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A detailed open access model of the 
PubMed literature
Kevin W. Boyack   1 ✉, Caleb Smith2 & Richard Klavans3

Portfolio analysis is a fundamental practice of organizational leadership and is a necessary precursor 
of strategic planning. Successful application requires a highly detailed model of research options. 
We have constructed a model, the first of its kind, that accurately characterizes these options for the 
biomedical literature. The model comprises over 18 million PubMed documents from 1996–2019. 
Document relatedness was measured using a hybrid citation analysis + text similarity approach. The 
resulting 606.6 million document-to-document links were used to create 28,743 document clusters and 
an associated visual map. Clusters are characterized using metadata (e.g., phrases, MeSH) and over 
20 indicators (e.g., funding, patent activity). The map and cluster-level data are embedded in Tableau 
to provide an interactive model enabling in-depth exploration of a research portfolio. Two example 
usage cases are provided, one to identify specific research opportunities related to coronavirus, and 
the second to identify research strengths of a large cohort of African American and Native American 
researchers at the University of Michigan Medical School.

Background & Summary
Portfolio analysis is a common practice in the finance world where options (e.g., stocks, bonds) are well defined. 
Portfolio analysis is also being increasingly done in research institutions. It is a more difficult problem here, 
however, because research options – the topics of research – are not rigorously defined. Research administrators 
thus often have a somewhat cloudy view of their institution’s research activity which means that their visions 
and missions are difficult to translate into plans involving concrete choices. Due to ambiguity in the definition of 
research options, evaluation of potential responses to societal and economic pressures are likewise ambiguous.

Fuzzy descriptions of research options are now being replaced by highly detailed and accurate models of 
the scientific literature. For instance, tens of millions of documents in the Scopus database have been grouped 
into 91,000 document clusters using extended direct citation among documents1, a process that has been shown 
to create coherent clusters2–4. This same process was replicated and made available in Elsevier’s SciVal product 
where document clusters (called “Topics”) are now used by many institutions for portfolio analysis and research 
decision-making5. The most recent versions of the Leiden Ranking6, developed by the Centre for Science and 
Technology Studies (CWTS) at Leiden University, are based on a model of science that consists of 4,535 doc-
ument clusters7 (referred to as micro-level fields) partitioned from the citation network. While these previous 
works made use of subscription-based citation databases (Scopus and the Web of Science), the goal of this 
work was to create a similarly accurate model based on the (openly available) PubMed literature for strategic 
decision-making in biomedical research.

Figure 1 illustrates the process used to create the model along with the resulting framework. The first 
major step is the creation of a detailed model of science. Using over 18 million PubMed records from 1996–
2019, each with a PubMed identifier (PMID), we retrieved similar article (SA) scores using an Entrez e-utility 
and citation links from the OCC8 and COCI9 databases. After merging, we used the resulting 606.6 million 
document-document links to cluster the documents into 28,889 clusters using the Leiden algorithm10. The second 
major step is to characterize each cluster using the document level metadata along with US patent reference data, 
US National Institutes of Health (NIH) and National Science Foundation (NSF) project data from Star Metrics, 
paper-to-project link tables from NIH ExPORTER, and additional metrics from the NIH iCite2.0 database11,12. 
We also created a visual map of the clusters using the OpenOrd layout routine13 and cluster-level relatedness. 
Some clusters were removed from the model at this point. Finally, we loaded the resulting cluster-level metadata, 
indicators and cluster positions into Excel and Tableau workbooks; the Excel workbook makes the data readily 
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available for re-use while the Tableau interface enables visual exploration and filtering of the model for detailed 
analysis.

This model is the first highly granular characterization of the PubMed literature that can be used for portfolio 
analysis at the level of research topics. It is also the first large scale model of any literature that is based on both 
citation links and the textual relatedness of documents and is thus among the most accurate characterizations of 
the literature ever created. The open database and tool contain detailed information that can be used to search and 
explore topics related to biomedical science, and to analyze these topics within the context of funding, industrial 
application, clinical application, translational potential, and other features.

In addition, this model is complementary to the recently published PubMed Knowledge Graph (PKG)14 which 
contains document level information from PubMed and other sources such as extracted bioentities, disambigu-
ated authors and institutions. The cluster-level analytics enabled by our model are an important addition to the 
type of data provided by PKG, enabling both macro- and micro-level analysis of the research landscape.

Methods
The methodology used to create and characterize our PubMed model uses and combines data from many sources 
as listed in Table 1.

For the model we chose to include PubMed documents from 1996–2019. Given that the model is intended 
to be used for planning and evaluation of recent trends, we felt no need to include historical documents much 
older than 20 years. 1996 was chosen as the starting year to enable comparison to our Scopus-based models1 if 
need arises. Documents were also limited to those that either had references in the NIH Open Citation Collection 
(OCC)8,15 or for which the National Library of Medicine (NLM) had already calculated similar article (SA) scores, 
resulting in a set of 18,765,313 documents.

Before calculating relatedness between pairs of papers, we further filtered the documents by removing those 
from a set of 42 journals, primarily from the physical sciences, that were found in a preliminary study to create 
clusters that were unconnected to the biomedical core of the document set. These clusters, which contained 
papers from disciplines such as high energy physics, physical chemistry and crystallography, were distracting to 
early users of our models since they had nothing to do with biomedicine. Although many other journals could 
have been removed, we chose those that were large and whose removal would most affect the overall model. Upon 
removal of the 550,659 documents in these journals, our set was left with 18,214,654 documents, which were then 
used to create the model.

Relatedness measure and clustering.  Our model is constructed using a hybrid relatedness measure 
composed of direct citation (DC) and textual SA scores. We use a 50:50 DC + SA hybrid measure that our most 
recent study found to be more accurate than either a pure citation-based measure or pure text-based measure16.

The relatedness rij between papers i and j is calculated as

α α= + -r r r(1 ) (1)ij
HYB

ij
DC

ij
SA

The parameter α is set such that α ∑ rij
DC = (1 - α) ∑ rij

SA to achieve a 50:50 weighting of citation and textual 
relatedness across the entire set of document pairs.
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Fig. 1  Data and process used to create the PubMed model and associated tools.
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where cij = 1/nref if i cites j and is 0 if not, and nref is the number of references in document i within the OCC set, 
and

=r S S/max( ) (3)ij
SA

ij ij

using SA scores (S). Since SA scores are symmetrical, in cases were document pairs ij and ji were both within the 
set, only the ij pair was included. Each type of relatedness value was normalized to its corresponding maximum. 
Thus, all values of rij

DC and rij
SA ranged between 0 and 1.

Citation links for the citation portion of the relatedness measure were obtained from two sources. First, we 
used the January 2020 version of the OCC linkage set which contained references for 13,013,385 (71.44%) of the 
documents in our set. Of these, 12,578,393 cited other PMID within the set, comprising 315,512,095 citation 
links. It is important to use complete data where possible to obtain optimum results. We note that complete 
reference data are not available from any source, paid or open. Reference data can be missing for several reasons 
including publishers not making references available to aggregators (such as Scopus or WOS) and lack of open 
data. For comparison, while the OCC is missing references for 13.1% of PubMed documents in 2017, Scopus is 
also missing references for 7.4% of the same set of documents. Overall, the OCC is a relatively complete source of 
reference data (over 80%) for recent years and is thus very suitable for use in science mapping studies.

Second, we used data from OpenCitations (COCI) that were downloaded on January 20, 2020 and converted 
those data to PMID using DOIs. After matching the OCC and COCI data, it was found that the COCI data con-
tain 186,399,013 links between pairs of PMID within our set, of which only 1,488,388 are not in the OCC linkage 
set. The COCI set contains references for only 27,065 documents that are not covered in the OCC set. Thus, the 
OCC data are a relatively complete set on their own and the COCI data add little to the total. The combined OCC/
COCI sets of citation links contained 317,000,482 links between PMID within our document set.

For the textual component of the hybrid relatedness measure, we used the similar article (SA) scores (https://
www.ncbi.nlm.nih.gov/books/NBK3827/#pubmedhelp.Computation_of_Similar_Articl) calculated by NLM 
using words from titles, abstracts and MeSH terms17, and which can be retrieved using an Entrez e-utility (https://
www.ncbi.nlm.nih.gov/books/NBK25499/, see cmd = neighbor_score). We chose to use the top 20 SA scores 
for each document, limited to those where the paired document was also within the set, resulting in a set of 
363,404,050 links of which 314,316,142 were unique; i.e., Sji and Sij pairs were not both present. The choice to use 
the top 20 scores per paper was made because previous research showed that there was little difference in cluster-
ing accuracy whether 12 or 40 links per document were used18.

Combining the citation and SA links resulted in a set of 601,605,944 links of which 30,560,355 had a direct 
citation link and a top 20 SA score. This overlap (9.64% of the direct citation links also had a top 20 SA link) is 
quite low, suggesting that citation-based and text-based relatedness are complementary and that both are ulti-
mately important to accurate clustering. There were 286 million pairs of documents that had a direct citation link 
but that did not have a top 20 SA score. This does not mean that there is no textual relatedness between these pairs 
of documents. In most cases there is topical overlap between pairs of documents linked through citation19. Rather 
than assuming no textual relatedness for these pairs, we used SA scores even though they were outside of the top 
20. Actual SA scores were used for pairs for which they were available, and estimated scores (half the minimum 
SA score for either document in the pair) were added where a calculated score was not available. The summed 
normalized SA and DC scores were ∑ rij

DC = 9359293 and ∑ rij
SA = 26297313; solving α ∑ rij

DC = (1 - α) ∑ rij
SA 

gives α = 0.7375 to achieve a 50:50 weighting of citation and textual relatedness. Equation (1) was then used to 
calculate hybrid relatedness for each document pair. For example, PMID 18637048 cites 26 papers within the set, 
one of which is PMID 15000003. For this pair of documents rij

DC = 0.038462 and rij
SA = 0.136923 which leads to 

rij
HYB = 0.064307.

The full list of document-document pairs and their relatedness values (which are used as edge weights) were 
used to cluster the documents. We desired a model with approximately 30,000 clusters at a minimum size of 75 

Data Source and Version # Records # PMID Description

PubMed, pubmed.ncbi.nlm.nih.gov 18,214,654 18,214,654 Bibliographic metadata

NIH iCite2.015 (Jan 2020) 18,214,654 18,214,654 Paper-level metrics (translation, RCR, etc.)

Open Citation Collection15 (Jan 2020) 315,512,095 12,578,393 Citation links by PMID

OpenCitations (Jan 2020), https://opencitations.net/index/coci 186,399,013 7,783,835 Citation links by DOI

PMID Similar Article Scores (top 20 current as of Jan 2020) 364,534,609 18,205,619 Text-based relatedness scores based on Lin & 
Wilbur17, retrieved using Entrez e-utility

Star Metrics (2008–2018), https://federalreporter.nih.gov/
FileDownload 861,170 n/a

Annual project data (including funding 
amounts) for NIH, NSF and other US 
agencies

NIH ExPORTER (1996–2018), https://exporter.nih.gov/
ExPORTER_Catalog.aspx?sid=0&index=5 4,224,360 1,789,416 Link tables – PMID to NIH project

NSF Awards API (1996–2017), https://www.research.gov/
common/webapi/awardapisearch-v1.htm 566,155 149,091 List of references by NSF project, matched 

to PMID

USPTO Non-patent references, 2015–2019, https://bulkdata.
uspto.gov/ 2,952,584 660,581

Full text XML of US patents, non-patent 
references were extracted and matched to 
PMID

Table 1.  Primary data sources, sizes and brief descriptions, 1996–2019.
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documents each. This specification is based on previous work where we have found that models with an average 
cluster size of several hundred documents tend to contain clusters that are sufficiently large to be meaningful and 
well differentiated to experts20 but without being so large as to be about multiple topics. A three-level hierarchical 
clustering was created using the Leiden algorithm10 with input resolutions as indicated in Table 2. Different qual-
ity functions can be used with the Leiden algorithm; we used the original quality function introduced in an earlier 
version of Leiden University’s clustering methodology21. The most granular level is designated PM5 to denote that 
this is a PubMed (PM) model and that the cluster sizes are similar to those of our Scopus model with around 105 
(5) clusters. Higher level clusters are also designated by their rough order of magnitude – e.g., PM4 contains on 
the order of 104 clusters.

Visual map.  Once the clustering was completed, a visual map of the clusters was created. Relatedness (R) 
between clusters m and n was calculated as the summed relatedness values

ε ε∑= √R r N N i m j n/ ( ) ( , ) (4)mn
HYB

ij
HYB

m n

where Nm and Nn are the number of documents in clusters m and n, respectively. The denominator serves to nor-
malize for cluster size so that the relatedness values are not inherently biased toward large clusters.

Cluster-cluster relatedness values were then filtered to the top 15 per cluster, and OpenOrd13 was used to 
create a graph layout of the clusters with the cut parameter set to 0.7. OpenOrd returns [x, y] positions for each 
cluster on a 2D plane.

Each cluster is assigned to one of 12 major fields (e.g., Biology, Medicine, Brain Science, etc.) based on the 
journal distribution within the cluster1 and a journal-to-field mapping previously developed22 and the cluster 
is colored in the map based on its dominant field (see Fig. 2). Clusters that are highly related are close to each 
other in the map and those that have little or no relationship to each other have more distance between them. A 
two-dimensional map is simply a visual approximation of a multi-dimensional system. In addition to showing 
the position of each cluster, the map can be used as a basis for the overlay of other information or to show filtered 
results.

The high-level layout of the map is similar to that found in other maps of science. For instance, chemistry and 
biology are proximate, and infectious disease tends to fall between biology and medicine. Health sciences, which 
mostly comprise clinical areas, nursing, etc., are at the outer edge of the map but also have interfaces with med-
icine and brain sciences. Relatively few clusters in physics, computer science, engineering, earth sciences, social 
science and humanities are found in the map.

In our initial exploration of the map we noticed several groups of clusters that were either not connected to 
the main component of the map or that were dominated by physics. The group of physics clusters was reviewed, 
and 25 clusters were found to have no biomedical content and manually discarded from the map and model. 
Investigation of other groups of clusters showed several groups of clusters with no discernible topic focus. In 
many cases they were clusters of documents with errata/corrigendum/correction in their titles, or clusters of docu-
ments with no abstracts and few references. 121 of these clusters were also removed manually. The final PM5 map 
consists of 28,743 clusters containing 18,160,327 documents.

Model characterization.  A variety of metadata and indicators were used to characterize the clusters in the 
model to enable practitioners and decision makers to recognize and analyze topic-level structures. Figure 3 shows 
an example of this characterization for a single cluster. Except for the chart showing the number of documents by 
year in the upper right corner, characterization was done using only those documents published from 2015–2019 
to focus on recent content.

Lists of top ten phrases, idiosyncratic phrases, MeSH terms, sources (journals), and journal categories are 
provided to characterize the topic embodied by each cluster. Additional nuance is added by listing the ten most 
central papers and five most central review papers.

Central papers and reviews are chosen by calculating the sum of the relatedness scores rij
HYB from Eq. (1) where 

papers i and j are in the same cluster and then sorting by summed scores. Those with the highest within-cluster 
relatedness scores are assumed to be the most central to the cluster.

Phrases are identified using the following method:

	(1)	 The NLTK library for Python is used to extract noun phrases (NP) from titles and abstracts using the 
grammar NP: {<JJ.*|VBG > * < NN.* > + <VBG> ?} which matches a sequence of zero or more adjec-
tives (JJ.*) or gerunds (VBG), followed by one or more nouns (NN.*), followed by 0 or 1 gerund.

PM5 PM4 PM3

Resolution 7.75E-05 10 21.25

Minimum cluster size 75 750 7500

# Clusters 28,889 3074 288

Largest cluster 6052 44,163 583,979

Ratio largest::smallest 80.7 56.0 74.0

Table 2.  Properties of the three-level PubMed model.
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	(2)	 The process in step 1 is repeated 20 times for each cluster using a random one-third sample of its titles and 
abstracts. Phrase counts are then summed over the 20 bootstrapped samples. We have noticed that phrase 
scores obtained from bootstrapping are more well separated than those obtained from simply running over 
the cluster contents.

	(3)	 Counts were then transformed to scores as sc = count/(20*np/3) where np is the number of papers in the 
cluster (2015–2019). Thus, the score is an estimate of the number of times the phrase occurs per paper in 
the cluster.

For idiosyncratic phrases, we take the full list of scores from step 3 above, and then re-score them using 
idio = 10*log(1 + sc/nptot)*sc/sctot, where sc is the score from step 3, sctot is the sum of scores for that phrase 
over all clusters, and nptot is the total number of papers in all clusters in which the phrase appears. This formula 
effectively re-ranks phrases by how much they differentiate one cluster from another. If a phrase is common and 
occurs in many clusters, the score adjusts down in a relative sense and vice versa. Having access to the most com-
mon phrases in a cluster and to those that differentiate a cluster from other clusters provides greater perspective 
on the cluster contents than if only one or the other were reported.

This method for labeling clusters is similar to that of Waltman & van Eck21 in some respects, but differs in oth-
ers. While the two methods use different toolkits, the functions are similar, both focusing on noun phrases with 
some allowance for adjectives. Also, our method for re-scoring phrases based on their relative prevalence in the 
cluster and corpus is similar in intent to Waltman’s calculation of term relevance scores.

Top categories uses the Scopus ASJC classification system and is based on the journal-to-ASJC file that is 
publicly available at the Scopus website23. ASJC categories were chosen because the list of categories is larger and 
seems more intuitive to us than those in either the ScienceMetrix or Australian Research Council journal classi-
fication systems.

Metrics are also calculated for each cluster. For many of these the actual metric value is given, and a percentile 
score is also given, where the percentile is related to the cluster ranking for that metric. For instance, for the clus-
ter shown in Fig. 3, the average cites per paper is 9.20, and this value is in the 97th percentile among all clusters. 
The metrics reported by category for each cluster include:

•	 Impact

•	 Mean cites per paper from iCite2.08.
•	 Mean relative citation ratio (RCR) from iCite2.012. RCR is a metric developed several years ago by 

NIH that normalizes citation counts of each paper based on its local co-citation network.
•	 Mean SNIP journal impact24 using the Scopus journal file23. SNIP is a journal level impact factor that 

accounts for differences in citation practices by field.

Fig. 2  Visual map of the PubMed model showing 28,743 clusters. Each cluster is colored according to its 
dominant field (see legend).
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•	 Industry involvement

•	 Fraction of papers with an industry address. Papers with an industry address were identified using a 
method similar to that of Tijssen25 by searching addresses for abbreviations associated with companies 
(e.g., Corp., Inc., Ltd., GmbH, BV) and prominent company names (e.g., Merck, Novartis).

•	 Mean patent-to-paper citations per paper. We have over many years systematically mined non-patent 
references from US patents and matched those reference strings to indices built from Scopus and 
PubMed article data to find likely matches. The resulting matches are used to calculate patent-based 
metrics.

•	 Clinical involvement

•	 Fraction of papers with a clinical address. Papers with a clinical address were identified by search 
addresses for strings associated with clinical institutions such as hospitals and medical centers (e.g., 
spital, clinic, klinik, medical center, cancer center, NHS)25.
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Fig. 3  Detailed characterization of a single cluster in the Excel workbook.
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•	 Mean research level on a scale of basic to applied using the method for calculating research level by 
paper. The machine learning approach used here was trained on titles and abstracts of papers from 
over 4,000 journals using the journal research levels26.

•	 Funding

•	 Mean number of funding types per paper (using PubMed “Research Support” tags).
•	 Mean number of grants per paper.
•	 Mean funding per paper (in $$M).

•	 Document type

•	 Fraction of papers classified as a method paper27. Method papers were identified using citing sentences 
and citing locations from PubMed Central full text. Machine learning was based on a training set of 
1000 manually classified papers with the best classifier achieving 92% accuracy.

•	 Fraction of papers classified as a discovery paper28. Discovery papers were identified using specific 
terms in citing sentences from PubMed Central full text. Machine learning was based on a manually 
curated set of 135 discovery papers (158 non-discovery papers were excluded) with a classifier accu-
racy of 94%.

•	 Fraction of papers classified as reviews by PubMed.
•	 Fraction of papers classified as clinical trials by PubMed.

•	 Translation

•	 Mean translational potential using Approximate Potential to Translate (APT) from iCite2.011. APT is 
a metric recently developed by NIH based on multiple features including citation patterns between 
different types of MeSH terms (e.g., papers with Human terms citing papers with Molecular, Cellular 
and Animal terms).

•	 Authorship/community strength

•	 Number of authors with at least 2 papers in the cluster.
•	 Number of authors with at least 5 papers in the cluster. These metrics are based on the principle that 

communities (or topics) with many active authors are stronger than those with few.

•	 Age and momentum

•	 Mean age of papers.
•	 Current vitality, based on the inverse of mean reference age29. This metric is based on the principle that 

fast growing topics are based on relatively young (rather than old) literature.
•	 3 year annualized growth rate from 2016–201929.

•	 Transparency indicators extracted from PubMed Central open access (PMCOA) full text articles, 2015–
201930. Researchers at Stanford manually identified the below listed types of statements in 500 articles. 
Machine learning developed methods to identify such statements in other full text papers and was applied to 
the full PMCOA corpus. Specificity and sensitivity were both above 90%.

•	 Fraction of papers that are open access (OA) from PMCOA.
•	 Fraction of OA papers with COI statements.
•	 Fraction of OA papers with funding statements.
•	 Fraction of OA papers with registration statements.
•	 Fraction of OA papers with data sharing statements.
•	 Fraction of OA papers with code sharing statements.

Cursory explanatory details have been given above for several of the metrics along with associated references 
that contain more information about the scope and accuracy of the metric. Detail has not been given for metrics 
that are more common or that are self-explanatory.

Regarding funding information, PubMed contains a set of Research Support tags that specify different types 
of funding. For example, NIH-intramural, NIH-extramural, US-govt-non-NIH, and non-US-govt are four of the 
types. These data are used to calculate the mean number of funding types per paper. However, these numbers 
are questionable as recent research suggests that NIH may be indexing less than half of the acknowledged fund-
ing content available in articles30. PubMed indexes acknowledged grant numbers from a limited list of funding 
sources with a heavy emphasis on NIH grants. These data are used to calculate mean number of grants per paper. 
For funding amounts, grant-to-article links from NIH RePORTER and the US National Science Foundation 
(NSF) API were used to calculate the numbers of papers by grant per cluster. The funding amount for each grant 
from the StarMetrics Federal RePORTER data (see Table 1) was fractionally assigned to the clusters containing 
those papers, summed, and then used to calculate mean funding (from NIH and NSF) per paper.
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Data Records
As explained in the method section, metadata from PubMed records and multiple other sources were used to 
characterize the 28,743 clusters in our PubMed model. These characterizations comprise a derivative database 
that is freely available on Figshare under the CC BY 4.0 license in two formats – an Excel workbook and a Tableau 
workbook31. The Excel workbook makes the data readily available for re-use while the Tableau interface enables 
visual exploration and filtering of the model for detailed analysis.

Excel workbook.  The Excel workbook is comprised of 15 different sheets as shown in Table 3. The majority 
of the sheets contain cluster-level metadata (e.g., top 10 phrases, top 10 MeSH headings) or metrics. PM5_SHEET 
allows the user to input a cluster number and then self-populates with data from other sheets to create the character-
ization shown in Fig. 3. One sheet contains the list of 42 journals that were excluded from our model and one sheet 
contains the list of PMID identified as method27 or discovery28 papers which is not available elsewhere. Field names 
are given in the first row of each sheet. Data across different sheets are linked through the cluster number (PM5).

Descriptions of the data fields for the CLUST and TRANSP tables are provided in Tables 4 and 5, respectively.
The COUNT sheet contains a separate field for each year, 1996–2019, with integer document counts by clus-

ter and year. The PHRASE, IDIO, MESH, ASJC and JNL sheets all have a similar format, an example of which 
is given in Table 6. The AUTH table is similar to these, but also contains a cpp (cites per paper) field to reflect 
relative author impact within the cluster. Tables 7–9 contain descriptions of the QUERY, CORE/REVIEW and 
METHDISC sheets, respectively.

Updating of the PubMed model requires updating of all the databases that feed the model along with assign-
ment of new papers to existing clusters, consideration of the formation of new clusters, recalculation of metrics, 
etc. We anticipate updating the model annually.

Tableau workbook.  Due to the variety of metadata and indicators associated with each cluster in the PM5 
model, exploration of topics could proceed in many ways. To accommodate this potential, data from the Excel file 
(with the exception of the JNL_EXCL and METHDISC sheets) were incorporated into a Tableau workbook. Only 
the free software, Tableau Reader (https://www.tableau.com/products/reader), is required to interact with the work-
book. Three data views have been constructed in Tableau – a map view, a scatterplot view, and a cluster detail view.

Filters (sliders and dropdowns) can be used to limit the clusters in the map and scatterplot views to those that 
meet a set of desired parameters. Each slider is tied to an indicator; thus one can filter based on variables such as 
impact (e.g., cites per paper, RCR), the relative presence of different types of documents (e.g., discovery, method, 
review, clinical trial), funding (e.g., dollars per paper from NIH/NSF, number of funding types per paper), and 
clinical application (e.g., research level, translational potential). Dropdowns include journal categories and MeSH 
terms which can be selected from menus or typed in (with available choices automatically reducing as text is 
entered). The display will be limited to clusters matching those choices. There is also an institution dropdown 
which limits the clusters to those in which a given institution has published in the 2015–2019 time period (see 
Table 7). This allows users to focus on clusters in which an institution of interest already has a publishing pres-
ence. Clusters can be sized using different parameters (e.g., number of papers, number of authors with at least 
5 papers from 2015–2019, fraction of discovery papers) and can be colored using many of the features as well.

Figure 4 shows map and scatterplot views of the clusters in which the University of Michigan has published in the 
2015–2019 time period. Cluster coloring is based on research level, where dark red is the most basic and dark green 
is the most applied. An overview of cluster characteristics is shown when the mouse is used to hover over a cluster. 
Clicking on a cluster opens a cluster detail view that is equivalent to the Excel PM5_SHEET view (see Fig. 3).

The scatterplot view in Fig. 4b shows the relationship between translational potential (x-axis) and NIH/NSF 
funding (y-axis). The horizontal and vertical lines in the middle of the chart show medians, thus dividing the 

Sheet Name # of Lines Description

CLUST 28,743 Cluster positions, metrics and percentiles

TRANSP 28,743 Transparency metrics by cluster using Stanford data extractions from PMCOA documents, 2015–2019

QUERY 28,743 COVID/University query counts by cluster, 2015–2019

COUNT 28,743 Annual document counts by cluster, 1996–2019

PHRASE 280,200 Top 10 phrases by cluster (rank, phrase, score), 2015–2019

IDIO 280,200 Top 10 idiosyncratic (differentiating) phrases by cluster (rank, phrase, score), 2015–2019

MESH 286,296 Top 10 MeSH headings by cluster (rank, MeSH, count), 2015–2019

ASJC 275,606 Top 10 journal categories by cluster (rank, category, count), 2015–2019

JNL 234,438 Top 10 journals/sources by cluster (rank, journal, count), 2015–2019

AUTH 286,425 Top 10 authors by cluster (rank, count, cpp, author), 2015–2019

CORE 284,441 Top 10 most central papers (excluding reviews) by cluster (rank, score, type, bibentry, cites), 2015–2019

REVIEW 109,171 Top 5 most central review papers by cluster (rank, score, type, bibentry, cites), 2015–2019

PM5_SHEET Enter PM5 cluster number to populate this sheet with metadata from the preceding sheets

JNL_EXCL 42 Journals excluded from the model

METHDISC 764,405 List of method and discovery papers by cluster (PMID, meth, disc), 1996–2019

Table 3.  Description of sheets in the Excel workbook.
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graph into four quadrants to enable quadrant-based analysis. In this view, basic research clusters tend to appear in 
the upper left quadrant while applied research clusters tend to appear at the lower right. The upper right quadrant 
is interesting in that it contains a mix of basic and applied content, although it is more heavily weighted toward 
applied.

PMID to cluster listing.  In addition to the Excel and Tableau workbooks, we make available the list-
ing of PMID to PM5 cluster assignments in a separate tab separated (TSV) file. This enables linking of other 
PubMed-based data sources such as PKG14 to our model through PMID.

Technical Validation
The validity of the model rests on the validity of the process used to create it. We start by acknowledging that there 
is no single clustering of a large-scale dataset that can be proven to be the most accurate. There are no ground 
truth data that can be used to determine the absolute accuracy of the clusters formed from a set of over 18 million 
documents. Nevertheless, there are ways to compare the results of different methodologies in a relative way that 
suggest that the clusters are coherent and useful.

Index Format Description

PM5 Integer PM5 cluster number

PM4 Integer Corresponding PM4 cluster number

PM3 Integer Corresponding PM3 cluster number

X Double X coordinate value on map

Y Double Y coordinate value on map

field String High-level field of science, see Fig. 2 for legend

nptot Integer Number of documents, 1996–2019

np1519 Integer Number of documents, 2015–2019

cpp19 Double Mean cites per paper for documents 2015–2019 as of end-2019

cpp19_pctl Double cpp19 percentile among clusters

rcr Double Mean RCR (relative citation ratio) value, 2015–2019

rcr_pctl Double rcr19 percentile among clusters

snip Double Mean SNIP (source normalized impact factor), 2015–2019, 2018 SNIP value used for 2019 documents

snip_pctl Double snip percentile among clusters

apt Double Mean APT (approximate potential to translate) value, 2015–2019

apt_pctl Double apt percentile among clusters

ind_fr Double Fraction of documents with at least one industry affiliation/address, 2015–2019

ind_pctl Double ind percentile among clusters

nprpp Double Mean number of patent citations per paper, patents 2015–2019, documents 1996–2019

npr_pctl Double nprpp percentile among clusters

clin_fr Double Fraction of documents with at least one clinical affiliation/address, 2015–2019

clin_pctl Double clin percentile among clusters

rlev Double Mean research level, 2015–2019

fundpp Double Mean number of funding types per paper, 2015–2019

nf_pctl Double fundpp percentile among clusters

grantpp Double Mean number of grants indexed in PubMed per paper, 2015–2019

ng_pctl Double grantpp percentile among clusters

starpp Double Mean funding per paper in $$M, 2015–2019, NIH and NSF funding from Star Metrics

star_pctl Double starpp percentile among clusters

meth_fr Double Fraction of documents identified as method, 1996–2019

meth_pctl Double meth percentile among clusters

disc_fr Double Fraction of documents identified as discovery, 1996–2019

disc_pctl Double disc percentile among clusters

rev_fr Double Fraction of documents identified as review, 2015–2019

rev_pctl Double rev percentile among documents

trl_fr Double Fraction of documents identified as clinical trial, 2015–2019

trl_pctl Double trl percentile among clusters

nauth2 Integer Number of authors with at least 2 papers in cluster, 2015–2019

nauth5 Integer Number of authors with at least 5 papers in cluster, 2015–2019

age Double Mean age of papers in cluster

vit19 Double Mean vitality of papers in cluster as of end-2019

3yrgrw Double Annualized growth rate in cluster from 2016–2019

Table 4.  Data types for records in the CLUST Excel sheet.
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Recently, a principled approach to comparing cluster solutions was introduced. It employs 
granularity-accuracy plots where cluster solutions are compared using their cluster size distributions (from which 
granularity is calculated) and pairwise relatedness data (from which relative accuracy is calculated)4. The most 

Index Format Description

PM5 Integer PM5 cluster number

npoa Integer Number of open access documents per PubMed Central (PMCOA)

oa_fr Double Fraction of documents in cluster from PMCOA

coi_fr Double Fraction of PMCOA documents with a COI statement

coi_pctl Double coi percentile among clusters

fund_fr Double Fraction of PMCOA documents with a funding statement

fund_pctl Double fund percentile among clusters

reg_fr Double Fraction of PMCOA documents with a registration statement

reg_pctl Double reg percentile among clusters

data_fr Double Fraction of PMCOA documents with a data sharing statement

data_pctl Double data percentile among clusters

code_fr Double Fraction of PMCOA documents with a code sharing statement

code_pctl Double code percentile among clusters

Table 5.  Data types for records in the TRANSP Excel sheet.

Index Format Description

PM5 Integer PM5 cluster number

rank Integer Field rank within cluster

descriptor String Phrase/idio/MeSH heading/category/journal

score Double Score or count of descriptor

Table 6.  Common format for PHRASE, IDIO, MESH, ASJC and JNL Excel sheets.

Index Format Description

PM5 Integer PM5 cluster number

#CORD Integer Number of documents found in the CORD-19 (Allen AI Covid 19) dataset

%CORD Double Fraction of documents found in the CORD-19 (Allen AI Covid 19) dataset

MICH Integer Number of documents with a University of Michigan address, 2015–2019

STAN Integer Number of documents with a Stanford University address, 2015–2019

Table 7.  Data types for records in the QUERY Excel sheet.

Index Format Description

PM5 Integer PM5 cluster number

PMID Integer PubMed ID for document

method String identified as a method paper (=METH)

discovery String identified as a discovery paper (=DISC)

Table 9.  Data types for records in the METHDISC Excel sheet.

Index Format Description

PM5 Integer PM5 cluster number

rank Integer Core paper rank

score Double Relative score based on relatedness values within cluster

type String Document type(s) from PubMed

source String Source metadata - PMID, title, journal, volume, page, year, DOI

ncited Integer Number of times cited from OCC, January 2020

Table 8.  Data types for records in the CORE and REVIEW Excel sheets.
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reliable results are obtained when the relatedness data used as the basis of comparison are independent of the 
relatedness measures used in clustering. It is also wise to use multiple bases of comparison where possible.

Prior to creating this PubMed model, we ran a large-scale experiment in which we compared seven related-
ness measures, two citation-based, one text-based, and four hybrids using a set of nine million documents from 
PubMed16. The Leiden algorithm was used for each clustering run and each solution had roughly 20,000 clusters. 
Three different bases of comparison were used to determine the relative accuracies of the seven cluster solutions. 
One was based on the concentration of references of nearly 30,000 papers with large numbers of references within 

Fig. 4  Tableau views of the PubMed model filtered to show only those clusters with UMMS papers. Color 
reflects the research level of each cluster. (a) Map view. (b) Scatterplot view with the approximate potential to 
translate percentile on the x-axis and NIH/NSF funding percentile on the y-axis.
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clusters. This measure is clearly biased toward citation-based relatedness measures. The second was based on 
the fraction of the top 20 SA scores in the entire set that were preserved within clusters. This measure is clearly 
biased toward text-based relatedness measures. The third was to calculate the fraction of papers with a common 
grant that were preserved within clusters. This measure is independent of both citation and text-based measures. 
Using a composite based on these three different relative accuracy measures, we found that the hybrid relatedness 
measure based on a 50:50 mix of direct citation and SA scores had the highest performance16. This hybrid solution 
preserved nearly 51% of the overall relatedness signal within clusters. These values suggest clusters of high quality 
given that there were nearly 20,000 clusters in the solution and also suggests that the PubMed model presented 
here is of similar quality in that the same process and relatedness measure were used.

To place this result in context, we note that other recent studies have similar findings regarding some specifics 
related to our model. Many studies at both small and large scale have found that hybrid relatedness measures 
produce better clusters than measures based solely on citations or text3,32–37. In addition, the principled approach 
for comparing cluster solutions has been used for multiple large-scale studies3,18,38,39 and is becoming a standard 
in the area of science mapping.

Usage Notes
The recent COVID-19 pandemic is not only affecting individuals in negative ways, but it is also affecting research 
institutions. Although it is creating some new opportunities for COVID-19-related research, it is threatening 
many current research programs and structures. Under conditions of lockdown and social distancing, many 
labs have had to close. Some will re-open without issue, some will face uncertain conditions upon re-opening, 
while others may not be able to open at all. Funding availability will likely decrease, not only from agencies but 
also from local and regional governments that rely on decreasing tax revenues associated with economic down-
turn. For medical schools with associated hospitals, clinical margin revenue (a portion of which is used to fund 
research) is also greatly reduced. This very real scenario is being faced by universities across the world. How can 
universities balance their fiduciary duties to the financial health of the organization while simultaneously sup-
porting the research mission from within a contracting financial system? Our PubMed model provides a quanti-
tative view of the research landscape that facilitates informed decision-making.

We provide here example workflows to show how the Tableau tool can be used. The examples show how one 
medical school (in this case the University of Michigan Medical School, UMMS) could navigate the current land-
scape, first by looking for opportunities related to historical literature associated with coronavirus, and then by 
looking at topics related to a cohort of African American and Native American researchers.

Since early 2020, the Semantic Scholar team at the Allen Institute for AI, along with other partners, has been 
compiling a set of literature related to coronavirus – the COVID-19 Open Research Dataset (CORD-19) – and 
has made it publicly available for use by researchers40. The May 31, 2020 version of this dataset contained 139,952 
documents among which 98,228 unique PMID could be identified. Of these, 67,452 PMID were from 1996 
through 2019 and were found in our PubMed model. CORD-19 contains literature associated not only with 
coronavirus (e.g., CoV, SARS, MERS) but since mid-May also contains literature associated with co-morbidity 
factors and related medical conditions (respiratory problems, etc.) It also contains over 30,000 documents from 
2020, many of which have been recently added to PubMed from preprint servers such as medRxiv and bioRxiv 
despite not yet having completed the peer review process. These documents from 2020 are not in our model but 
will be added in the future.

Figure 5a shows the location of 85 clusters that contain at least 25 documents from CORD-19 and where the 
concentration of CORD-19 documents is at least 10%. Clusters are sized by the number of CORD-19 documents 
and colored using research level (red = basic, green = applied). These are the clusters that are most related to 
coronavirus as defined by CORD-19. A majority of the CORD-19 clusters are at the bottom of the map in an 
area focused around viruses known to affect the respiratory system (e.g., influenza, SARS, MERS, etc.) Clusters 
in other areas of the map focus on a variety of topics such as other viruses, proteins, and treatments or devices 
that have recently become associated with treatment of COVID-19 (e.g., cerebral oxygenation, mechanical 
thrombectomy).

This view of the coronavirus-related literature is quite different from others that have been published 
recently41,42 and separates the literature into distinct topics much more precisely. For example, Colavizza et al.41 
recently characterized and mapped nearly 40k publications from the April 4, 2020 version of CORD-19. Using 
topic modeling they identified 15 topics, the largest of which is labeled ‘public health and epidemics’ and contains 
roughly 20% of the corpus. Citation-based clustering was also done, resulting in 23 clusters with at least 100 doc-
uments and a much larger number of very small clusters. The largest cluster contained 7,300 documents with a 
focus on coronaviruses and related molecular biology analyses. In contrast, our solution has two separate clusters 
for SARS (one related to the virus and the other to infection) along with separate clusters on MERS, human coro-
naviruses, equine coronaviruses, bat viruses, and many other different types of viruses. Both strategic and tactical 
decision making are thus better enabled using the type of granular classification of documents available in our 
model than in other related mapping exercises.

Figure 5b further limits to only those clusters in which UMMS has published from 2015–2019. Identification 
of the UMMS papers was not done using the Tableau application but were obtained from a query to PubMed. 
Once the list of UMMS documents was obtained, clusters were identified for each PMID, the number of docu-
ments was counted by PM5 cluster, and these numbers were then imported into the Tableau file and included in 
the filtering and labeling capabilities. The identification of UMMS-authored documents could have also been 
done by simply extracting a list of PMID from the institution’s research information management system (e.g., 
https://experts.umich.edu/), a task that any institution with such a system could accomplish with minimal effort.

In Fig. 5b, clusters are sized by the number of UMMS papers to show relevance to UMMS and are plotted as 
a function of funding percentile (y-axis) and patent reference percentile (x-axis). If UMMS were to choose to 
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prioritize activities in which a) they have a strong publication presence, b) historical U.S. funding levels are high, 
and c) commercial potential exists, large clusters at the upper right of this graph might be prioritized. In this case, 
the top three candidates (largest three clusters in the upper right quadrant) are focused on murine norovirus 
infections, rhinovirus infections, and RNA viruses. Despite being represented in the CORD-19 dataset, none of 
these clusters has the type of overt relationship to COVID-19 that would suggest that immediate short-term fund-
ing could be obtained. However, one of the smaller clusters in that quadrant, #12391 on ribosomal frameshift-
ing, could be a candidate for such funding in that frameshifting could play a role in mutation and was already 

Fig. 5  Tableau views of subsets of clusters related to coronavirus. (a) Map view of clusters with at least 25 
CORD-19 documents and a CORD-19 document concentration of at least 10%. (b) Scatterplot view of clusters 
further filtered to those containing UMMS papers.
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investigated for SARS years ago. Also, the largest cluster in the upper left quadrant is clearly important in the 
current climate, #2673 on the effects of school closures and social distancing on epidemics.

As COVID-related research efforts continue to increase in both scale and scope, universities must not forget 
about other areas of research that, while not directly related to the current health crisis, are nonetheless vitally 
important to the health of a nation. For instance, it is important to support the research activities of groups that 
are currently under-represented, such as female and minority researchers.

UMMS has a substantial number of African-American/black (AA/B) and Native American (NA) researchers. 
Between 2010 and 2018, these individuals submitted 657 research proposals to external funding sources and 
published 4,489 papers from 1996–2019 that were indexed in PubMed. Of these, 3,995 appear in our model; 
most of the remainder are physics and chemistry papers in journals that we removed from the model. Note that 
this analysis requires that data from the university be linked to the model and shows how the model can be easily 
extended to include such data to facilitate advanced analysis.

Publication activities of AA/B and NA researchers at UMMS are consistent with the most recent in-depth 
study of racial bias at NIH. Hoppe et al. studied over 157,000 R01 applications to characterize how racial bias 
affects AA/B researchers during different stages of their career. They provided compelling evidence that the topic 
mix of R01 applications from AA/B researchers is very different from that of White researchers, and that AA/B 
applicants tend to propose research on topics with lower award rates43. They noted that AA/B applications were 
far more likely to involve human subjects than those from White applicants. AA/B applications tended to focus 
on health disparities such as AIDS and patient-focused interventions. In contrast, clusters associated with oste-
oarthritis, cartilage, prion, corneal, skin, iron, and neuron contained no applications from AA/B researchers.

The 3,995 papers published by AA/B and NA researchers at UMMS are shown in Fig. 6 as colored circles 
overlaid on a gray version of the map. The distribution of publications over the map is notably unbalanced with 
relatively few in the lower right quadrant (which is dominated by biology and infectious disease) and much higher 
in the lower left quadrant in areas that reflect racial disparities. For example, the topic in which AA/B and NA 
researchers at UMMS have the largest number of publications is #6953 which focuses on physical health, mental 
health and economic disparities in minority populations.

Figure 6 suggests that the topic choices of AA/B and NA researchers at UMMS are skewed in a way that is con-
sistent with NIH findings on AA/B R01 applications. By extension, given that these topics are, on the whole, less 
well-funded by NIH than other topics, this suggests that minority researchers are disadvantaged in a fundamental 
way. It behooves universities to be aware of the topic choices of their researchers, how these topics and researchers 
might be disadvantaged, and then to use this knowledge to inform equity focused interventions.

We note that recently published PubMed Knowledge Graph14 contains complementary document level infor-
mation such as extracted bioentities, disambiguated authors and institutions that could be added to the PubMed 
model by linking through PubMed IDs to facilitate additional types of analysis.

Fig. 6  Publication profile of African American and Native American principal investigators at UMMS overlaid 
on the PubMed map. Sizes of colored circles reflect numbers of publications.
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Code availability
The Leiden algorithm was used for clustering and is freely available at https://github.com/vtraag/leidenalg.
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