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Decline in insulin sensitivity due to dysfunction of adi-
pose tissue (AT) is one of the earliest pathogenic events
in type 2 diabetes. We hypothesize that differential DNA
methylation (DNAm) controls insulin sensitivity and obe-
sity by modulating transcript expression in AT. Inte-
grating AT DNAm profiles with transcript profile data
measured in a cohort of 230 African Americans (AAs)
from the African American Genetics of Metabolism and
Expression cohort, we performed cis-expression quan-
titative trait methylation (cis-eQTM) analysis to identify
epigenetic regulatory loci for glucometabolic trait–
associated transcripts. We identified significantly
associated cytosine-guanine dinucleotide regions for
82 transcripts (false discovery rate [FDR]-P < 0.05). The
strongest eQTM locus was observed for the proopio-
melanocortin (POMC; r 5 20.632, P 5 4.70 3 10227)
gene. Epigenome-wide association studies (EWAS) further
identified 155, 46, and 168 cytosine-guanine dinucleotide
regions associated (FDR-P < 0.05) with the Matsuda in-
dex, SI, and BMI, respectively. Intersection of EWAS,
transcript level to trait association, and eQTM results,
followed by causal inference test identified significant
eQTM loci for 23 genes that were also associated with
Matsuda index, SI, and/or BMI in EWAS. These associated
genes include FERMT3, ITGAM, ITGAX, and POMC. In
summary, applying an integrative multiomics approach,
our study provides evidence for DNAm-mediated regula-
tion of gene expression at both previously identified and

novel loci for many key AT transcripts influencing insulin
resistance and obesity.

Reduced insulin sensitivity, or insulin resistance (IR), is an
early marker of type 2 diabetes (T2D) risk, and under-
standing the biological processes that underlie IR is crucial
to the development of new approaches to prevent and
treat T2D (1,2). Transcriptional dysregulation of genes in
tissues involved in glucose homeostasis is a key molecular
mechanism associated with IR and obesity (3–6). As a sec-
ond dimension to the genome, the epigenome contains
important information for shaping the transcriptional
landscape of cells (7). DNA methylation (DNAm) takes
place most often at cytosines proximal to guanine nucleo-
tides (cytosine-guanine dinucleotide [CpG] sites) (8,9), and
it is a major epigenetic modification with a well-documented
mechanistic role in gene expression (9,10). However, the
contribution of DNAm to variation in glucometabolic traits,
including IR and obesity, is poorly understood (11).

Most large-scale methylation studies on glucometabolic
traits use DNA from blood leukocytes (12–18). However,
because of the tissue-specific nature of DNAm, studies
using blood cells may miss important epigenetic regulatory
mechanisms associated with IR (8,9). Adipose tissue (AT)
shows characteristics of an endocrine organ, affects
many metabolic pathways, and has a key role in glucose
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homeostasis (19). In contrast to blood expression profiles,
gene expression in AT strongly correlates with glucose
homeostasis and obesity-related traits (20). Thus, analyz-
ing AT may reveal the broader role of DNAm in deter-
mining insulin sensitivity and susceptibility to T2D by
regulating the transcriptome. Data from epigenetic studies
in European ancestry cohorts suggest that differential
DNAm in AT may play an important role in glucose
homeostasis, obesity, T2D, and related metabolic traits
(21–26). U.S. minority populations, including African
Americans (AAs), are at high risk for IR, obesity, and
T2D. DNAm is highly divergent between populations,
and this divergence can be largely attributed to differences
in allele frequencies (genetic) and environmental expo-
sures (27). However, studies evaluating CpG methylation
in glucose homeostasis–relevant tissues and its role in
determining IR and obesity in African ancestry individuals
are lacking. Thus, building on the unique resources from
our African American Genetics of Metabolism and Expres-
sion (AAGMEx) cohort (5,6), we have generated high-
density AT DNA-methylation profiles using reduced
representation bisulfite sequencing (RRBS).

We hypothesize that differential DNAm in regulatory
regions of a subset of genes controls insulin sensitivity
and obesity by modulating transcript expression in AT of
African ancestry individuals. Integrating DNAm with glu-
cometabolic phenotypes and AT transcript profile data, we
first performed cis-expression quantitative trait methyla-
tion (cis-eQTM) analysis focused on glucometabolic trait–
associated transcripts. eQTM analysis identified local
CpGs (within 6100 kilobase pairs [kb] of the respective
transcript) whose DNAm levels were correlated with ex-
pression levels of glucometabolic trait–associated tran-
scripts. We further completed epigenome-wide association
studies (EWAS) to test for the association of DNAm levels
of CpGs with insulin sensitivity (Matsuda index and SI
derived from oral glucose tolerance test [OGTT] and
frequently sampled intravenous glucose tolerance test
[FSIGT], respectively) and BMI in the AAGMEx cohort.
We integrated results from the EWAS and eQTM analyses
to determine if the trait-associated CpGs are cis-eQTMs
for glucometabolic trait–associated transcripts in AT.
Thus, our study combined available physiological evalua-
tion and gene expression data with AT DNAm profiles in
an integrative functional omics paradigm to trace mo-
lecular changes through layers of biological information,
and it defined epigenetic regulatory mechanisms involved
in modulating insulin sensitivity and obesity in AAs.

RESEARCH DESIGN AND METHODS

Human Subjects
Subcutaneous AT biopsy samples collected from 230 indi-
viduals without diabetes from the AAGMEx cohort (5,6)
were used for epigenome-wide DNAm profiling. The clin-
ical and anthropometric characteristics of the AAGMEx
cohort have been previously described (5,6,28). Briefly,
cohort participants were healthy, self-reported AA men

and women residing in North Carolina, aged 18–60 years,
with a BMI between 18 and 42 kg/m2 (Supplementary
Table 1). All participants provided written informed con-
sent under protocols approved by the institutional review
board at Wake Forest School of Medicine.

Laboratory Measures and Physiological Phenotypes
Details of clinical laboratory measures have been previ-
ously described (5,6,28). Among the participants in the
AAGMEx cohort, AT transcript profiling data were avail-
able for 256 individuals. However, high-quality insulin
sensitivity data from both OGTT and FSIGT was available
for a subset of 230 individuals (male/female 5 124/106),
which were selected for this study. Individuals in the
AAGMEx cohort had a broad range of insulin sensitivity as
measured by the OGTT-derived Matsuda index (mean 6
SD 6.26 6.7) and FSIGT-derived SI (mean6 SD 4.06 3.3).

AT DNAm Profiling and Bioinformatic Analysis
Genomic DNA from ;100 mg frozen subcutaneous AT
biopsies was isolated with the Qiagen DNeasy tissue kit
(cat. no. 69504). Epigenome-wide profiling of DNAm levels
was performed by RRBS. The DNAm profiling and bio-
informatics analysis of RRBS data were conducted by
Diagenode RRBS service (Diagenode, Liege, Belgium).
RRBS libraries were prepared using the Premium RRBS Kit
(cat. no. C02030033; Diagenode). RRBS library pools were
sequenced on a HiSeq3000 (Illumina, San Diego, CA) using
50 base pair (bp) single-read sequencing (SR50) to obtain
at least 30 million reads/sample. The adapter-trimmed
sequence reads were aligned to the Homo sapiens reference
genome (Genome Reference Consortium 37, hg19), and
cytosine methylation values were called using Bismark
v0.20.0 (29) with default parameters. Further, MethylKit
(30) was used to filter the CpG data set for low coverage
and for extremely high coverage to discard reads with
possible PCR bias. The data were then normalized for read
coverage distribution between samples with the MethylKit
default settings (median normalization). Similar to a pub-
lished study (25), we filtered our data set for CpGs with at
least 103 coverage and that are present in at least 75% of
the samples, corresponding to 1,073,614 CpGs. Coverage
tables and normalized methylation values for the CpG sites
covered more than 103 in at least 75% of the samples
were generated with MethylKit. Previous studies have
shown that methylation levels of neighboring CpGs tend
be correlated over a distance of a few 100 bases to 1 kb
(31,32), and in contrast to individual CpGs, the methyl-
ation level of a methylation region (average methylation of
CpG sites in the region) is likely to be robust to measure-
ment errors (25). Additionally, several closely located CpG
sites may serve as a more biologically relevant genomic
unit in epigenetic regulation of transcript expression.
Thus, normalized methylation values summarizing meth-
ylation information over tiling windows of 1,000 bp across
the genome and covering more than 103 in at least 75% of
the samples were extracted using MethylKit (30), and this
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was considered as a CpG methylation region. These ana-
lyses generated methylation levels for 205,566 CpG regions
of 1,000-bp windows. We filtered out nonvariable and
nonautosomal CpG sites and regions and our analyses
focusing on individual CpG sites used data for 1,054,719
CpG sites, while the analyses focusing on CpG regions used
data for 200,800 CpG regions. Further detail is included in
Supplementary Materials.

Genome-Wide Transcript Profiling
Gene expression and DNAm data were obtained from
separate tissue portions from the same subcutaneous AT
biopsy site. Genome-wide expression data were generated
with HumanHT-12 V4 Expression BeadChips (Illumina)
using Illumina GenomeStudio V2011.1. Expression levels
were log2 transformed, robust multiarray average normal-
ized (includes quantile normalization), and batch corrected
using ComBat (https://www.bu.edu/jlab/wp-assets/ComBat/).
Further details of AT gene expression analyses and data
quality control methods have previously been published
(5,6).

Statistical Analysis
Our previous transcriptome-wide association study (TWAS)
analyses identified 7,464 glucometabolic trait–associated
transcripts significantly associated with at least 1 of the
23 individual traits and six composite glucometabolic
phenotypes tested at Benjamini-Hochberg false discovery
rate (FDR)-corrected P value ,0.01 in AT of AAGMEx
participants (5,6,28,33). The eQTM analysis used linear
regression, as implemented inMatrixEQTL to test whether
DNAm levels were associated with transcript expression
levels of these glucometabolic trait–associated transcripts.
Here, the transcript expression level (log2) was the out-
come and the methylation level of each CpG site or region
was the predictor, with age, sex, and admixture (esti-
mates of African genetic ancestry proportion computed
using the ADMIXTURE program; https://dalexander.github
.io/admixture/index.html) as covariates. We searched for
cis-eQTMs in and around 6100 kb of each transcript. As
a measure of the cis-eQTMs effect size and to ensure
reporting of reproducible findings independent of sta-
tistical methods, we estimated the partial correlation
coefficients. These partial correlation coefficients for meth-
ylation and transcript expression levels were also ad-
justed for age, sex, and admixture, and the adjusted
residuals for both methylation and transcript levels
were used to compute the Spearman correlation coeffi-
cient. The P values from the linear regression analysis
were adjusted for multiple comparisons using the Benjamini-
Hochberg FDR procedure (FDR-adjusted P value). After
removing probes with poor expression level (expression
P , 0.05 in ,25% of the individuals) and probes
encompassing common single nucleotide polymorphisms
(SNPs), the analysis focused on the results for 6,774 high-
quality transcripts.

An EWAS was performed to identify the associations
between methylation levels of all measured CpG sites/
regions with Matsuda index, SI, and BMI. For these EWAS
analyses, we computed a linear regression model with the
glucometabolic phenotypes as outcome, methylation level
as predictor and age, sex, and admixture as covariates.
FDR-adjusted P values are reported.

To explore potential mechanistic links, we integrated
both layers of omic (methylome and transcriptome) data
with phenotypic data. We intersected results from EWAS
(CpG methylation to trait) and TWAS (transcript level to
trait) analyses for each trait (Matsuda index, SI, and BMI)
separately with results from eQTM (CpG methylation to
transcript level) analysis. Intersecting results from these
three analyses help to identify the CpG sites/regions that
may determine IR and obesity by regulating expression
of glucometabolic trait–associated transcripts. CpG sites/
regions that are eQTMs for a glucometabolic trait–associated
transcript and are associated with a glucometabolic trait
(Matsuda index, SI, or BMI) are filtered through the in-
tersection of three analyses (eQTM, TWAS, and EWAS)
and further evaluated by using a causal inference test (CIT)
in which CpG is the instrument variable. CpG sites/regions
that are eQTMs (FDR-P, 0.05) for a transcript (FDR-P,
0.01 in TWAS) and are also associated with the specific
trait (EWAS P , 0.01) were selected for the CIT, a formal
test of causality that simultaneously evaluates multiple
conditions known to be consistent with causal mediation.
Since EWAS of three glucometabolic traits yielded few
significant signals at FDR-P, 0.05, a less stringent P value
(P , 0.01) in EWAS was considered for this intersection.
The CIT (34) implemented in the R package CIT (https://
cran.r-project.org/web/packages/cit/index.html) was used
to evaluate potential causal relationships between selected
CpGs, transcript expression, and clinical traits (Matsuda
index, SI, and BMI). In this test, CpG is an instrument
variable (L), trait is the outcome (T), and transcript level
is the potential causal mediator (G). The CIT performs
statistical significance testing for four conditions: 1) L and T
are associated, 2) L is associated with GjT, 3) G is associated
with TjL, and4) L is independent of TjG. The largest of the four
P values (PCIT) is the primary inferential metric in CIT. In this
exploratory analysis, PCIT ,0.05 for a SNP loci was considered
significant and implied putative causation (L→G→T). The
study design and analysis strategy are shown in Fig. 1.

Annotation of CpG Sites and Regions
Selected CpG sites and regions were annotated with the R/
Bioconductor package “annotatr” (https://bioconductor
.org/packages/release/bioc/html/annotatr.html) (35). An-
notation of 1,054,719 CpG sites based on the distance to
a CpG island identified 44.9% CpG sites in CpG islands,
12.8% in CpG shores (2,000 bp of the flanking regions of
the CpG islands), 3.7% in CpG shelves (2,000 bp of the
flanking regions of the shores), and 38.6% in open sea
(outside CpG regions or cpg_inter). The gene region an-
notation analysis classified methylation sites/regions in
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the context of genes. Among CpG sites in this analysis,
only 6.9% were intergenic, while 93.1% were annotated
within or very close (65 kb) to 19,821 genes. These CpG
sites were located in exons (15.5%), introns (35.8%), in-
tron-exon boundary (13.2%), untranslated regions (UTRs)
(7.1%), promoters (13%), or close (1–5 kb) to an annotated
gene (8.6%). To obtain additional evidence on the regula-
tory potential of significant CpG sites identified in cis-
eQTM and EWAS analyses, each site was categorized based
on chromatin state annotation data (ChromeHMM, Core
15-state model) downloaded from the Roadmap Epige-
nomics Project (https://www.roadmapepigenomics.org/).
ChromeHMM data for the three cell types/adult tissue
sources most relevant to AT were used for this functional
annotation (see Supplementary Materials).

In Silico Deconvolution of AT Cell Types
Direct assessment of cell type composition in AT is chal-
lenging (36), and estimates that better reflect an individual’s
AT are warranted (37). We utilized in silico deconvolution
to estimate the relative proportions of cell types in AT,

using both transcriptome and methylome data and two
different reference-based methods. First, we used the
“Adipose SignatureMatrix” recently developed byGlastonbury
et al. (36) in the CIBERSORTx analytical tool (https://
cibersortx.stanford.edu/) to deconvolute AT transcriptome
data and estimate the relative proportions of cell types in AT
of individuals in the AAGMEx cohort. Second, a reference-
based deconvolution algorithm was utilized as detailed in
a previous study (25) to deconvolute AT methylome data of
230 individuals. In this reference-based method, references
were collected from the methylation profiles of purified cell
types from the Blueprint Epigenome Project and the In-
ternational Human Epigenome Consortium data portal (see
Supplementary Materials). We used these predicted pro-
portions of cell types in secondary exploratory statistical
analyses as described below.

Partial correlation coefficients were computed adjusting
for age and sex to test for correlations between cell type
composition and the glucometabolic phenotypes. A prin-
cipal component (PC) analysis with all of the cell type

Figure 1—A schematic diagram of the study design and analyses. We measured the methylation levels of CpG sites (DNAm) across the
genome in subcutaneous AT of 230 deeply phenotyped individuals of African ancestry from the AAGMEx cohort to evaluate their role in
modulating insulin sensitivity and BMI. To explore potential mechanistic links and determine if the altered methylation levels in CpG sites or
regions may increase the susceptibility to IR and obesity via epigenetic regulation of transcript levels, we implemented a three-step analysis
strategy focusing on glucometabolic trait–associated transcripts identified in our previous TWAS. 1) The first step of our study involved
integration of two molecular traits, namely, DNAm and transcript expression profile of AT in eQTM analyses; 2) the second step of our study
involved integration of DNAm and glucometabolic phenotypes (Matsuda index, SI, and BMI) in EWAS; and 3) to explore potential mechanistic
links (CpG → mRNA → glucometabolic trait) in the final step, we integrated both layers of omic (methylome and transcriptome) data with
phenotypic data by intersecting TWAS, eQTM, and EWAS results and by formal CITs on selected loci.
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proportions derived from CIBERSORTx was performed.
The first PC, PC1, was the contrast adipocytes minus M2
macrophage. We performed secondary TWAS (transcript
to glucometabolic trait association) and EWAS (CpG to
glucometabolic trait association) analyses adjusting for cell
type (using PC1) in addition to age, sex, and admixture.

Data and Resource Availability
The transcript expression data set used in this study was
deposited in the Gene Expression Omnibus (identification
no. GSE95674). DNAm profile data generated for the
current study will be deposited to the Gene Expression
Omnibus Sequence Read Archive.

RESULTS

Expression Levels of Glucometabolic Trait–Correlated
Transcripts Are Regulated by eQTMs
Our previous TWAS in AT of AAGMEx participants iden-
tified 6,774 high-quality transcripts that were significantly

correlated (FDR-P , 0.01) with glucometabolic pheno-
types (5,6,28,33). Expression levels of these transcripts
were associated with key glucose homeostasis (e.g., fasting
glucose, fasting insulin, HbA1c, HOMA-IR, Matsuda index,
and SI), anthropometric (e.g., BMI, waist-to-hip ratio, and
% of fat mass), and serum lipid (e.g., triglyceride and HDL
cholesterol) traits and are of high physiological relevance.
A total of 627,021 CpGs were mapped within and around
6100 kb of these 6,774 selected transcripts. We tested
for an association between methylation levels of each
local CpG site with the expression levels for each of these
transcripts (cis-eQTMs), with, on average, 207 6 201 cis-
CpG sites tested for each of these transcripts (Fig. 1, step
1). The cis-eQTM analysis identified 268 CpG-transcript
pairs that met both linear regression FDR-P value , 0.05
and partial correlation coefficient of $0.2 or less than or
equal to 20.2, comprising 107 transcripts and 200 CpG
sites (Supplementary Table 2A). Methylation levels of CpG
sites were both positively (31%) and negatively (69%)

Figure 2—The eQTM analysis identified association of DNAm levels in CpGs with expression of AT transcripts in AAs. Manhattan plots
showing chromosomal distribution of 2log10 (P values) for linear regression (A) and partial correlation (B), and a scatterplot (C) showing
direction of effect (effect size, r) and distribution of 2log10 (P values) for correlation of all cis-CpG sites (6100 kb of the transcript start and
end) tested for 6,774 glucometabolic trait–associated transcripts in adipose. Locus zoomplot shows association ofmethylation levels of CpG
sites with POMC transcript (ILMN_2403664) expression (D). Data for CpG sites around 62 kb of POMC gene is shown. Heat map show
correlation among CpG sites in themarked genomic region. The CpG site chr2:25384345 ismarkedwith a star. Scatterplots show correlation
of DNAm levels at chr2:25,384,001–25,385,000 CpG region with POMC transcript (ILMN_2403664) levels (E).
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correlated with expression levels (Fig. 2). These 200 sig-
nificant cis-CpG sites did not exhibit enrichment for
any particular CpG geography (Fisher exact test [FET] P5
0.44), with 55.6%, 10.1%, and 3.0% located in CpG islands,
CpG shores, and CpG shelves, respectively. There was an
enrichment of intergenic (.5 kb away from a RefSeq
annotated gene) sites (37.1% vs. 6.9%; enrichment FET-
P 5 0.001) among the significant cis-CpGs. On the basis
of hg19 gene annotations, “annotatr” determined that
62.9% of these significant CpG sites were located in (exons,
introns, UTRs) or near (,5 kb) a gene. However, of these
gene-annotated sites, 38.1% were not located in or near
the target gene determined by the eQTM analyses. The cis-
eQTM analyses directly determined the target gene and
suggested functional importance for the CpG sites. Glean-
ing AT/adipocyte-relevant chromatin state annotation
data suggested that 30.4%, 34.6%, 9.6%, and 16.7% of
these significant CpG sites in cis-eQTM loci are in or
flanking transcription start sites, in actively transcribed
(weak or strong) regions, in enhancers, and in repressors
(polycomb), respectively, and supports a putative func-
tional role of these CpG sites.

Compared with individual CpG sites, average methyla-
tion levels of CpG sites in a genomic region are more robust
(less likely to be affected by stochastic variation or mea-
surement errors) and may reduce spurious association
signals (25). The cis-eQTM analysis using methylation
levels of CpG regions (1,000-bp window) identified signif-
icant cis-eQTMs for 82 transcripts (representing 71 Entrez
Gene identification numbers) (Supplementary Table 2B). A
cis-eQTM for 53 of these 82 transcripts was also identified
at the same statistical threshold in the analyses using
CpG sites, underscoring the complementary value of con-
sidering CpG regions. The best eQTM/CpG regions (i.e.,
most strongly correlated CpG region-transcript pair) for
the 20 most significant genes are shown in Table 1. Top
eQTM loci were identified for genes involved in mitochon-
drial function (e.g., ATPIF1, CYBA, MRPL21, MRPL43, and
SDHC), integrin-mediated signaling pathway (e.g., ITGAX),
genes recently identified to be involved in IR (ECHDC3), and
genes with unknown functional connection with glucome-
tabolic phenotypes (ERICH1, MACROD1). Important cor-
roborating evidence comes from the Multi Tissue Human
Expression Resource (MuTHER) cohort, where using the
Illumina Infinium HumanMethylation450K BeadChips
and Human HT-12 V3 Expression BeadChips, they
reported cis-eQTMs for 43 of these 82 transcripts in AT
of European ancestry female twins (FDR 1%; P 5 2.6 3
1024) (32). The strongest eQTM locus in AT of AAGMEx
individuals is within the proopiomelanocortin (POMC;
r 5 20.632, P 5 4.70 3 10227) gene at the chr2:
25,384,001–25,385,000 region (CpG island in the exon
3 and the intron 2/exon 3 boundary) (Fig. 2). A significant
eQTM for POMC was also identified in AT of Europeans in
the MuTHER cohort (32), and blood samples of European
ancestry subjects suggested that hypermethylation in
this region reduces expression of POMC transcripts (38).

Therefore, in addition to identifying eQTMs for novel
genes, our study validated known eQTM loci for impor-
tant genes involved in glucometabolic phenotypes.

AT CpG Methylation Is Associated With Insulin
Sensitivity and Obesity
The above results suggest that there are strong detectable
effects of eQTMs on transcript expression. However, pre-
vious studies in non-African ancestry populations found
a modest effect of specific CpG sites on glucometabolic
phenotypes (23). AAGMEx participants were evaluated by
OGTT and FSIGT, and individuals in the AAGMEx cohort
had a broad range of insulin sensitivity and BMI values.
Thus, to define the role of DNAm in determining IR and
obesity, we performed EWAS to examine the association of
DNAm level of CpGs with Matsuda index, SI, and BMI in
the AAGMEx cohort (Fig. 1, step 2). The genomic inflation
factor l was 1.13, 1.14, and 1.12 for the Matsuda index, SI,
and BMI EWAS, respectively (Fig. 3). We recognize that
genomic inflation factors (originally designed for genome-
wide association studies) commonly overestimate the
true level of inflation in EWAS and TWAS (39). Among
the 1,054,719 CpG sites analyzed for EWAS, 26 and
15 CpG sites were significantly associated (FDR-P ,
0.05) with Matsuda index and BMI, respectively. No
CpG site was associated with SI at FDR-P , 0.05 (Supple-
mentary Tables 3–5 show the association of CpG sites with
traits up to FDR-P , 0.1).

The EWAS analysis using methylation levels of CpG
regions (1,000-bp window) identified 155, 46, and 168
CpG regions associated with Matsuda index, SI, and BMI,
respectively (FDR-P , 0.05) (Supplementary Tables 6–8).
The “annotatr” analysis suggested that CpG regions
associated with Matsuda index, SI, and BMI (FDR-P #
0.05) were linked to 100, 31, and 113 genes, respectively.
The CpG regions annotated to seven genes (TMEM88,
AGAP2, PTPRN2, SYTL1, GTPBP3, RAP1GAP2, and
LINC00982) were associated with all three traits. The
CpG region spanning chr17:7757001–7758000 is located
in the putative promoter region of transmembrane pro-
tein 88 (TMEM88) and is within the 39UTR of lysine
demethylase 6B (KDM6B). This was the most strongly
associated CpG region for SI (b525.92, adj-R2 5 0.147,
P5 2.513 1029) and BMI (b5 4.5, adj-R2 5 0.228, P5
2.71 3 10211) (Fig. 3). This region was also strongly
associated with the Matsuda index (b5 25.25, adj-R2 5
0.154, P 5 1.6 3 1027).

An RRBS analysis of AT of Finnish individuals identified
associations of four CpG regions in FASN with multiple
glucometabolic traits including BMI (chr17:80,051,500–
80,053,080; b 5 9.44, P 5 1.31 3 10211) and Matsuda
index (25). Despite the differences in RRBS coverage for
the FASN gene region, we observed a significant associa-
tion of methylation levels at the chr17:80,052,001–
80,053,000 CpG region with BMI in AAs (b 5 1.91, P 5
9.04 3 1026). Also, consistent with published studies
(38,40), the strongest eQTM locus identified in our study
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at chr2:25,384,001–25,385,000 for the POMC gene was
associated with BMI (b 5 0.77, P 5 0.007) but did not
meet FDR significance in the EWAS.

AT Cell Type Composition and Association of CpG
Methylation With Glucometabolic Phenotypes
In silico deconvolution of AT cell types based on tran-
scriptome data estimated that the adipocytes were the
most dominant relative cell type (proportion: mean 6 SD
0.78 6 0.11, median 0.80), followed by M2 macrophages
(0.20 6 0.10) in AT of AAGMEx participants (Supplemen-
tary Fig. 1). Similarly, in silico deconvolution of AT cell
types based on CpG DNAm profile data also suggested that
adipocytes were the most common cell type (0.799 6
0.104, median 0.818) (Supplementary Fig. 2), followed by
endothelial cells (0.067 6 0.31), macrophages (0.042 6
0.056), and neutrophils (0.038 6 0.059) in the AT from

the AAGMEx cohort. The AT macrophage (M1 and M2
combined) proportion estimated by the transcriptome-
based CIBERSORTx was positively correlated with BMI
(r 5 0.49, P 5 1.8 3 10216) and waist-to-hip ratio (r 5
0.46, P 5 4.72 3 10214), but it was inversely correlated
with Matsuda index (r 5 20.46, P 5 5.32 3 10214)
(Supplementary Fig. 1). Similarly, the AT macrophage
proportion estimated by the methylome-based analysis
was positively correlated with BMI (r5 0.21, P5 1.463
1023) but was inversely correlated with Matsuda index
(r 5 20.20, P 5 3.33 3 1023) (Supplementary Fig. 2).
Thus, both in silico analyses suggested that ;80% of the
cells in AT of our cohort were adipocytes and were a major
contributor in the AT transcriptome andmethylome data.
However, other cell types contributed to expression and
methylation levels in bulk tissue data. Adjustment for
cell type proportions in the analysis models is a statistical

Figure 3—EWAS identified association of AT CpG methylation levels with insulin sensitivity and obesity. Genome-wide Manhattan plots
showing2log10 (P values) for association of 1,054,719 CpG sites with Matsuda index (A), SI (B), and BMI (C). Q-Q plots showing distribution
of observed and expected –log10 (P values) in EWAS for Matsuda index (D), SI (E), and BMI (F ). DNAm levels of CpG sites in the promoter
region of the TMEM88 gene are associated with glucometabolic phenotypes in AAs. Locus zoom plots showing association of methylation
levels of CpG sites with Matsuda index (G), SI (H), and BMI (I). Data for CpG sites around 62 kb of TMEM88 (which also includes 39UTR of
KDM6B) is shown. A heat map shows a correlation among CpG sites in the marked genomic region. The CpG site chr17:7757500 is marked
with a star. Scatterplots show correlation of DNAm levels at the chr17:7757001–7758000 CpG region with Matsuda index (J), SI (K), and BMI
(L).
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approach to remove the confounding effects related to cell
type heterogeneity. However, accuracy of the cell type
estimates obtained through in silico deconvolution me-
thods in our study could not be validated by empirical
measurements of cell type composition in our frozen tissue

samples. Thus, we used these predicted proportions of cell
types in secondary exploratory EWAS and TWAS analysis
adjusted for age, sex, admixture, and cell type estimates.
In general, we observed an overall decrease in signifi-
cance levels in EWAS (Supplementary Fig. 3) and TWAS

Figure 4—Integration of the eQTM analysis, EWAS, and TWAS results suggests that the DNAm level at the chr11:63974001–63975000 CpG
region determines insulin sensitivity and obesity by regulating expression of FERMT3 and MACROD1 in AT of AAs. Scatterplot showing
correlation betweenmethylation level of the CpG region chr11:63974001–63975000with FERMT3 (ILMN_2366330) transcript expression (A),
methylation level of CpG region chr11:63974001–63975000 with MACROD1 (ILMN_1740960) transcript expression (B), FERMT3
(ILMN_2366330) transcript expression and Matsuda index (C), FERMT3 (ILMN_2366330) transcript expression and BMI (D), MACROD1
(ILMN_1740960) transcript expression and Matsuda index (E), MACROD1 (ILMN_1740960) transcript expression and BMI (F ), methylation
level of the CpG region chr11:63974001–63975000 with Matsuda index (G), and methylation level of the CpG region chr11:63974001–
63975000 with BMI (H). Locus zoom plots showing (CpG sites in chr11:63,901,609–63,985,308) eQTM: association of methylation level of
CpG sites with FERMT3 (ILMN_2366330) transcript expression (I); eQTM: association of methylation level of CpG sites with MACROD1
(ILMN_1740960) transcript expression (J); and EWAS: association of methylation level of CpG sites with BMI (K). A heat map shows
a correlation among CpG sites in the marked genomic region. The CpG site chr11:63974831 is marked with a star.
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(Supplementary Fig. 4) after adjusting for cell types.
Among the 155, 46, and 168 CpG regions that were
significantly associated (FDR-P # 0.05) with Matsuda in-
dex, SI, and BMI, respectively, in the cell type–unadjusted
EWAS analysis, all except one BMI-associated region
remained nominally associated (P , 0.05) in cell type–
adjusted EWAS analysis (Supplementary Tables 6–8).
Similarly, among the 4,441, 2,251, and 4,664 transcripts
selected for their significant association (FDR-P # 0.01)
with Matsuda index, SI, and BMI, respectively, based on
our cell type–unadjusted TWAS analysis, 3,705 (83.4%),
1,838 (81.7%), and 3,476 (74.5%) remained nominally
associated (P , 0.05) with Matsuda index, SI, and BMI,
respectively, in the cell type–adjusted TWAS analysis. Our
exploratory secondary analysis with an additional adjust-
ment for estimated cell type proportions suggested aminor
impact of AT cell type heterogeneity on our top ranked
findings. Thus, in the absence of empirical cell counts, we
considered our results from the cell type–unadjusted
primary analysis for the final interpretation of our
findings.

Insulin Sensitivity– and Obesity-Associated CpGs
Regulate Levels of Transcript Expression in AT
To explore potential mechanistic links and determine if
altered methylation levels may increase the susceptibility
to IR and obesity via epigenetic regulation of transcript
levels, we jointly analyzed the EWAS, TWAS, and eQTM
data (Fig. 1, step 3). Intersection of cis-eQTM, EWAS, and
TWAS results identified CpGs that were eQTM for gluco-
metabolic trait–associated transcripts and were also asso-
ciated with Matsuda index, SI, and BMI. We restricted
this search to CpGs that were significant cis-eQTM (FDR-
P , 0.05 and jrj $ 0.2) for a transcript (TWAS FDR-P ,
0.01), associated with the same glucometabolic trait
(EWAS P , 0.01), and directionally consistent. We iden-
tified 11, 12, and 14 cis-CpG sites that were associated with
Matsuda index, SI, and BMI, respectively, and were
eQTMs for 10, 11, and 10 genes associated with the
respective glucometabolic phenotypes (Supplementary
Tables 9–11). Intersection of results for CpG regions
(1,000 bp) using the same statistical thresholds identified
18, 12, and 16 cis-CpG regions that were associated with
Matsuda index, SI, and BMI, respectively, and were eQTMs
for 19, 13, and 18 genes associated with the respective
glucometabolic phenotypes (Supplementary Tables 12–14).
Among the loci identified by this intersection analysis,
methylation levels of CpG regions associated with tran-
script expression levels for nine genes (CYBA, MAP4K1,
ITGAM, ITGAX, MACROD1, FERMT3, MYO1G, FGR, and
SLC16A3) were associated with Matsuda index, SI, and
BMI. CpG sites and regions selected by the intersection
method above were further evaluated by CIT to identify
potential mechanistic relationships between CpGs and
glucometabolic traits mediated by transcript expression
(CpG → mRNA → trait) (Supplementary Tables 9–14). A
subset of significant CpG regions based on CIT are shown

in Table 2. Significant CpG regions identified by CIT
(PCIT,0.05) are putative epigenetic regulators of 23 genes,
including genes involved in the integrin-mediated signal-
ing pathway (FCER1G, ITGAM, ITGAX, FERMT3, and FGR;
enrichment P 5 1.83 3 1024). Methylation levels at
the chr11:63974001–63975000 CpG region covering the
59UTR, first intron and exon of FERMT3 were associated
with Matsuda index (b5 0.69, P5 9.783 1023) and BMI
(b520.95, P5 1.033 1027). Interestingly, this locus is
an eQTM with methylation levels inversely correlated with
expression of FERMT3 (ILMN_2366330, r 5 20.32, P 5
5.57 3 1027) and directly correlated with expression of
MACROD1 (ILMN_1740960, r 5 0.34, P 5 1.25 3 1027)
(Fig. 4). Fermitin family member 3 (FERMT3) is involved in
integrin activation, while the MACRO domain containing
1 (MACROD1, also known as Leukemia-related protein 16/
LRP16) enhances inflammatory responses by upregulating
a Rac1-dependent pathway, and reduces insulin-stimulated
glucose uptake in adipocytes (41). In our study, FERMT3
expression was inversely correlated (ILMN_2366330,
b521.32, P5 6.03 10214), whileMACROD1 expression
was positively correlated (ILMN_1740960, b 5 3.10,
P5 3.443 10211) with Matsuda index. The CIT suggested
(PCIT ,0.01) the chr11:63974001–63975000 CpG region
as a putative causal determinant of insulin sensitivity and
obesity via its role in epigenetic regulation of the expres-
sion of the FERMT3 and MACROD1 transcripts.

DISCUSSION

Glucose homeostasis and obesity traits are driven by
a complex interplay among genetic, epigenetic, and envi-
ronmental factors (42). Thus, epigenetic modifications,
including DNAm, are hypothesized to play a role in the
pathogenesis of IR and obesity, likely via regulation of gene
expression in tissues involved in glucose homeostasis
(23,43). In this study, we measured the methylation levels
of CpG sites across the genome in subcutaneous AT of
deeply phenotyped individuals of African ancestry from
the AAGMEx cohort to evaluate their role in modulating
insulin sensitivity and BMI. One cannot determine cau-
sality without perturbation experiments, particularly in
human studies, and we must rely primarily on observa-
tional studies leveraging the natural variation in DNAm
levels to develop hypotheses. However, concurrent avail-
ability of other molecular phenotypes, especially those
falling in the putative causal cascade, strengthen resulting
hypotheses that can be tested by experimental approaches.
AAGMEx is a unique cohort that has genome-wide mul-
tiomic profiles, including DNAm and transcript expres-
sion levels, in AT and insulin sensitivity as measured by
both FSIGT and OGTT. Our analyses of glucometabolic
trait–associated transcripts identified eQTMs, or loci in
which CpG methylation levels were correlated with ex-
pression levels of a subset of these transcripts, suggesting
epigenetic regulation of these pathophysiologically rele-
vant genes in AT of African ancestry individuals. EWAS in
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the AAGMEx cohort detected associations between meth-
ylation levels at many CpG regions with Matsuda index, SI,
and BMI. Focusing on epigenetic regulation of glucome-
tabolic trait–associated transcript expression, we identi-
fied significant CpG regions or eQTM loci for 19, 13, and
18 genes that were also nominally associated withMatsuda
index, SI, and BMI, respectively, in EWAS. CITs further
supported the putative regulatory role of a subset of these
CpG regions in determining insulin sensitivity or obesity
by epigenetic regulation of expression of 23 genes. These
associations include integrin a M (ITGAM), integrin a X
(ITGAX), FERMT3, and POMC. Previous studies in Euro-
pean ancestry cohorts reported CpG methylation–mediated
transcriptional regulation and/or association with glucome-
tabolic phenotypes for some of these loci, while others were
novel. Thus, results from this study supported our hypothesis
and provided evidence that differential DNAm at putative
regulatory regions contributes to insulin sensitivity and
obesity by modulating AT transcript expression of a subset
of genes in AAs.

Previous studies in AAGMEx identified strong associa-
tions between quantitative glucometabolic phenotypes
and transcript levels of 6,774 genes in AT (5,6,28,33). In
this study, we focused on testing whether and which
expression levels of these 6,774 transcripts was modulated
by altered DNAm levels in nearby regulatory regions
(6100 kb). Our analyses identified cis-eQTMs (FDR-P #
0.05) for 107 and 82 transcripts based on analysis using
methylation levels of CpG sites (uncorrected P # 1.94 3
1025) and CpG regions (uncorrected P # 1.96 3 1025),
respectively. Among this cumulative list of 136 transcripts,
cis-eQTM was previously reported for 64 transcripts in AT
of European ancestry individuals from the MuTHER co-
hort (FDR ,0.01, uncorrected P 5 2.6 3 1024, N 5 662,
female twins) (32). Compared with.1 million CpG sites in
our RRBS-based methylation profiling, MuTHER used data
on 344,303 CpG sites from a fixed panel of sites on the
Illumina HumanMethylation450 K BeadChips. Addition-
ally, a cis-eQTM analysis in MuTHER was restricted to an
average of 17 CpG sites within or 1.5 kb upstream of each
transcript, while in the AAGMEx cohort, we tested an
average of 207 CpG sites within or 6100 kb of each
transcript. Despite differences in study design and specific
CpG sites analyzed, our study in AAs provides gene-level
evidence of the epigenetic regulation of a subset of glu-
cometabolic trait–associated transcripts. These and other
studies interrogated only a small fraction of the ;30
million CpG sites in the human genome. Thus, further
studies with higher coverage of CpG sites will be required
to uncover the full spectrum of epigenetic regulation and
to determine ancestry-specific regulation of these gluco-
metabolic trait–associated transcripts.

The strongest eQTM in our study was POMC in the
chr2:25384001–25385000 region (P 5 4.70 3 10227),
which was nominally associated with BMI (P 5 0.007)
(Supplementary Fig. 5). CIT suggested (PCIT 5 0.015) that
the chr2:25384001–25385000 CpG region was a putative

causal determinant of BMI via its role in epigenetic
regulation of the expression of POMC transcript. The CpG
site cg06846259 (chr2:25,384,655)was the strongest cis-eQTM
site for POMC transcript expression (ILMN_2403664,
b520.122, P5 1.513 10229) in AT from the MuTHER
cohort (32). POMC is mostly strongly synthesized in the
pituitary and arcuate nucleus of the hypothalamus, but the
POMC transcript is expressed in other tissues (38,44).
POMC encodes a preproprotein that undergoes extensive,
tissue-specific, posttranslational processing and may yield
as many as 10 biologically active peptide hormones,
namely, adrenocorticotrophic hormone,melanocyte-stimulating
hormone, and b-lipotropin, which are involved in diverse
cellular functions (44). Mutations in this gene have been
associated with early-onset obesity. In POMC gene-centric
studies, higher DNAm of CpG sites in this region was
observed in arcuate nucleus neurons (r5 0.34, P5 0.028,
N5 41), as well as in peripheral blood cells (r5 0.18, P5
0.008, N 5 228) of obese German individuals compared
with normal weight control subjects (38,40), and it was
considered a predictor of obesity, independent of tissue.
The CpG sites at chr2:25,384,590 and chr2:25,384,569
were the most significantly associated with obesity in
a study by Kühnen et al. (40). In our analysis, we had high-
quality data for 33 CpG sites in this region, and 21 of them
were significantly negatively correlated with POMC expres-
sion (ILMN_2403664 at FDR-P # 0.05). Although CpG
sites at chr2:25,384,569 and chr2:25,384,590 were among
the significant sites, chr2:25,384,585 (r 5 20.49, P 5
1.063 10214) was the most significant eQTM site and was
associated with BMI (b5 0.464, P5 0.0029) in AAGMEx.
Thus, replicating previous studies in European ancestry
cohorts, our study suggests a role for cis-eQTM loci in the
exon 3 and intron 2/exon 3 boundary of the POMC gene in
regulating BMI in AAs as well.

The cis-eQTM analysis in this study identified associ-
ation of 136 AT transcripts with DNAm of individual
CpG sites or average methylation levels of CpG sites
in CpG regions, which suggests epigenetic regulation of
the transcript levels of these genes. A previously completed
cis-eQTL analysis on this cohort (45) suggested the asso-
ciation of 42 of these 136 transcripts with genotypes of
a local SNP (P# 6.95 3 1026, FDR 5 0.01). For example,
we identified the strongest eQTM for POMC expression in
AT (ILMN_2403664; chr2:25384001–25385000;b520.584,
P 5 3.30 3 10227). Our cis-eQTL analysis suggested that
rs7591899 (chr2: 25389159) and rs6713396 (chr2:
25384705) were the strongest associated genotyped and
imputed cis-expression regulatory single nucleotide
polymorphism, respectively. The minor allele C of
rs6713396 was associated (minor allele frequency 5
0.27, b5 0.12, P5 5.513 10245) with higher expression
of POMC in AT of AAGMEx participants (Supplementary
Fig. 5). The minor allele C of rs6713396 was also associated
(effect 5 0.88, P 5 2.30 3 10212) with higher levels of
POMC (ENSG00000115138.10) in subcutaneous AT in
GTEx project (V8; https://gtexportal.org/) participants.
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Previous studies suggested an association of CpG DNAm
levels in adipose and other tissues with genotypes of
nearby SNPs in European ancestry populations (32,46).
Interestingly, methylation levels in the chr2:25384001–
25385000 regionwere associatedwith SNPs rs7591899 and
rs6713396. The allele C of rs6713396 was associated
(b 5 20.1022, P 5 5.42 3 10222; adjusted for age, sex,
and admixture) with lower methylation levels of the
chr2:25384001–25385000 CpG region in AT of AAGMEx
participants (Supplementary Fig. 5). Association between
POMC transcript level and methylation level of the
chr2:25384001–25385000 CpG region (cis-eQTM) was
reduced upon adjustment for genotype of rs6713396
(b 5 20.5015, P 5 2.09 3 1028). Thus, genotype-
dependent modulation of DNAm at the chr2:25384001–
25385000 CpG region may modulate the transcript levels
of POMC in AT. Previous studies in blood samples of
European ancestry subjects suggested that hypermethyla-
tion in this region interferes with the binding of the
transcription enhancer P300 and reduces expression of
POMC transcripts (38). A complete methylation quanti-
tative trait analysis will be required to determine the role
of genetic polymorphisms in epigenetic modulation of the
expression of all glucometabolic trait–associated tran-
scripts by differential DNAm in AAs.

Compared with molecular traits, such as DNAm and
gene expression, complexity of regulatory mechanisms
determining clinical and physiological traits, such as IR and
obesity, is expected to be greater (47). IR in a population is
a heterogeneous mix of molecular phenotypes, caused by
derangements in the expression of multiple genes contrib-
uting to obesity and altered insulin sensitivity. Differential
DNAm at each CpG locus is likely to have a stronger effect
on the transcript level of a nearby gene but a comparatively
weaker effect on insulin sensitivity or obesity. Published
EWAS in European ancestry case-control cohorts compar-
ing AT DNAm levels in insulin resistance with sensitive
participants (48) and patients with and without diabetes
(24) identified CpG sites nominally associated with these
complex traits, with mean difference in methylation level
of only 2–3% between groups. Additionally, EWAS cannot
directly implicate the target gene for clinical trait–associated
CpG sites. For example, the insulin sensitivity and BMI-
associated CpG region chr17:7757001–7758000 spans the
promoter of TMEM88 and 39UTR of KDM6B, but the eQTM
analysis suggests TMEM88 as the putative target gene in
AT. Also, expression of TMEM88 (ILMN_1757129) but
not KDM6B in AT is associated with Matsuda index and
BMI. These data suggest the importance of the availability
of additional molecular data in determining the target
genes for EWAS-implicated trait-associated CpG sites.
Thus, to identify epigenetic regulatory loci for glucometa-
bolic traits, integration of two molecular traits, namely,
DNAm and transcript expression profile of AT in eQTM
analyses was the first step of our study. We identified
eQTMs for several genes involved in integrin-mediated
signaling pathway (including ITGAX, ITGAM, FERMT3,

FCER1G, and FGR), and CITs further provide statistical
evidence that altered DNAm levels in a subset of those loci
may determine IR and/or obesity by regulating transcript
expression in AT of AAs. Thus, our multiomic approach
initiated with eQTM analyses was successful in determin-
ing epigenetic regulatory mechanisms of insulin sensitivity
and obesity in AAs.

In summary, this study partially delineates the epige-
netic architecture of AT in AAs and suggests a role of
DNAm-mediated regulation of gene expression at both
previously identified and novel loci in determining IR and
obesity. Integration of TWAS of glucometabolic traits,
eQTM, and EWAS analyses enabled us to determine a plau-
sible causal link between CpG methylation, transcript
expression, and glucometabolic traits. However, direction-
ality of the DNAm-gene expression relationships cannot be
fully ascertained from our analyses based on a cross-
sectional cohort. Further, epigenetic analyses in longitudinal
or interventional cohorts and functional studies, including
targeted editing of the methylation level (49,50) at those
eQTM loci, will be required for direct experimental
validation.
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