1.79) 13.90 (1.65) < 0.001

Platelet count (× 1000) 360.27 (102.84) 291.28 (74.76) < 0.001

AST (IU/L) 21.76 (25.27) 21.07 (15.64) 0.803

ALT (IU/L) 23.92 (18.39) 23.59 (34.93) 0.894

BUN (mg/dl) 13.66 (4.00) 13.56 (3.83) 0.812

Creatinine (mg/dl) 0.91 (1.19) 0.86 (0.16) 0.662

ESR (mm/hr) 67.39 (35.43) 35.31 (27.68) < 0.001

CRP (mg/dl) 3.95 (3.48) 1.41 (2.14) < 0.001

HLA-B27 positivity (%) 88 (97.78) 495 (98.0) > 0.999‡
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Our most successful ANN model has 5 hidden layers and 60 hidden nodes in each hidden layer. We tested 
multiple models with various architectures, as there is no consensus regarding the optimal architecture and 
hyperparameter set when trying to generate a neural network model in advance. The architecture of our model 
is decided by the input data itself. The number of hidden nodes for the best performance is correlated with the 
number of our input data variables. Models with too many hidden nodes (e.g. 100) compared with the number 
of input variables (14, in this research) did not show better performances than simpler models. The number of 
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Figure 2.   The best ANN model to predict early TNF users in patients with AS. (a) Architecture of the 
prediction model. The developed model has 5 hidden layers and 60 hidden nodes per hidden layer. The input 
layer has 14 nodes consisting of clinical variables. Hidden nodes are depicted as blue circles. ReLU is the 
activation function of all the hidden nodes. Output nodes are depicted as a red circle. The output layer has one 
node because we only predicted one binary variable, whether the patient was an early-TNF user or not. The 
sigmoid function is used as an activation function. (b) ROC curve of our model trained by an ANN method. 
The bootstrap resampling was conducted 1000 times with a standard deviation of 0.05, and the mean AUC of 
the results was 0.783.
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hidden layers of best performance, i.e., five, implies that the correlation between the input data (baseline clinical 
data of patients) and output data (early TNF inhibitor use) is non-linear.

We tried various machine learning methods including SVM, RF, XGBoost, and ANN. SVM17,18 is relatively 
older than the other methods but has a suitable performance in simple image discrimination and little computa-
tional burdens. RF and XGBoost are newer methods, and are both ensemble models based on decision trees. RF 
consists of numerous smaller decision trees19, and XGBoost is a gradient boosting method. These approaches have 
great powers to divide groups and include feature importance analysis. However, ANN shows a better perfor-
mance than RF or XGBoost in many regards20,21. In our data, only ANN outperformed the conventional statistical 
model and logistic regression. This may be due to the complex relationship between clinical inputs and outputs.

Prediction models can also give us insight into baseline clinical variables. Many machine learning tools have 
distinctive methods to analyze the importance of input variables22,23. However, neural networks have notorious 
‘black box’ characteristics; these refer to the difficulty in analyzing feature importance. Several methods that 
overcome this limitation have recently been announced15,16. The important variables derived from the ‘risk 
backpropagation’ method with our ANN model were CRP and ESR. The top two variables were equal to the 
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Figure 3.   Performances of models trained by various methods (random prediction, logistic regression, SVM, 
RF, XGBoost, and ANN): (a) by accuracy, (b) by the AUC of the ROC curve from the sensitivity–specificity plot, 
(c) by F1 score, (d) by the AUC of the precision-recall curve.
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feature importance analysis in both the RF and XGBoost models. In addition to these two variables, the WBC 
count, Hb, and platelet count were significantly different between early-TNF users and non-early-TNF users. 
Thus, we cannot distinguish which variables are more for dividing the two groups when applying a conventional 
statistical method. As shown in this example, it would be possible to identify relatively more important factors to 
divide the two groups using the machine learning method that cannot be distinguished through a conventional 
statistical analysis.

Our approach, however, has some limitations. First, we could not add information concerning a review of the 
system and physical examinations. Due to the limitation of retrospective studies, part of the clinical information 
and physical examination data were missing for some patients. Therefore, we did not use the frequently missing 
information. Instead, we showed that it is possible to generate a model with acceptable performances using only 
laboratory results and demographic data recorded in a regular clinical setting. Second, we only used patient infor-
mation from one hospital. To reduce the bias as much as possible, we implemented a cross-validation method 
and repeated it three times. Still, part of our model might be informed about the bias of training the cohort.

In conclusion, we made an ANN model that could predict early TNF users in patients with AS using baseline 
clinical data. It has 5 hidden layers and 60 hidden nodes within each layer. The model has a better performance 
than a logistic regression model and the other machine learning models (SVM, RF, and XGBoost). Feature impor-
tant analysis showed that CRP and ESR were the most important input variables to distinguish early TNF users.

Methods
Study design and patient demographics.  This was a retrospective longitudinal study conducted at 
Samsung Medical Center (SMC, Seoul, Republic of Korea). Our target cohort population was the patients (1) 
who fulfilled the modified New York criteria for ankylosing spondylitis (AS) or the assessment of spondyloar-
thritis international society (ASAS) axial spondyloarthritis (SpA) criteria who started a follow up at the rheu-
matology department of SMC between Dec 2003, and Sep 2018, and (2) who had followed up more than three 
months. In order to find this cohort in the electric health database, we included patients who (1) had attended 
the rheumatology outpatient clinic of the SMC with at least two registered visit that were more than three 
months apart, (2) had received any ICD9 and/or ICD10 codes for AS by their usual rheumatologist in at least 
in two consecutive visits, and (3) were diagnosed with AS between Dec 1, 2003, and Sep 1, 2018. We excluded 
patients who did not have a complete set of baseline laboratory results or baseline demographic data (weight and 
height); were diagnosed one year or more before their first visit to SMC; had an underlying malignancy, infec-
tion, or other rheumatologic diseases; were pregnancy, and who had previous experiences with TNF inhibitors 
before the index date. The definition of the index date will be explained in the clinical data preparation section.

Clinical data.  We gathered baseline clinical data including age, sex, height, weight, baseline laboratory 
results, and HLA-B27. Baseline laboratory results consisted of white blood cell count, hemoglobin, platelet 
count, blood urea nitrogen (BUN), creatinine, aspartate transaminase (AST), alanine transaminase (ALT), ESR, 
and CRP. The laboratory results with the closest initial diagnosis date were chosen as baseline laboratory results. 
We defined the date in which the baseline laboratory tests were performed as the index date. The clinical data 
was used as machine learning features. The patients were divided into two groups, ‘early-TNF users’ and ‘non-
early-TNF users’; those who had used TNF inhibitors within six months and who did not use TNF inhibitors 
until six months after the baseline laboratory tests, respectively. Non-early-TNF users include patients who used 
TNF inhibitors six months after their diagnosis.
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Figure 4.   The result of feature importance analysis from our model trained by an ANN method. The x-axis 
shows the input clinical variables. The y-axis represents the feature importance score calculated by the ‘risk 
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Model design.  Using a clinical dataset matrix, we trained the prediction models to distinguish between 
early-TNF users and non-early-TNF users. There is no previous knowledge concerning model architecture and 
hyperparameter sets that are suitable to predict clinical prognosis using electric health records. Therefore, we 
tested multiple machine learning models by varying the architecture and hyperparameters. Model architecture 
for the ANN includes the number of layers and hidden nodes; hyperparameters include learning rate, batch size, 
and the number of epochs. In the case of XGBoost, the hyperparameters include the learning rate, maximum 
depth of a tree, and the gamma value. For the RF model, the hyperparameters include the maximum depth of a 
tree, total number of trees, minimum sample split, and minimum leaf samples. The learning rate is the number of 
changes newly acquired information undergoes in overriding old information, batch size refers to the number of 
training examples utilized in a single iteration, epochs refer to one forward pass and one backward pass of all the 
training datasets, gamma refers to minimum loss reduction required to make a further partition on a leaf node of 
the tree, the minimum sample split refers to the minimum number of samples required to split an internal node, 
and the minimum leaf samples refers to the minimum number of samples required to be at a leaf node. Detailed 
learning methods and background mathematics are covered in Supplementary Information.

Performance evaluation.  The prediction models were evaluated in three rounds of three-fold cross-vali-
dation24. As the early TNF users are not equally distributed in the dataset, we used stratified cross-validation to 
divide the dataset. In each round, an entire dataset was randomly and equally divided into three, with stratified 
probability. Two of these parts were used as the training dataset, and the final part was used as the test dataset. 
The process was repeated three times. A model was trained using the training dataset and scored on the other; 
this process was repeated after swapping the test datasets. Three rounds of the three-fold cross-validation gave 
a total of 9 scores, the average of which became the estimated performance of the model. The performances 
were compared by the AUC of the ROC curve, accuracy, F1 score, and AUC of the precision-recall curve. For 
sensitivity analysis, we tried various methods for dividing the test dataset. First, we simply divided the dataset 
into three groups: training, validation, and test dataset rather using cross-validation. A model was trained using 
the training and validation datasets, and the AUC of the ROC curve was assessed using the test dataset. Second, 
we divided the independent test dataset before generating the model and the prediction model using the rest of 
the data. We evaluated the performance of the model using the independent test dataset again to compensate 
for the lack of independent cohort data. Additional information for performance evaluation is included in the 
Supplementary Information.

Comparison with other methods.  We compared our ANN model with other models trained by other 
machine learning methods and a conventional statistical method. We chose SVM, RF, and XGBoost as compar-
ing machine learning methods because they are not only popular but are representative of supervised learning 
methods other than neural networks. A logistic regression model was chosen as representative of the conven-
tional statistical method. We performed three rounds of three-fold cross-validation on these models identical 
to that of our ANN model. The logistic regression model was trained and scored by three-fold cross-validation 
to evaluate its performance but it did not need a three-rounds learning procedure because of its lack of hyper-
parameters.

Feature importance analysis.  One of the disadvantages of ANN model is its ‘black box’ characteristics, 
which are indicative of the difficulty in identifying the importance of each feature used in the model’s training. 
There are several methods to evaluate feature importance despite this limitation15,16. We used the differential 
value of the prediction score in changing each input variable for feature importance. In previous research, this 
method is called ‘risk backpropagation’16.

where, inputi = (value of ith variable).
The more important the role an input variable plays in model training, the more the output value (in this 

case, the prediction score) will be changed as the input changes; i.e., when the output value is differentiated into 
a specific input variable, the larger the value of the differential, the more important the variable is in training the 
prediction model. We calculated the differential value of each input variable to reveal the feature importance. In 
addition, we performed feature importance analysis by XGBoost and RF to verify the robustness of the results. 
The method used to find feature importance by XGBoost and RF is explained in Supplementary Information.

Statistical analysis.  Python (ver. 3.7.3) and R (ver. 3.6.3)25 were used for statistical analysis. We used Keras 
(ver. 2.2.4)26 and TensorFlow (ver. 1.14)27 to construct ANN models. ‘Scikit-learn’ module28 was used for the 
logistic regression, SVM, RF, and XGBoost models, and for calculating the performances. A ROC graph was 
depicted by the ‘matplotlib’ module29 in Python. Figures were depicted using ‘ggplot2 2.2.1’ package30.

Ethics approval.  Data was extracted from the Clinical Data Warehouse Darwin-C of Samsung Medical 
Center for this study. This study was approved by the Institutional Review Board of the Samsung Medical Center, 
Seoul, South Korea (IRB No.: 2019-04-079) and the informed consent requirement was waived by the IRB, 
because the study information was de-identified. All methods were carried out in accordance with relevant 
guideline and regulations.

Feature importancei =
∂ prediction score

∂ inputi
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