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Glial granules contain germline proteins in the
Drosophila brain, which regulate brain
transcriptome

Samuel J. Tindell', Eric C. Rouchka® 2 & Alexey L. Arkov@® '™

Membraneless RNA-protein granules play important roles in many different cell types and
organisms. In particular, granules found in germ cells have been used as a paradigm to study
large and dynamic granules. These germ granules contain RNA and proteins required for
germline development. Here, we unexpectedly identify large granules in specific subtypes of
glial cells (“glial granules”) of the adult Drosophila brain which contain polypeptides with
previously characterized roles in germ cells including scaffold Tudor, Vasa, Polar granule
component and Piwi family proteins. Interestingly, our super-resolution microscopy analysis
shows that in the glial granules, these proteins form distinct partially overlapping clusters.
Furthermore, we show that glial granule scaffold protein Tudor functions in silencing of
transposable elements and in small regulatory piRNA biogenesis. Remarkably, our data
indicate that the adult brain contains a small population of cells, which express both neu-
roblast and germ cell proteins. These distinct cells are evolutionarily conserved and expand
during aging suggesting the existence of age-dependent signaling. Our work uncovers pre-
viously unknown glial granules and indicates the involvement of their components in the
regulation of brain transcriptome.
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generation organism after the union of the egg and

sperm!-2, and they express specific proteins and RNA that
are assembled into large and dynamic membraneless granules
referred to as germ granules®. Components of germ granules
are required for germline fate">10. In particular, Tudor (Tud)
domain-containing proteins perform the molecular scaffold role
recruiting other germ cell proteins into germ granules®. In fruit
fly Drosophila, Tud protein is required for embryonic germ cell
formation and, accordingly, the embryos laid by fud mutant
mothers give rise to sterile adults (grandchildless phenotype)!1:12.
Tud protein contains eleven 50-55 amino acid Tud domains,
which in germ granules, recognize methylated arginines of Piwi
family proteins!13-15, In different animals, Piwi family proteins
and their associated small noncoding guide RNAs (Piwi-inter-
acting RNAs, piRNAs) play central role in silencing of transpo-
sable elements in the gonad!®!7. In addition, the founding
member of this family, Drosophila Piwi protein, was shown to be
autonomously required for stem cell maintenance in germline
and some somatic stem cells!$1°,

Although a full-length fud ¢cDNA was isolated from the fly’s
head in early cDNA collections, potential expression and somatic
function of Tud scaffold, presumably, in the adult brain,
remained unknown. Here we show that Tud and other germ cell
proteins, previously studied for their unique roles in the germline,
are expressed in the adult brain, and overall, these germ cell
polypeptides assemble in large granules in glia (here referred to as
glial granules), contribute to the genome integrity and regulate
brain transcriptome. In addition to the localization of germ cell
proteins to the glial granules, surprisingly, we identified a distinct
population of cells in the adult brain that express both piwi and
neural stem cell (neuroblast) marker gene, deadpan (dpn). Our
study indicates the roles of genes in the adult brain whose
functions have been traditionally viewed as being specific to
germ cells.

G ermline (germ) cells give rise to every cell type in the next-

Results

Germ cell gene Tud is expressed in glia in the brain. To
determine whether Tud is expressed in the brain, we prepared
brain protein extracts and were able to detect Tud in the wild-
type brain and not in fud protein-null mutant (tud!, hereafter
referred to as “tud mutant”) with an anti-Tud antibody routinely
used to identify Tud expression in the germline?? (Supplementary
Fig. 1d). However, we could not identify what specific brain cells
express Tud in immunohistochemistry experiments, as this
antibody gave rise to a high nonspecific background in the
immunostained brains (Supplementary Fig. le). Therefore, to
enable Tud detection in the brain, we tagged endogenous tud
gene with N-terminal green fluorescent protein (GFP)- and
FLAG-tags using CRISPR-Cas9 methodology, and used specific
antibodies against the tags in immunostaining experiments
(Supplementary Fig. 1a, b). Insertion of the N-terminal tags in fud
locus did not affect primordial germ cell formation, expression or
normal distribution of the protein in the germline (Supplemen-
tary Fig. 1c).

Immunostaining of the whole-mount brains with anti-GFP and
anti-FLAG antibodies to detect Tud and different brain markers
indicated that Tud is expressed in the brain glia labeled with
antibody against Reversed polarity (Repo) protein, which is a
specific marker for all types of glial cells (Fig. 1a).

As there are several subtypes of glial cells (Fig. 1), we next
asked what specific glial cells express Tud. After crossing FLAG-
tagged tud into genetic background of the fly lines that label
different glial cells with membrane GFP-mCD8 marker, we
determined that Tud is expressed in the cytoplasm of surface glia

(perineurial glia (PG) and subperineurial glia (SPG)), as well as
cortex glia (CG) (Fig. 1d-h and Supplementary Fig. 2). In
addition, super-resolution microscopy showed the assembly of
Tud into the glial granules (Fig. 1c, g, h).

Transposable elements are upregulated in tudor mutant adult
brains. In germline, Tud is required for the assembly of germ
granules, which have been implicated in posttranscriptional reg-
ulation of germline gene expression, including silencing of
transposable elements (retrotransposons)!3-21, However, Tud role
in the brain was not known. Here, using genome-wide RNA
sequencing (RNA-seq) approach for tud mutant brains, we asked
whether fud mutant affects the brain transcriptome. In addition,
we compared the brain and ovarian transcriptomes of fud mutant
flies. For these and all other experiments reported below, fly
brains were carefully dissected by hand to exclude any cross-
contamination from the germline-containing tissues (ovaries and
testes). We found that 62 transposable elements were upregulated
in tud mutant brains. Also, 21 transposable elements were
upregulated in fud mutant ovaries (Fig. 2a and Supplementary
Fig. 3), demonstrating that a Tud function in the brain is to
silence transposable elements.

In the germline, transposable elements are silenced by Piwi
proteins associated with small guide RNAs (piRNAs)!®17,
Therefore, using small RNA deep-sequencing approach and
rigorous filtering of piRNAs from piRNA database (piRBase)?? to
exclude RNAs mapping to tRNAs, rRNAs, snRNAs and
snoRNAs, we identified 5590 piRNAs (found with a minimum
count of 10 sequences for each piRNA) expressed in the wild-type
brains. Using the same approach, we identified the 77,388 most
abundant piRNAs in the wild-type fly ovaries.

piRNAs from the wild-type and tud mutant brains were
compared, and 326 differentially expressed (DE) piRNAs were
identified. Strikingly, the majority (85%) of the DE piRNAs were
downregulated in tud mutant brains (p <0.01) (Fig. 2b, Supple-
mentary Fig. 4, and Supplementary Data 1).

Quite contrary to the detection of mostly downregulated
piRNAs in tud mutant brains, tud mutant ovaries had somewhat
less downregulated than upregulated piRNAs compared to the
wild-type ovaries, 39% and 61%, respectively (13,099 ovarian DE
piRNAs were identified) (Fig. 2c, Supplementary Fig. 4, and
Supplementary Data 2), indicating that although Tud is involved
in piRNA biogenesis in both brain and germ cells, there are
distinct differences in how it regulates piRNA production in the
brain and germline. Although piRNAs play a crucial role in
silencing of transposable elements in germline!®17, the observed
differences between DE piRNAs in the brain and ovary in tud
mutant might be expected based on the differences in develop-
ment and function of these organs and suggest that, in addition to
transposable elements, brain piRNAs may help to regulate brain
non-transposon genes.

To explore the Tud-dependent mechanisms in piRNA
production in the brain and ovary in more detail, we analyzed
the population of piRNAs mapped to transposable elements in
both tissues. In the wild-type brains, we detected more piRNAs
mapped to sense strands of transposable elements than the
antisense piRNAs (Fig. 2d), which was very different from
piRNAs mapping to transposons in the wild-type ovary that
showed the reverse (antisense) piRNA bias (Fig. 2e).

Next, we asked whether Tud plays a role in the maintenance of
these transposon piRNA biases in the brain and ovary.
Remarkably, in the tud mutant brains, the sense piRNA bias
was eliminated demonstrating that Tud functions in the brain to
maintain the bias toward transposon sense piRNAs (Discussion).
Contrary to the brain piRNAs and similar to the wild-type
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Fig. 1 Tudor protein is expressed in perineurial, subperineurial, and cortex glia. a GFP-tagged endogenous Tud (green channel) is expressed in glial cells
(indicated with arrows, glia nuclei labeled with anti-Repo antibody, magenta) in the adult brains. b A diagram of the fly adult brain with surface and cortex
glia subtypes indicated. A cortex glial cell envelops multiple neuronal bodies forming a honeycomb-like architecture. Nuclei of two cortex glial cells are
shown in black. General area of the central brain imaged in ¢-h is indicated with a box. ¢ High-magnification super-resolution optical section shows Tud
localization (green) to glia (Repo-labeled, magenta). d-f Low-magnification optical sections show FLAG-tagged Tud localization (magenta) to perineurial
(d), subperineurial (e), and cortex (f) glia. Different glia subtypes were labeled with the membrane marker GFP-mCD8 (green). g, h 3D high-magnification
images of Tud granules (magenta) assembled in perineurial (g) and cortex (h) glia labeled with the membrane marker GFP-mCD8 (green). These images
are composites of 186 optical sections (perineurial glia) and 225 sections (cortex glia) obtained with super-resolution confocal microscopy. Scale bars in

ais 100 pm; in ¢ is 5um; in d-f are 20 pm; and in g, h are 10 um.

ovaries, fud mutant ovaries showed strong antisense transposon
piRNA bias (Fig. 2d, e).

Tud regulates brain transcriptome. Comparison of piRNAs in
the wild-type brain and ovaries highlighted the striking difference
between these two piRNA populations. In particular, 10% of brain
piRNAs were mapped to transposable elements and the majority of
brain piRNAs was mapped to non-transposon genes (Fig. 2f). In a
stark contrast, in the ovaries, about 90% of piRNAs were mapped to
transposable elements and only about 3% of the piRNAs was
mapped to the genes (Fig. 2f). This distribution of piRNAs was not

affected in tud mutant brains and ovaries. As the majority of brain
piRNAs was mapped to the genes (genic piRNAs), we analyzed
their distribution within the genes in more detail.

The majority of brain genic piRNAs were mapping to exons
and 3’-untranslated regions (3-UTRs) (62% and 22%, respec-
tively, Fig. 2g). Contrary to that, most of the ovarian genic
piRNAs were mapping to introns (66%), and piRNAs mapping to
exons and 3’-UTR constituted the least abundant class of ovarian
genic piRNAs (12 and 7% respectively). Genic piRNAs from tud
mutant brain and ovaries showed similar distribution within the
gene regions as their respective wild-type controls.
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The relative abundance of genic piRNAs in the brain suggested
that in addition to the transposable elements, non-transposon
genes might be regulated by the piRNA-dependent mechanisms.
Consistent with this hypothesis, similarly to the total brain
piRNAs, ~90% piRNAs DE in tud mutant brains mapped to non-
transposon genes with the majority of those mapping to exons
(61%) and 3’-UTRs (19%) (Supplementary Fig. 4). Therefore, we
asked whether Tud function in the brain may contribute to the
regulation of the non-transposon transcriptome in the brain. In
addition, given gender-specific behavioral aspects in flies, such as

courtship behavior, and thereby potentially different gender-
specific outcomes of Tud-regulated gene expression in the brain,
we dissected female and male brains separately and analyzed their
transcriptomes and compared those with ovarian transcriptome
in tud mutant background using RNA-seq approach.

We found that in tud mutant brains, there were 1749 DE genes
(836 up- and 913 downregulated compared to the wild-type
brains, false discovery rate (FDR) < 0.05), which was substantially
more than the number of genes DE in tud mutant ovaries (436
including 253 up- and 183 downregulated compared to the wild-
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Fig. 2 Transposable elements, non-transposon genes, and piRNAs are affected in tud mutant brains. a Many transposable elements are upregulated in
tud mutant brains (left panel) and, to a lesser extent, in the ovaries (right panel). For the brain, the names of transposable elements differentially expressed
(DE) in tud mutants more than twofold are listed, and for the ovaries, all DE transposable elements are listed (complete list of DE transposons is included in
Supplementary Fig. 3). X-axis shows log, values of changes in the levels of transposable elements in tud mutants vs. wild-type (wt; fold change, FC).
Although most transposable elements are upregulated (red bars), some transposons are downregulated (green bars) in tud mutants, p < 0.05 (source data
are included in Supplementary Data 3). b In tud mutant brains, most piRNAs are downregulated. ¢ In tud mutant ovaries, somewhat more piRNAs are
upregulated than downregulated. d Tud functions in the brain to maintain sense piRNA bias. piRNAs were mapped to either “+" or “-" strand of
transposons in wt (left panel), and tud mutant (right panel) brains. Lengths of piRNAs are indicated on X-axis and their corresponding numbers are shown
on Y-axis. Wt brain piRNAs show sense (4 strand) bias, which is completely eliminated in tud mutants. e Wt ovarian piRNAs' antisense bias (left) is not
affected in tud mutant ovaries (right). f Most of wt brain piRNAs are mapping to non-transposon genes, whereas the majority of wt ovarian piRNAs are
mapping to transposable elements. Pie charts show percentage distribution of wt piRNAs mapped to non-transposon genes or LTR and LINE transposable
elements. Also, small fraction of piRNAs was mapped to satellite DNA in the brain and ovary, 0.2% and 2.3% respectively. g wt brain piRNAs mapped to
non-transposon genes (genic piRNAs) preferentially localize to exons and 3’-UTRs but in the ovaries, genic piRNAs preferentially localize to introns. h In
tud mutant brains, most antisense piRNAs, which localize to DE genes, are downregulated and map to upregulated genes. Plots show log,FC values for DE
genes (X-axis) vs. those for DE piRNAs (Y-axis) that map to these DE genes in tud mutant brains (source data are included in Supplementary Data 3).

type ovaries, FDR<0.05), indicating that Tud plays a more
significant role in the regulation of non-transposon transcriptome
in the brain than in the ovary. Importantly, genes related to
translation, metabolism, and synaptic transmission were DE in
tud mutant brains based on Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes statistically enriched terms
(Supplementary Fig. 5). There were some notable differences
between DE genes in female and male mutant brains. In
particular, contrary to males, mutant females showed highly
significant upregulation of Neuropeptide-like precursor 4 (nplp4)
and target of brain insulin (tobi) genes (p = 5 x 10~>). Neuropep-
tides and insulin signaling have been implicated in multiple
aspects of sex-specific behavior and physiology including mating
and reproduction?324, and, as our data indicate, brain-expressed
Tud may partially contribute to these processes in Drosophila.
Interestingly, a recent study also showed the upregulation of tobi
in the fly heads in response to the accumulation of -amyloid
peptide (AP) in the Alzheimer’s disease Drosophila model?>.

Further analysis of DE genic piRNAs, which map to DE genes
in tud mutant brains, showed that the majority of downregulated
antisense piRNAs map to upregulated genes (Fig. 2h), supporting
the mechanism of gene regulation by antisense piRNAs,
controlled by Tud.

Germ-like glial granules. Tud is assembled into cytoplasmic
germ granules. Germ granules include nuage (around nurse cell
nuclei in developing egg chamber) and polar granules (in the
posterior of fly oocytes and embryos) in a specialized cytoplasm
referred to as germ plasm?’. Germ plasm is necessary and suffi-
cient for the formation of primordial germ cells since they ecto-
pically form in the opposite (anterior) pole after transplanting the
germ plasm material there and polar granule components (Pgcs)
are required for germ cell development?®27. In addition to Tud,
germ granules include Vasa (Vas), Pgc, and Piwi family proteins
such as Ago3 and Piwi. Interestingly, using super-resolution
microscopy imaging, we detected polar granule-like Tud particles
in glia (Fig. 1c, g, h) and, depending on a given protein, 18-49%
of these glial Tud granules also contained Vas, Pgc, Ago3, and
Piwi (141-287 glial granules were analyzed for each protein,
Fig. 3, close-up super-resolution microscopy data are shown in
Fig. 3e-i, Supplementary Figs. 6 and 7, and Supplementary
Movies 1 and 2). To the best of our knowledge, this is the first
evidence of polar granule-like structures in glia, which is con-
sistent with their role in posttranscriptional control of gene
expression and Tud function in transposon silencing, piRNA
biogenesis and transcriptome regulation in the brain shown in
this work.

In addition to being assembled in glial granules, unexpectedly,
Ago3 was frequently found in the cytoplasm of some neurons
clustered together in CG forming the “honeycomb”-like archi-
tecture (Fig. 3f, g and Supplementary Movies 3 and 4), suggesting
a previously unknown role of Ago3 in the cell bodies of a subset
of neurons. Importantly, although Tud and Ago3 are found in the
same granules in glia (Fig. 3f, Supplementary Fig. 7b, and
Supplementary Movie 1), Tud was never detected in the Ago3-
positive neuronal bodies embedded in the CG, consistent with
glia-specific expression of Tud (Fig. 3f, g).

Adult brain contains Piwi- and Dpn-expressing cells, which are
embedded in CG and expand during aging. From the detailed
imaging experiments described above, which showed Tud and
Piwi in glial granules, we also noticed a very small number of
specific cells that expressed Piwi but not Tud in the upper middle
part of the adult brain (Fig. 4a). These Piwi-positive cells are
usually found symmetrically located on dorsal side in both halves
of the middle brain at a distance of ~150 um from each other and
Piwi is exclusively cytoplasmic. As Piwi has been shown to be
autonomously required for stem cell maintenance in both
germline and soma!®1, we hypothesized that these cells might be
a resident stem cell population in the adult brain. Therefore, we
co-stained these cells with Piwi and a pan-neuroblast-specific
marker Dpn, and, consistent with our hypothesis, we found that
both Piwi and Dpn specifically colocalize in these cells (Fig. 4b).
Although Dpn is a nuclear protein in neuroblasts, in these Piwi-
positive cells Dpn is localized to the cytoplasm. The finding of the
Piwi/Dpn-expressing cells in the adult brain was unexpected.
Furthermore, we determined that genomic GFP-tagged Piwi
transgene?8 is also expressed in these specific brain cells and
colocalized with Dpn, thereby providing another line of evidence
for our identification of the Piwi/Dpn-expressing cells in the
brain (Supplementary Fig. 8).

Next, we analyzed the location of these Piwi/Dpn-positive (+)
cells in more detail. In particular, we tested where these Piwi/
Dpn+ cells are situated in relation to glia. We found that these
cells are embedded in CG as shown with the CG-specific
membrane marker GFP-mCD8 and anti-Piwi/-Dpn antibodies
co-labeling experiments (Fig. 4c, d).

What may be a role of these Piwi/Dpn+- cells in the adult brain?
We proposed that these cells might be required to replenish the
population of non-functional neurons and glial cells during normal
aging. If true, then one would expect to see an increase in the
number of these cells during aging as a response to the need to
replace the aging brain cells. Therefore, we immunostained brains at
different ages (from 1, 3, 7, and 32-day-old flies) with anti-Piwi and
anti-Dpn antibodies and found a substantial increase in the number
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Fig. 3 Vasa, Polar granule component, Ago3, and Piwi colocalize with Tudor in glial granules. a-d Optical sections of the adult brains immunostained
with anti-FLAG antibody to label Tud (magenta) and Vasa (a), Pgc (b), Ago3 (c), and Piwi (d) (green) show the localization of all these proteins in glia.
Arrows point to colocalized foci. e, f Super-resolution images with Tud and Vas (e) and Ago3 (f, Supplementary Movie 1) glial granules. In addition to glia,
Ago3 is expressed in neurons which do not express Tud (a neuronal cell body is indicated with an arrow (f)). g In neurons, Ago3 is frequently expressed in
the cytoplasm of several neuronal cell bodies clustered in the cortex glia (green) with a characteristic “honeycomb” appearance (super-resolution optical
section, left panel). Right panel shows 3D reconstruction of the Ago3-positive neurons (green) and Tud glial granules (magenta) corresponding to the left
image. h, i Super-resolution optical sections and corresponding 3D reconstructions of Tud/Pgc (h, Supplementary Movie 2) and Tud/Piwi (i) individual
glial granules (Tud and Pgc/Piwi are labeled with magenta and green respectively). Scale bar in a, b, d, and ¢ is 50 pm and 40 pm, respectively; 2 pm scale

bar in e is the same for f and g. Scale bar in h and i is 2 pm.

of Piwi/Dpn+ cells during aging. In particular, the majority of 1-
day-old brains show only 2 Piwi/Dpn+ cells (9 out of 13 brains
counted), whereas the majority of the 32-day-old brains have 4-9
cells (6 out of 10 brains counted) (Fig. 4e, f).

Next, we explored whether the presence of these Piwi/Dpn+
cells is evolutionarily conserved. To this end, we immunostained
brains from other Drosophila species, which have been diverging
from their common ancestor for estimated 25-55 million
years2%30 (Drosophila simulans, Drosophila yakuba, and Droso-
phila pseudoobscura), with anti-Piwi and anti-Dpn antibodies.
Similar to D. melanogaster, in all the other species, the Piwi/Dpn

+ cells were found (Supplementary Fig. 9). Interestingly, in D.
yakuba, these cells are observed not only on the dorsal side as
seen in other Drosophila species but also there are additional cells
that are ventrally located (Supplementary Fig. 9b).

Piwi/Dpn-expressing cells form long extensions in adult
brains. Remarkably, we found that long, thin (~1 um in diameter)
Piwi/Dpn+ extensions emanate from Piwi/Dpn+ cells located on
the opposite sides of the brain described above (Fig. 5 and Sup-
plementary Movie 5). The extensions converge into the brain
midline and either end there (Fig. 5 and Supplementary Movies 5
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Fig. 4 Population of Piwi/Dpn-expressing cells in the cortex glia of the adult brain expands during aging. a Left panel, an optical section of the whole
brain showing symmetrically located Piwi-expressing cells (arrows). Frequently, Piwi-positive cells are heterogeneous in size and Piwi-expression levels
and clustered together in each half of the brain (middle panel). Piwi is exclusively cytoplasmic (right panel). b Co-staining of brains with anti-Piwi (green
channel) and anti-Dpn (magenta) antibodies shows colocalization of both proteins in the cells. The images are optical sections obtained with the super-
resolution confocal microscopy. The top panels for each channel were generated from six tiles, individually imaged with super-resolution microscopy, to
show all cells in a single brain. The bottom panels show super-resolution microscopy images of Piwi and Dpn colocalizing in a single cell. ¢, d Piwi (¢) and
Dpn (d)-positive cells (magenta) are enveloped by cortex glia labeled with membrane marker GFP-mCD8 (green). e The number of Piwi-(green) and Dpn-
(magenta)-expressing cells (indicated with arrows) is increased in aging brains (overlay images of brains at a specified age are shown). f Percentage of
brains with Piwi/Dpn-positive cells with two or less cells (green bars) and more than two cells (magenta bars) are shown for four different ages. Number of
brains counted for each age is indicated above the bars. Scale bar in a (left panel) is 50 pm, a (middle panel) 10 pm, a (right panel) 5 pm, b (top panels) 20
pm, b (bottom panels) 2pm, ¢ and d 5pm, and e 50 pm.

and 6) or, in some cases, turn in different directions along the
midline (Supplementary Movie 7). In the midline, there is a cell
or cell cluster that weakly expresses Piwi but not Dpn (Fig. 5a, ¢
and Supplementary Movies 5 and 6). These extensions can also be
seen in D. simulans, indicating their evolutionary conservation
and functional importance (Supplementary Movie 8). Due to the
fact that these cells are very far apart, the extensions may provide
a mechanism for coordinated response by the Piwi/Dpn+ cells to

a yet unknown signal (Fig. 6), which may trigger their pro-
liferation. This idea is consistent with our data showing that the
number of Piwi/Dpn+ cells is increasing during aging (Fig. 4)
implying that the signal production may also be age-dependent.
Alternatively, these Piwi/Dpn+ cells may produce a signal
themselves and use these projections to deliver signal molecules
similarly to the transport in the axonal projections of neurose-
cretory cells** (Discussion).
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Dpn

a Piwi

3D rendering

Fig. 5 Piwi/Deadpan-expressing cells form long extensions in adult brains. a Super-resolution imaging of Piwi (green channel) and Dpn (magenta)-
positive extensions, which emanate from the cells and end in the brain midline converging to a Piwi-positive cell (indicated with arrow at the middle of the
left panel). Also, a smaller Piwi/Dpn+ cell appears to be connected to a larger neighboring cell by the extension (indicated with top arrow). b A super-
resolution optical section showing details of an extension’s segment. ¢ A super-resolution optical section of the brain midline showing details of the central
segments of the extensions converging in the Piwi-positive cell. Right panels in a-¢ show the corresponding 3D reconstructions based on super-resolution
optical sections (green channel). To visualize extensions, the images were generated with either high laser power during acquisition or post-acquisition by
increasing the signal intensity with Imaris software. Scale bars in a, b, and ¢ are 20, 2, and 5 pm respectively.

Discussion

In this study, using super-resolution microscopy, we identified, to
the best of our knowledge, new structures in glia of the Drosophila
adult brain (“glial granules”), which contain germ granule pro-
teins required for germline development including Tud, Vas, Pgc,
Ago3, and Piwi. In addition, we show that in the adult brain,
there is a small population of cells in two symmetrical locations of
the central brain, which express neuroblast and germ cell proteins
Dpn and Piwi, respectively, and these cells expand during aging.
Furthermore, these Piwi/Dpn+- cells are evolutionarily conserved,
reside in the CG and, remarkably, they show long (50-100 um)
extensions, which converge in the midline of the brain at the
Piwi-specific cell cluster.

The presence of multiple germ granule components in glial
granules was unexpected and suggested that, similar to germ cells,
adult brains may employ glial granule components for post-
transcriptional gene regulation mechanisms (Fig. 6). Accordingly,
using next-generation sequencing approaches, we demonstrated
that central molecular scaffold Tud protein functions in the brain

to silence transposable elements and also regulate the non-
transposon transcriptome. Our work showed that Tud is also
required for biogenesis of piRNAs in the brain and suggests that
antisense piRNAs, downregulated in the absence of Tud, target
brain genes to regulate their products’ levels.

We demonstrated that piRNA profiles in the fly brain and
ovary are different and Tud protein has important distinct roles
in piRNA biogenesis and is required for the silencing of trans-
posable elements in both organs. Interestingly, contrary to the
ovary, in the brain, Tud functions to maintain a transposon sense
piRNA bias which is lost in the tud-null mutant brains (Fig. 2d).
How does Tud maintain a sense piRNA bias in the brain? Given
the role of Tud in germ cells as a molecular scaffold!!:31, this
protein may be required for the assembly of efficient transposon
silencing complexes which cleave transposable elements thereby
producing abundant transposon sense piRNAs. Consistent with
this mechanism, we demonstrated in this study that in the brain
Tud is assembled with important piRNA biogenesis factors,
including Piwi family proteins and Vas RNA helicase, in glial
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Fig. 6 Summary schematic and model. Glial granules assembled from Tudor protein scaffold and other germ cell proteins, including Vasa, Polar granule
component, and Piwi, function in brain transcriptome regulation. Evolutionarily conserved Piwi/Dpn-positive cells have been identified in the adult
Drosophila brain and show remarkably long extensions which may be involved in signal transmission caused by aging, memory formation, or perturbations

in the brain milieu such as pathogen invasion.

granules, and that the lack of Tud leads to the upregulation of
many transposable elements. However, we cannot rule out a less
direct role of Tud in the maintenance of the sense piRNA bias in
the brain, which may be mediated through another factor whose
expression level is regulated by Tud. In particular, similar to
piRNAs detected in the wild-type brain, although 13% of piRNAs
DE in tud mutant brains map to transposable elements, majority
of these DE piRNAs are genic piRNAs and most of them map to
exons and 3/-UTRs of non-transposon genes (Supplementary
Fig. 4a, b). Contrary to the brain DE piRNAs, in the ovary, most
DE piRNAs map to transposable elements and only 4% are the
genic piRNAs with the majority of those mapping to introns. The
predominance of genic piRNAs in the brain suggests a role of
piRNAs in the regulation of brain transcriptome and the role of
tud in this process. Consistent with this idea, we found that most
of the antisense piRNAs that are downregulated in tud mutant
brains map to the genes that are upregulated in the mutant brains
(Fig. 2h) indicating a Tud-controlled mechanism of antisense
piRNA-directed regulation of brain transcriptome, which, in the
absence of Tud, leads to the upregulation of certain genes due to
the decrease in the levels of the corresponding antisense piRNAs.
Furthermore, in support of this mechanism, we demonstrated
that the lack of Tud in the brain mostly leads to the down-
regulation of piRNAs (85% of total DE piRNAs) and the levels of
downregulated piRNAs are reduced much more than the increase
in the levels of the upregulated piRNAs in the mutant brains
(Supplementary Fig. 4c). Therefore, these data indicate that Tud
has an important role in the production of piRNAs in the brain
and suggest that the role of these piRNAs is to prevent gene
overexpression in the brain.

In the germline, sense and antisense piRNAs are amplified by
the Ping-Pong cycle mechanism, whereby antisense piRNA
guides a specific Piwi protein to cleave a transposon RNA
between its nucleotides corresponding to the nucleotides 10 and
11 of the antisense piRNA, which results in the production of

transposon-derived sense piRNA. Subsequently, this sense piRNA
guides a cleavage of the antisense piRNA precursor to generate an
antisense piRNA. Therefore, the first ten nucleotides of the
transposon-derived sense piRNAs and the corresponding anti-
sense piRNAs are complementary. We could not detect the Ping-
Pong preference for 10 nt overlap in the brains piRNAs from
either wild-type or tud mutant brain demonstrating the lack of
the efficient Ping-Pong mechanism for piRNA production in the
brain. Contrary to that, the Ping-Pong cycle was similarly active
in both wild-type and fud mutant ovaries (The Ping-Pong z-
score, which is a relative value calculated to measure the pre-
ference of the 10 nt complementarity between sense and antisense
piRNAs3233, was 8.6 and 11.2 in wild-type and fud mutant
ovaries, respectively), indicating that Tud does not participate in
the Ping-Pong cycle in the germ cells.

The differences in the piRNA populations in brain and ovary
and the distinct aspects of Tud function in the piRNA biogenesis
in brain and germ cells uncovered by this work indicate that both
organs use Tud scaffold and its associated proteins to regulate
distinct classes of piRNAs and brain- and germline-specific
transcriptomes.

The presence of cells in the adult brain that express both Piwi
and Dpn and show long Piwi/Dpn+ extensions is intriguing.
What role might these cells and the extensions play? Although
Dpn is a neural stem cell marker and Piwi is intrinsically required
for stem cell maintenance in germline and soma!®1%, we cannot
rule out that these Piwi/Dpn+- cells are differentiated cells, with,
however, unexpected and not previously described co-expression
of Dpn and Piwi. Interestingly, long protrusions such as cyto-
nemes and tunneling nanotubes detected in other cell types were
implicated in intercellular signaling®4. Similarly, the Piwi/Dpn
extensions in the central brain may be involved in signaling that
coordinate the response of the Piwi/Dpn+ cells to a specific
signal. In our model, the signal may be produced in the midline
region of the central brain in the proximity of both extensions,
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which emanate from Piwi/Dpn+ cells on the opposite sides of the
brain (Fig. 6). Furthermore, the signal may be secreted in this area
due to an environmental condition such as pathogen (bacterial or
viral) invasion or an environmental stimulus such as learning
experience that results in the formation of new memory. Con-
sistent with this model, these environmental stimuli could result
in the generalized cell response potentially leading to the pro-
liferation of Piwi/Dpn+- cells. Alternatively, signal molecules may
be produced by Piwi/Dpn+ cells and then transported via the
projections similarly to neurosecretory cells and their axonal
projections?*. Further research will be needed to determine
whether these unusual Piwi/Dpn+- cells are in fact bona fide stem
cells or function as differentiated cells.

Glial granules, described in this work, show distinct clusters of
their protein components whose roles were mainly restricted to
the development of germ cells where they assemble in membra-
neless RNA-protein granules (germ granules). Recently, it was
shown that germ granules in Drosophila germ plasm are assem-
bled from distinct partially overlapping protein and RNA
homotypic clusters>8. Similar to germ granules, glial granules
show distinct protein clusters, which partially overlap, suggesting
that the mechanisms of the assembly of glial granules is similar to
germ granules. The detailed composition of glial granules will
need to be determined to characterize the role of the granules in
the brain; however, our current data suggest a remarkable con-
servation of the assembly mechanisms of large dynamic mem-
braneless organelles in brain and germline.

Methods

tud CRISPR gRNA target selection and donor plasmid cloning. CRISPR/Cas9
methodology was used to tag endogenous tud gene with GFP and FLAG-tags.
These methods were detailed previously>”. In particular, genomic DNA from Vas-
Cas9 flies used for tud tagging (Bloomington Drosophila Stock Center, BDSC stock
#55821) was isolated and a 3 kb fragment of the fud gene was PCR-amplified and
sequenced to verify that there are no SNPs in the region of the tud gene where
gRNA would target the tud locus encoding the N terminus of Tud protein. The
donor plasmids were ScarlessDsRed vectors designed for efficient screening of tag
insertions into a gene locus using DsRed fluorescence in the compound eyes and
the ocelli. Specifically, the vectors have a cassette containing 3x P3 (eye-specific
promoter) and DsRed flanked by two inverted repeats TTAA that can be recog-
nized by the PBac (piggy bac) transposase. The flies that contained a given tag
insertion expressed DsRed in the eyes. Subsequently, the cassette was removed
from tud locus by crossing into pBac Transposase background (BDSC stock
#8285). The fact that the cassette disrupts tud was used to confirm that homo-
zygous females (tud®s DsRed/pygtag DsRed) show the tud mutant (grandchildless)
phenotype. The subsequent removal of cassette with pBac Transposase rescued the
tud grandchildless phenotype and the expression of tagged Tud in the ovary was
then confirmed with western blotting and immunostaining/live-imaging experi-
ments (Supplementary Fig. 1).

Immunohistochemistry. Whole-mount brain immunostaining experiments were
described®®. To identify specific glial subtypes that express Tud, endogenous
FLAG-Tud was crossed into UAS-mCD8-GFP background where mCD8-GFP
(BDSC stock #32184) was generated by Gal4 drivers specifically expressed in dif-
ferent glial subtypes as follows. For the PG, SPG, and CG, Gal4-shn (BDSC stock
#40436), Gal4-mdr65 (BDSC stock #50472), and Gal4-wrapper (BDSC stock
#45784)37 were used, respectively.

Antibodies. For brain immunostaining, tagged Tud was labeled with either rabbit
anti-GFP (Abcam, 1:5000), mouse anti-FLAG (Sigma, 1:5000) or rabbit anti-FLAG
(Novus Biologicals, 1:4000) antibodies. Other antibodies include mouse anti-Repo
(DSHB, 1:200), guinea pig anti-Repo3® (1:2500), mouse anti-Wrapper (DSHB,
1:400), rabbit anti-Vas® (1:2000), rabbit anti-Pgc# (1:2000), rabbit anti-Ago34!
(1:1500), rabbit anti-Piwi (Sdix, 1:1500, Supplementary Fig. 8); and guinea pig anti-
Dpn*2 (1:2400).

Super-resolution microscopy. Super-resolution microscopy was performed with
Zeiss LSM 880/super-resolution Airyscan module system with inverted laser
scanning confocal microscope AxioObserver and Plan-Apochromat x63/1.4 Oil
DIC M27 objective at Vanderbilt University Cell Imaging Shared Resource (CISR).
Images analysis and 3D reconstructions were carried out using Imaris software
(version 9.5, Oxford Instruments) and HP Z8 workstation. To measure the per-
centage of Tud glial granules that overlap with a given protein, Surfaces option in

Imaris was used to automatically identify granules and calculate the percentage of
particles which contain both proteins. Glial granules (141-287) were analyzed for
each Tud/given protein pair.

RNA-seq and piRNA sequencing. For RNA-seq and piRNA sequencing, brains
and ovaries from young tud protein-null flies (y, w; tud', bw, sp/Df(2R)PuP133)11
and control, tud heterozygous flies (y, w; tud!, bw, sp/CyO, P[w+, hs-hid]) were
dissected. Standard cornmeal-molasses medium was used for growing the flies at
25°C. Great care was taken to ensure that the brain samples did not have con-
taminating tissues from other parts of the animal. Specifically, the anesthetized flies
were transferred to a Petri dish where the head was removed and the body was
discarded prior to brain dissection. Brains were dissected from the head capsule
and transferred into a centrifuge tube with 1x phosphate-buffered saline (PBS).
Fifteen to 30 brains were collected per dissection session, to minimize degradation
of tissue. In the end of each session, PBS was removed from the tube and the brains
were resuspended in 1 ml of fresh 1x PBS to remove any possible contaminants.
Finally, all liquid was removed and the brains were frozen in liquid nitrogen and
stored at —80°C.

For small RNA-seq, RNA isolation was done using the mirVana miRNA
isolation kit. Approximately 150 brains per biological replicate were used to yield
the 1 ug of total RNA required for sequencing. Number of biological replicates for
tud mutant brains and corresponding control was 2 and 3, respectively, generating
data from four sequencing samples per replicate. The general construction of small
RNA libraries was described previously*>#4. Accordingly, Drosophila 25 rRNA was
depleted from the total RNA samples and the sequencing libraries were constructed
with TruSeq Small RNA kit (Illumina Catalog number RS-200-0012) in the
presence of 25% (weight/volume) of Polyethylene Glycol 8000 in 3'-adapter
ligation buffer. The sequencing was carried out with Illumina NextSeq 500 using
the NextSeq 500/550 75 cycle High Output Kit v2 (FC-404-2005). Small RNA-seq
from the ovarian samples (RNA from 40-50 pl of ovaries per biological replicate)
was done similarly to the brain samples. In particular, three biological replicates
each for tud mutant and control were obtained generating data from four
sequencing samples per replicate.

For RNA-seq transcriptome analysis, tud mutant and control brains were
dissected as described for small RNA-seq samples. In addition, to test for gender-
specific aspects of transcriptome regulation by Tud, female and male brains were
dissected separately and transcriptome analysis was done for each gender.

Libraries were prepared using the TruSeq Stranded Total RNA LT Sample Prep
Kit-Set A (Cat # RS-122-2301) with Ribo-Zero Gold with following modification.
rRNA depleted RNA samples were made up to a total volume of 100 pl with Ultra
Pure water. A size selection was performed to remove 5S rRNA and tRNA using
the Zymo Research RNA Clean and Concentrator-5 kit (catalog number R1015) as
described®>. RNA libraries from samples for tud mutant and control ovaries were
generated as for the brain samples. Three biological replicates were sequenced per
each of the six conditions: (1) tud mutant female brains; (2) tud mutant male
brains; (3) control female brains; (4) control male brains; (5) tud mutant ovaries;
(6) control ovaries. For each biological replicate, sequencing data from two
sequencing runs and four sequencing lanes per each run were generated.
Sequencing was performed on Illumina NextSeq 500 using the NextSeq 500/550
150 cycle High Output Kit v2.

Bioinformatics analysis. Small RNAs that correspond to piRNAs from piRBase
database?? were filtered to remove sequences corresponding to tRNAs, rRNAs,
snRNAs, and snoRNAs. Also, the sequencing data were filtered to identify the most
abundant unique piRNAs which have a minimum count of ten sequences found
across the samples.

The filtered minimum count list for tud mutant and control for the brain and
ovary were then compared to determine differential expression using edgeR*®. DE
PiRNAs in the brain and ovary were determined with p-value <0.01 and FDR <
0.05 for the brain and ovary, respectively.

Gene features (including 5'-UTR, 3/-UTR, exon, and intron) were extracted
from the dm3 FlyBase annotations*’ using annotations extracted from the UCSC
genome browser®8, These locations were compared to piRNA locations mapped to
dm3 in piRBase using the custom script findOverlappingFeatures.R.

The ping-pong Z-scores were calculated using a PPmeter software32.

DE transposon and non-transposon genes in tud mutant brains and ovaries,
compared to corresponding controls, were identified from RNA-seq data. The raw
fastq reads were mapped to the dmé6 assembly using tophat2 (v2.0.3)*° guided by
the BDGP6 gtf file (v90). DE genes were determined using cuffdiff (v2.2.1)°0 based
on an FDR cutoff of 0.05. A total of 179 transposons were downloaded from the
FlyBase FTP and used for the analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data that support the findings of this study have been deposited in GEO as a superseries
with accession GSE149750. All relevant data are available from the corresponding author
upon request.

10 COMMUNICATIONS BIOLOGY | (2020)3:699 | https://doi.org/10.1038/s42003-020-01432-z | www.nature.com/commsbio


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149750
www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01432-z

ARTICLE

Code availability

All custom scripts used in the analysis are available upon request.

Received: 8 April 2020; Accepted: 23 October 2020;
Published online: 20 November 2020

References

1. Arkov, A. L. & Ramos, A. Building RNA-protein granules: insight from the
germline. Trends Cell Biol. 20, 482-490 (2010).

2. Cinalli, R. M., Rangan, P. & Lehmann, R. Germ cells are forever. Cell 132,
559-562 (2008).

3. Gao, M. & Arkov, A. L. Next generation organelles: structure and role of germ
granules in the germline. Mol. Reprod. Dev. 80, 610-623 (2013).

4. Lasko, P. Patterning the Drosophila embryo: a paradigm for RNA-based
developmental genetic regulation. Wiley Interdiscip Rev RNA, 1610, https://
doi.org/10.1002/wrna.1610 (2020).

5. Little, S. C., Sinsimer, K. S., Lee, J. J., Wieschaus, E. F. & Gavis, E. R.
Independent and coordinate trafficking of single Drosophila germ plasm
mRNAs. Nat. Cell Biol. 17, 558-568 (2015).

6. Marnik, E. A. & Updike, D. L. Membraneless organelles: P granules in
Caenorhabditis elegans. Traffic 20, 373-379 (2019).

7. Treek, T. et al. Drosophila germ granules are structured and contain
homotypic mRNA clusters. Nat. Commun. 6, 7962 (2015).

8. Vo, H. D. L. et al. Protein components of ribonucleoprotein granules from
Drosophila germ cells oligomerize and show distinct spatial organization
during germline development. Sci. Rep. 9, 19190 (2019).

9. Voronina, E., Seydoux, G., Sassone-Corsi, P. & Nagamori, I. RNA granules in
germ cells. Cold Spring Harb. Perspect. Biol. 3, https://doi.org/10.1101/
cshperspect.a002774 (2011).

10. Lehmann, R. Germ Plasm biogenesis—an Oskar-centric perspective. Curr. Top.
Dev. Biol. 116, 679-707 (2016).

11. Arkov, A. L, Wang, J. Y., Ramos, A. & Lehmann, R. The role of Tudor
domains in germline development and polar granule architecture.
Development 133, 4053-4062 (2006).

12. Boswell, R. E. & Mahowald, A. P. tudor, a gene required for assembly of the
germ plasm in Drosophila melanogaster. Cell 43, 97-104 (1985).

13. Kirino, Y. et al. Arginine methylation of Aubergine mediates Tudor binding
and germ plasm localization. RNA 16, 70-78 (2010).

14. Liu, H. et al. Structural basis for methylarginine-dependent recognition of
Aubergine by Tudor. Genes Dev. 24, 1876-1881 (2010).

15. Nishida, K. M. et al. Functional involvement of Tudor and dPRMTS5 in the
PiRNA processing pathway in Drosophila germlines. EMBO J. 28, 3820-3831
(2009).

16. Arkov, A. L. RNA selection by PIWT proteins. Trends Biochem. Sci. 43,
153-156 (2018).

17. Iwasaki, Y. W., Siomi, M. C. & Siomi, H. PIWI-interacting RNA: its biogenesis
and functions. Annu. Rev. Biochem. 84, 405-433 (2015).

18. Gonzalez, J., Qi, H., Liu, N. & Lin, H. Piwi is a key regulator of both somatic
and germline stem cells in the Drosophila testis. Cell Rep. 12, 150-161 (2015).

19. Rojas-Rios, P. & Simonelig, M. piRNAs and PIWI proteins: regulators of gene
expression in development and stem cells. Development 145, https://doi.org/
10.1242/dev.161786 (2018).

20. Creed, T. M., Loganathan, S. N., Varonin, D., Jackson, C. A. & Arkov, A. L.
Novel role of specific Tudor domains in Tudor-Aubergine protein complex
assembly and distribution during Drosophila oogenesis. Biochem. Biophys. Res.
Commun. 402, 384-389 (2010).

21. Zheng, J. et al. In vivo mapping of a dynamic ribonucleoprotein granule
interactome in early Drosophila embryos. FEBS Open Bio 6, 1248-1256 (2016).

22. Wang, J. et al. piRBase: a comprehensive database of piRNA sequences.
Nucleic Acids Res. 47, D175-D180 (2019).

23. Hiraki-Kajiyama, T. et al. Neuropeptide B mediates female sexual receptivity
in medaka fish, acting in a female-specific but reversible manner. Elife 8,
https://doi.org/10.7554/eLife.39495 (2019).

24. Nassel, D. R. & Zandawala, M. Recent advances in neuropeptide signaling in
Drosophila, from genes to physiology and behavior. Prog. Neurobiol. 179,
101607 (2019).

25. Huang, Y., Wan, Z., Wang, Z. & Zhou, B. Insulin signaling in Drosophila
melanogaster mediates Abeta toxicity. Commun. Biol. 2, 13 (2019).

26. Ephrussi, A. & Lehmann, R. Induction of germ cell formation by oskar.
Nature 358, 387-392 (1992).

27. Mahowald, A. P. Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203,
187-213 (2001).

28. Le Thomas, A. et al. Piwi induces piRNA-guided transcriptional silencing and
establishment of a repressive chromatin state. Genes Dev. 27, 390-399 (2013).

29. Hahn, M. W,, Han, M. V. & Han, S. G. Gene family evolution across 12
Drosophila genomes. PLoS Genet. 3, €197 (2007).

30. Richards, S. et al. Comparative genome sequencing of Drosophila
pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res.
15, 1-18 (2005).

31. Gao, M. et al. Glycolytic enzymes localize to ribonucleoprotein granules in
Drosophila germ cells, bind Tudor and protect from transposable elements.
EMBO Rep. 16, 379-386 (2015).

32. Jehn, J. et al. PIWI genes and piRNAs are ubiquitously expressed in mollusks
and show patterns of lineage-specific adaptation. Commun. Biol. 1, 137 (2018).

33. Zhang, Z. et al. Heterotypic piRNA Ping-Pong requires qin, a protein with
both E3 ligase and Tudor domains. Mol. Cell 44, 572-584 (2011).

34. Yamashita, Y. M., Inaba, M. & Buszczak, M. Specialized intercellular
communications via cytonemes and nanotubes. Annu. Rev. Cell Dev. Biol. 34,
59-84 (2018).

35. Gratz, S. J., Rubinstein, C. D., Harrison, M. M., Wildonger, J. & O’Connor-
Giles, K. M. CRISPR-Cas9 genome editing in Drosophila. Curr. Protoc. Mol.
Biol. 111, 31 32 31-31 32 20 (2015).

36. Wu, J. S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains
for live imaging or immunostaining. Nat. Protoc. 1, 2110-2115 (2006).

37. Kremer, M. C, Jung, C., Batelli, S., Rubin, G. M. & Gaul, U. The glia of the
adult Drosophila nervous system. Glia 65, 606-638 (2017).

38. von Hilchen, C. M,, Bustos, A. E., Giangrande, A., Technau, G. M. &
Altenhein, B. Predetermined embryonic glial cells form the distinct glial
sheaths of the Drosophila peripheral nervous system. Development 140,
3657-3668 (2013).

39. Stein, J. A., Broihier, H. T., Moore, L. A. & Lehmann, R. Slow as molasses is
required for polarized membrane growth and germ cell migration in
Drosophila. Development 129, 3925-3934 (2002).

40. Hanyu-Nakamura, K., Sonobe-Nojima, H., Tanigawa, A., Lasko, P. &
Nakamura, A. Drosophila Pgc protein inhibits P-TEFb recruitment to
chromatin in primordial germ cells. Nature 451, 730-733 (2008).

41. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of
transposon activity in Drosophila. Cell 128, 1089-1103 (2007).

42. Homem, C. C,, Reichardt, I, Berger, C., Lendl, T. & Knoblich, J. A. Long-term
live cell imaging and automated 4D analysis of drosophila neuroblast lineages.
PLoS ONE 8, ¢79588 (2013).

43. Gainetdinov, I, Colpan, C., Arif, A., Cecchini, K. & Zamore, P. D. A single
mechanism of biogenesis, initiated and directed by PIWI proteins, explains
PiRNA production in most animals. Mol. Cell 71, 775-790 €775 (2018).

44. Li, C. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals
somatic piRNAs in flies. Cell 137, 509-521 (2009).

45. Zhang, Z., Theurkauf, W. E., Weng, Z. & Zamore, P. D. Strand-specific
libraries for high throughput RNA sequencing (RNA-Seq) prepared without
poly(A) selection. Silence 3, 9 (2012).

46. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139-140 (2010).

47. Marygold, S. J., Crosby, M. A., Goodman, J. L. & FlyBase, C. Using FlyBase, a
database of Drosophila genes and genomes. Methods Mol. Biol. 1478, 1-31
(2016).

48. Karolchik, D. et al. The UCSC Genome Browser database: 2014 update.
Nucleic Acids Res. 42, D764-770 (2014).

49. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

50. Trapnell, C. et al. Differential gene and transcript expression analysis of
RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578
(2012).

Acknowledgements

We thank A. Aravin, B. Altenhein, G. Hannon, J. Knoblich, R. Lehmann, A. Nakamura,
Bloomington Drosophila Stock Center, and the National Drosophila Species Stock
Center for the antibodies and fly lines. Also, we thank J. Schafer and the Vanderbilt Cell
Imaging Shared Resource for help with Zeiss LSM 880/super-resolution microscopy, and
S. Waigel and W. Zacharias from the University of Louisville Genomics Facility for next-
generation sequencing. In addition, we thank Margaret Hagen for helping with some
parts of the work. This work was supported by Kentucky Science and Technology
Corporation grant KSEF-148-502-17-404 and National Science Foundation grant awards
MCB-1715541 to A.L.A. Also, some parts of the work, including next-generation
sequencing and bioinformatics analysis were funded by a grant from the NIH National
Institute of General Medical Sciences, P20GM103436.

Author contributions

A.LA. and SJ.T. designed the experiments, and S.J.T performed them. E.C.R. carried
out bioinformatics analysis. A.L.A. and S.J.T. interpreted the data and wrote the
manuscript.

COMMUNICATIONS BIOLOGY | (2020)3:699 | https://doi.org/10.1038/542003-020-01432-z | www.nature.com/commsbio 1


https://doi.org/10.1002/wrna.1610
https://doi.org/10.1002/wrna.1610
https://doi.org/10.1101/cshperspect.a002774
https://doi.org/10.1101/cshperspect.a002774
https://doi.org/10.1242/dev.161786
https://doi.org/10.1242/dev.161786
https://doi.org/10.7554/eLife.39495
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01432-z

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/542003-
020-01432-z.

Correspondence and requests for materials should be addressed to A.L.A.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
32

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

12 COMMUNICATIONS BIOLOGY | (2020)3:699 | https://doi.org/10.1038/s42003-020-01432-z | www.nature.com/commsbio


https://doi.org/10.1038/s42003-020-01432-z
https://doi.org/10.1038/s42003-020-01432-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome
	Results
	Germ cell gene Tud is expressed in glia in the brain
	Transposable elements are upregulated in tudor mutant adult brains
	Tud regulates brain transcriptome
	Germ-like glial granules
	Adult brain contains Piwi- and Dpn-expressing cells, which are embedded in CG and expand during aging
	Piwi/Dpn-expressing cells form long extensions in adult brains

	Discussion
	Methods
	tud CRISPR gRNA target selection and donor plasmid cloning
	Immunohistochemistry
	Antibodies
	Super-resolution microscopy
	RNA-seq and piRNA sequencing
	Bioinformatics analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




