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Abstract

Objective: To assess the performance of deep learning convolutional neural networks (CNNs) in 

segmenting gadolinium-enhancing lesions using a large cohort of multiple sclerosis (MS) patients.

Methods: A 3D CNN model was trained for segmentation of gadolinium-enhancing lesions 

using multispectral magnetic resonance imaging data from 1006 relapsing-remitting MS patients. 

The network performance was evaluated for three combinations of multispectral MRI used as 

input: (U5) FLAIR, T2-weighted, proton density-weighted, and pre- and post-contrast T1-

weighted images; (U2) pre- and post-contrast T1-weighted images; and (U1) only post-contrast 

T1-weighted images. Segmentation performance was evaluated using the Dice similarity 

coefficient (DSC) and lesion-wise true positive (TPR) and false positive (FPR) rates. Performance 

was also evaluated as a function of the enhancing lesion volume.

Results: The DSC/TPR/FPR values averaged over all the enhancing lesion sizes were 

0.77/0.90/0.23 using the U5 model. These values for the largest enhancement volumes (>500 

mm3) were 0.81/0.97/0.04. For U2, the average DSC/TPR/FPR were 0.72/0.86/0.31. Comparable 

performance was observed with U1. For all types of input, the network performance degraded with 

decreased enhancement size.

Conclusion: Excellent segmentation of enhancing lesions was observed for enhancement 

volume ≥70 mm3. The best performance was achieved when the input included all five 

multispectral image sets.
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Introduction

Multiple sclerosis (MS) affects nearly 2.5 million people worldwide with best estimated 

prevalence of 265.1–309.2 per 100,000 in the USA alone.1,2 Magnetic resonance imaging 

(MRI) is an exquisite modality for visualizing MS lesions in the central nervous system. 

However, not all lesions seen on MRI are active. Identification of enhancing lesions, 
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generally thought to represent active disease, is critical for patient management.3 Therefore, 

nearly all MS patients are routinely administered gadolinium (Gd)-based contrast agents 

(GBCAs) during the MRI scan, as part of patient management. Gd enhancement is shown to 

correlate with the occurrence of clinical relapses in MS4, and the number or volume of Gd-

enhancing lesions may be important in evaluating treatment efficacy.5

Manual segmentation of Gd enhancement is perhaps the simplest to implement.6 However, 

manual methods to identify and delineate enhancement are prone to error and operator bias 

and are impractical when dealing with large amounts of data that are typically acquired in 

multi-center studies. Computer-assisted methods overcome some of these problems, but are 

also prone to operator bias and are tedious to apply to large amounts of data.7–9 Therefore, 

fully automated techniques for segmenting enhancing lesions are desirable. There are a few 

publications which reported automatic segmentation of enhancing lesions10–13. The 

automatic segmentation technique reported by Bedell et al10 requires a special MRI pulse 

sequence that includes both static and marching saturation bands for suppressing non-

lesional enhancements. This special sequence is not generally available on all scanners. The 

segmentation method by He and Narayana relies on adaptive local segmentation using gray 

scale morphological operations, topological features, and fuzzy connectivity and uses 

conventional T1-weighted spin echo sequence.11 However, intensity normalization is critical 

for this method’s success. Intensity normalization performs poorly in the presence of large 

lesion load and significant brain atrophy. Improper intensity normalization could lead to 

false classifications of enhancements. The automatic segmentation proposed by Datta et al 

relies on conventional MRI sequences that are routinely used in scanning MS patients.12 The 

non-lesional enhancements were minimized by using binary masks derived from the 

intensity ratios of pre- and post-contrast T1-weighted images, and fuzzy connectivity was 

used for lesion delineation. Both the methods proposed by He and Narayana and Datta et al 

require prior segmentation of T2 hyperintense lesions for minimizing false classification.
11,12 The automated technique proposed by Karimaghaloo et al is based on a probabilistic 

framework and conditional random fields.13 However, the focus of this technique was on the 

identification, and not delineation, of enhancements. While identification provides 

information of the number of enhancements, equal weight was given to all the enhancements 

irrespective of the enhancing volume that may not be appropriate.

Based on this brief description it is clear that the automated segmentation methods described 

above have certain limitations. Here we present a method based on multilayer neural 

networks (or deep learning; DL) for automated detection and delineation of Gd 

enhancements. The DL model was trained using multispectral MRI data that were acquired 

on a large cohort of MS patients who participated in a multicenter clinical trial.

Methods and Materials

Image Dataset

MRI data used in this study were acquired as part of the phase 3, double-blinded, 

randomized clinical trial CombiRx (clinical trial identifier: NCT00211887). CombiRx 

enrolled 1008 relapsing remitting MS patients at baseline. All the sixty-eight participating 

sites had IRB approval for scanning patients and informed written consent was obtained 
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from the patients. Data were acquired on multiple platforms at 1.5 T (85%) and 3 T (15%) 

field strengths (General Electric, Milwaukee, Wisconsin, USA; Philips, Best, Netherlands; 

Siemens, Erlangen, Germany). All data were anonymized.

In the CombiRx trial, the imaging protocol included 2D FLAIR (echo time / repetition time / 

inversion (TE/TR/TI) = 80–100/10,000/2500–2700 msec) and 2D dual echo turbo spin echo 

(TSE) images (TE1/TE2/TR = 12–18/80–110/6800 msec; echo train length 8–16), and pre- 

and post-contrast T1 weighted (T1w) (TE/TR = 12–18/700–800 msec) images, all with 

identical geometry and voxel dimension of 0.94 × 0.94 × 3 mm3. All images were evaluated 

for quality using the procedure described elsewhere.14 All images were preprocessed using 

the Magnetic Resonance Imaging Automatic Processing (MRIAP) pipeline.14 Preprocessing 

included anisotropic diffusion filtering, co-registration, skull stripping, bias field correction, 

and intensity normalization, and as described elsewhere.14–16 Of the 1008 scans available, 2 

were discarded due to artifacts and poor signal-to-noise ratio.

Brain tissue segmentation, including all neural tissues (white matter (WM), gray matter 

(GM), cerebrospinal fluid (CSF)), in addition to T2-hyperintense lesions (T2 lesions), and 

Gd-enhancing lesions, was performed using MRIAP.12,14 The segmentation of Gd 

enhancements was described in detail elsewhere.12 Briefly, this technique consists of four 

major steps to identify Gd enhancements: (i) image preprocessing (rigid body image 

registration of all images with dual echo images, skull stripping, and bias field correction). 

(ii) Enhancing lesions on post-contrast images were identified as regional maxima by the 

application of gray scale morphological reconstruction by iterative application of geodesic 

dilation. This procedure also classifies enhancing vasculature and structure without blood-

brain-barrier. (iii) These false positives were minimized by assuming that each enhancing 

lesion is associated with a T2-hyper-intense lesion. (iv) Since the boundaries of 

enhancements are not always well defined, for complete delineation of the lesions, the fuzzy 

connectedness algorithm was applied. To reduce false positives from isolated voxels, lesions 

smaller than 20 mm3 (0.02 ml) were excluded from the MRIAP segmentation.

The lesion segmentation results were further validated by two experts; an MS neurologist 

with 30+ yeas experience and an MRI scientist with 35+ years of experience in neuro-MRI. 

For validation, an in-house developed software package was developed. This software can 

display multiple images simultaneously in different orientations. The software also includes 

various editing tools such as eraser, paintbrush etc. for editing the MRIAP delineated 

enhancements. Any discrepancy between the two raters was resolved by consensus.

Three DL models were trained to segment Gd-enhancing lesions using multispectral MR 

images. The first model used all five images as input (denoted as U5 model). Two additional 

models were developed using as input only pre- and post-Gd T1w images (denoted as U2 

model) and only post-Gd T1w images (denoted as U1 model). All networks were trained to 

segment all the neural tissues (WM, GM, CSF), in addition to T2 lesions and Gd-enhancing 

lesions.
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Network Architecture

Multiple reports have shown successful application of DL for segmenting MS T2 

lesions17–19. Gd lesions, however, are more difficult to segment compared to T2 lesions 

because Gd lesions are smaller in size and less abundant. In this work, segmentation of Gd-

enhancing lesions was performed using a multi-class 3D U-net.20 This specific model 

incorporates recent advances in fully convolutional neural networks (FCNNs) with residual 

connections and dropout layers for improved segmentation performance. In general, U-net 

uses contracting and expanding paths to learn image features at different levels of 

abstraction. Corresponding layers are connected at similar resolution to preserve features 

lost along the contracting path. Image contraction was done by a max-pooling operation of 

size 2 along all axes, while expansion was performed with 3D deconvolutions. Additionally, 

this architecture included residual connections to alleviate the vanishing gradient problem 

which can stop network weights from updating.21 These connections also improve network 

training by reducing the number of epochs necessary to reach optimal minima.

The input layer had either 5 input channels for the five image contrasts (U5 mode inputs: 

FLAIR, PDw, T2w, and pre- and post-Gd T1w images), 2 input channels (U2 mode inputs: 

pre- and post-Gd T1w images), or a single channel (U1 mode input: post-Gd T1w images). 

The input layer accepted image patches of size 128×128×8 (sampled from the image 

volume). Based on our data, such resolution allows good segmentation of enhancements 

spanning several slices without exceeding the computational memory constrains. Leaky 

rectified linear unit activation was used at all convolutional layers. Context modules 

contained 3×3×3 convolutional layers along with dropout to reduce overfitting of data. 

Because of the large data size and to increase the network capacity, we doubled the number 

of convolutional layers for all modules relative to the architecture proposed by Isensee et al.
20 The network architecture for the U5 model is shown in Figure 1. In this network, the 

context modules manage feature extraction from images at multiple abstraction levels. The 

localization modules are composed of a 3×3×3 convolutional layer followed by a 1×1×1 

convolutional layer. Localization modules recombine features extracted from the contracting 

path with up-sampled features from the previous level of abstraction. Segmentation layers 

aggregate network segmentation at multiple abstractions, smoothing the final output 

segmentation.22 The output layer is set to the same resolution as the input layer with softmax 

activation. For final classification, each voxel was assigned the tissue class with the highest 

score. We made the assumption that all enhancing lesions have corresponding T2 

hyperintense lesions. Thus, voxels labelled by the network either as enhancing lesions or T2 

lesions were combined to create the final T2 lesion map.

Network Training

Out of 1006, 398 patients had at least one Gd-enhancing lesion, based on the ground truth 

segmentation. During DL model development, the data were divided into 3 sets: 60% (604 

scans) for training, 20% (201) for validation, and 20% (201) for testing, with random 

stratified sampling. Network weights were initialized using the Xavier algorithm23. The loss 

function was the multiclass weighted Dice to account for the dissimilarity in the tissue class 

sizes.20 Adam24 was used as the optimizer due to its adaptive learning rate, initially setting 
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the learning rate at 0.001. Adam performs exponential reduction of the learning rate as 

training progresses.24 Adam convergence was improved by including AMSGrad variation.25

Computations were performed using the Texas Advanced Computing Center (TACC) 

Maverick2 server, which hosts nodes containing NVIDIA GTX 1080Ti GPU. To speed up 

network training, simultaneous computations were performed simultaneously on 4 GPUs. 

We used a “best model” algorithm by keeping the network weights that yielded the lowest 

error on validation data26.

Evaluation

Class-specific accuracy was calculated using the Dice similarity coefficient (DSC) for all 

segmented tissues,

DSC = 2 × M ∩ A
M + A

where M and A denote the ground truth and automated segmentation masks. DSC was 

computed over all subjects in the test set, including both Gd+ and Gd- subjects. True-

positive, false positive, and false negative volumes were computed for each subject. These 

numbers were subsequently summed over all subjects to compute the DSC. This approach 

avoids DSC ambiguity in Gd- cases. In addition to DSC, lesion-wise true positive rate 

(TPR), and false positive rate (FPR) were calculated for each category,

TPR = Numberof True Positive Lesions
Total number of Lesions in Ground Trutℎ

FPR = Numberof False Positive Lesions
Total number of Lesions in Network Segmentation

Dependence of the accuracy of enhancement segmentation on the enhancement size was also 

investigated. Lesions were divided, somewhat arbitrarily, into six groups: 20–34 mm3; 35–

69 mm3; 70–137 mm3; 138–276 mm3; 277–499 mm3; and >500 mm3. The segmentation 

accuracy metrics (DSC, TPR, FPR) of Gd-enhancing lesions were computed for each group. 

As was done with MRIAP segmentation, lesions smaller than 7 voxels were also excluded 

from the neural network segmentation.

Results

The segmentation results using the three network models are summarized in Table 1. With 

the U5 model, high DSC values were obtained for all tissues: GM, 0.95; WM, 0.94; CSF, 

0.98; T2 lesions, 0.88; and Gd-enhancing lesions, 0.77. Gd-enhancing lesion TPR and FPR 

were 0.90 and 0.23, respectively (Table 2). Figure 2 shows examples of network 

segmentation with the U5 model and the corresponding ground truth. Good agreement, at 

least visually, can be observed between the ground truth and the network segmented images. 

Quantitatively, the relatively high DSC and TPR and low FPR confirm the visual 
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observation. The high segmentation accuracy is also evident in the observed good agreement 

between the volumes of Gd-enhancing lesions estimated from DL segmentation and those 

from the ground truth segmentation as shown in the correlation and Bland-Altman plots in 

Fig. 3.

The U2 model resulted in reduced average DSC values for all tissues and lesions: GM, 0.80; 

WM, 0.82; CSF, 0.83; T2 lesions, 0.41; and Gd-enhancing lesions, 0.72. The Gd-enhancing 

lesion TPR/FPR were 0.86/0.31. The U1 model resulted in DSC of: GM, 0.78; WM, 0.78; 

CSF, 0.80; T2 lesions, 0.39; and Gd-enhancing lesion, 0.72. Gd-enhancing lesion TPR/FPR 

were 0.87/0.34. The correlations between the Gd-enhancing volumes from DL and that in 

the ground truth consistently declined from U5 (R2 = 0.95) to U2 (R2 = 0.90) to U1 (R2 = 

0.84), which was also reflected in data scatter in the Bland-Altman plots (Fig. 3).

The segmentation results using the three network models for different enhancement volumes 

are summarized in Table 2. As can be seen from this table, the accuracy of segmentation for 

lesions <70 mm3 was low. More importantly, for these small lesions the FPR was relatively 

high and the TPR was low. However, TPR ⩾ 0.86 and FPR ⩽ 0.18 were achieved for all 

lesions larger than 70 mm3 using the U5 model. Reducing the number of input channels or 

images reduced the segmentation accuracy for the enhancing lesions. Using U2, TPR ⩾ 0.86 

and FPR ⩽0.24 was observed for all lesions with size ˃ 70 mm3 (0.07mL), and for the same 

range of lesion size, U1 achieved TPR ⩾ 0.89 and FPR ⩽0.25 (Table 2).

Figure 4 shows, as an example, a case from the test set in which a ‘Gd-enhancing lesion’ 

was segmented by U1 based only on the hyperintensity on post-Gd T1w image, even though 

no corresponding T2 hyperintense lesion was observed on the FLAIR image. The T1w 

hyperintensity was still seen as a lesion on the U2 segmentation which uses both pre- and 

post-Gd T1w images. However, this T1w hyperintensity was not labelled as a lesion on U5 

segmentation, consistent with the ground truth. Overall, all three networks performed well in 

most cases, as is shown in Fig. 5.

Discussion

In this study, we evaluated deep neural networks for fully-automated detection and 

segmentation of Gd-enhancing lesions on MR images. Evaluation on a large dataset shows 

excellent performance, achieving TPR of 0.90 and FPR of 0.23 and a high segmentation 

accuracy, as assessed by Dice similarity score of 0.77. In addition, the model simultaneously 

segmented all brain tissues. The proposed model is suitable for analyzing large amounts of 

data acquired as a part of multi-center studies. In addition, objective segmentation by DL 

reduces operator bias and inter-rater variability.

In contrast to T2-hyperintense lesion segmentation (see recent review by Danelakis et al.27), 

the literature on segmentation of Gd-enhancing lesions is sparse for a variety of reasons that 

include small lesion volumes, presence of non-lesional enhancements, etc. As indicated in 

the introduction, there are only 4 publications that addressed automatic segmentation of Gd 

enhancements. Bedell et al.10 mainly focused on the reduction of false positives by using 

stationary and marching saturation bands, but did not report the accuracy of their 
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segmentation technique. He et al11 have analyzed data on 5 MS patients. They only reported 

bias between manual delineation and their technique, but did not explicitly report the actual 

performance metrics. Datta et al12 analyzed data on 22 patients and reported an average 

DSC of 0.76 that is similar to 0.77 obtained in this study, even though our sample size is 

much larger. The focus of Karimaghaloo13 was on detection of enhancing lesions and did 

not report the DSC values. They reported FPR and NPR per patient that makes it very 

difficult to directly compare their results with ours.

Enforcing the constraint that Gd-enhancing lesions also show as hyperintense lesions on PD- 

and T2-weighted and FLAIR images can substantially reduce the false positive rate12. 

Unlike previous work12, explicit masking of Gd-enhancing lesions by a T2 lesion mask was 

not needed as the network implicitly learned the masking operation. This was further 

confirmed by inspecting the overlap of Gd-enhancing lesions from the develop models with 

T2 lesions in the ground truth, which showed that 92% of the Gd-enhancing lesions detected 

by U5 actually overlapped with T2 lesions in the ground truth segmentation. In addition, the 

effect of contrast material in the vasculature and structures such as choroid plexus was also 

minimized in the current models by training the networks for segmentation of all brain 

tissues using four other non-contrast enhanced images. The improved performance is 

evidenced in the relatively small FPR of 0.23, averaged over all the enhancement volumes.

The U5 model uses 5 multispectral image sets to segment all brain tissues in addition to T2 

lesions and Gd-enhancing lesions. While these images are routinely acquired in clinical MRI 

protocols of MS, it is also desirable to assess the segmentation quality when using one or 

two multispectral image inputs. Therefore, we tested two additional models where the input 

consisted of both pre- and post-Gd T1w images (U2), or only the post-Gd T1w image (U1). 

These networks resulted in similar average DSC/TPR/FPR of 0.72/0.86/0.31 and 

0.72/0.87/0.34, respectively, but both were inferior to using all 5 MR images (U5 average 

DSC/TPR/FPR = 0.77/0.90/0.23). This reduced performance for U1 and U2 is perhaps due 

to loss of contextual and texture information about T2 hyperintense lesions and potential 

contrast enhancement features existing in non-Gd-enhanced images28. The developed 

models and Python scripts used in this study are available to the community in a public 

repository (https://github.com/uthmri).

A limitation of the current study was the lack of high-resolution 3D images which could 

provide better accuracy in the detection of small enhancing lesions. However, the dataset in 

this study is typical of clinical-grade MRI scans, which provide a realistic test of the 

proposed methods.

CombiRx MRI data included only conventional MRI sequences. Inclusion of advanced MRI 

such as diffusion-weighted and susceptibility-weighted images could have helped improve 

the segmentation results. Another limitation of this study is that the ground truth was arrived 

at by validating the MRIAP segmentation results by two experts. This may introduce some 

bias. It would have been more desirable to manually delineate enhancements on post-

contrast T1-images, using other images as a guide. However, this is impractical, given the 

large data size. Finally, this study focused on developing the DL model and future studies 

will investigate correlations between the network segmentation and clinical outcomes.
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In conclusion, we have shown the feasibility of accurately and automatically segmenting 

Gd-enhancing lesions from conventional multispectral MRI using DL. Assessment on a 

large cohort of 1006 MS patients yielded excellent results, confirming the potential role of 

DL techniques for routine automated analysis in MS, and for processing of large and 

heterogeneous data typically encountered in multi-center clinical trials.
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Figure 1. 
Network Architecture for the U5 model.
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Figure 2. 
Input MR images (upper row) and DL segmented images (lower row). (A) post-Gd T1w, (B) 

FLAIR, (C) T2-weighted, (D) PD-weighted, (E) T1-weighted images. Segmentation maps 

with (F) U5 (G) U2, (H) U1 models, and (I) ground truth. The segmentation maps are color-

coded as: white, WM; gray, GM, cyan, CSF; pink, T2 lesions; red, Gd-enhancing lesions.
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Figure 3. 
(Left) Correlation between the volumes of Gd-enhancing lesions segmented by the U5 (top), 

U2 (middle) and U1 (bottom) models and the ground truth segmentation from expert-

validated MRIAP. (Right) the corresponding Bland-Altman plots for the agreement between 

the lesion volumes.
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Figure 4. 
Input MR images (upper row) and DL segmentation (lower row). (A) post-Gd T1-weighted, 

(B) FLAIR, (C) T2-weighted, (D) PD-weighted, (E) pre-contrastT1-weighted images. 

Bottom row: segmentation maps based on: (F) U5, (G) U2, (H) U1, and (I) Ground truth. 

The segmentation maps are color-coded as in Fig. 2. Note the Gd-enhancing lesions 

segmented by U1 and U2 (black arrows) are absent from U5.
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Figure 5. 
Post-Gd T1w images (left column) and DL model segmentation (columns 2–4) and ground-

truth segmentation (right column) from four MS patients (rows). The segmentation maps are 

color-coded as in Fig. 2.
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Table 1.

Segmentation and lesion detection accuracy for networks using different MRI inputs.

DSC

Model GM WM CSF T2 Lesions Gd-enhancing Lesions

U5 0.95 0.94 0.98 0.89 0.77

U2 0.80 0.82 0.83 0.42 0.72

U1 0.78 0.78 0.8 0.40 0.72

Network model U5 uses as input FLAIR, T2w, PDw, pre- and post- Gd T1w. Network U2 uses pre- and post-Gd T1w. Network U1 uses post-Gd 
T1w.
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Table 2.

DSC, TPR, and FPR for different lesion sizes.

U5 U2 U1

Lesion Size (mm3) Nref N TPR FPR DSC N TPR FPR DSC N TPR FPR DSC

20–34 36 56 0.75 0.64 0.55 81 0.72 0.64 0.55 71 0.69 0.70 0.60

35–69 83 93 0.86 0.32 0.63 99 0.76 0.43 0.62 116 0.80 0.53 0.67

70–137 102 108 0.86 0.18 0.73 102 0.86 0.24 0.71 119 0.89 0.25 0.76

138–276 71 75 0.99 0.05 0.82 66 0.92 0.08 0.78 85 0.93 0.14 0.79

277–499 30 35 1.00 0.03 0.84 42 1.00 0.07 0.84 32 1.00 0.03 0.82

≥500 32 27 0.97 0.04 0.81 22 0.97 0.05 0.74 24 0.94 0.00 0.74

All 354 394 0.90 0.23 0.77 412 0.86 0.31 0.72 447 0.87 0.34 0.72

Network U5 use as input FLAIR, T2-weighted, PD-weighted, Pre- and post Gd,T1-weighted.

Network U2 uses pre- and post-Gd T1w.

Network U1 uses post-Gd T1w.

N denotes the number of lesions segmented by the neural networks.

Nref is the number of lesions in the ground truth segmentation.
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