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Abstract

Purpose—We aimed to evaluate the performance of deep learning-based generalization of ultra-

low-count amyloid PET/MRI enhancement when applied to studies acquired with different 

scanning hardware and protocols.

Methods—80 simultaneous [18F]florbetaben PET/MRI studies were acquired, split equally 

between two sites (Site 1: Signa PET/MRI, GE Healthcare, 39 participants, 67±8 years, 23 

females; Site 2: mMR, Siemens Healthineers, 64±11 years, 23 females) with different MRI 

protocols. 20 minutes of list-mode PET data (90–110 minutes post-injection) were reconstructed 

as ground-truth. Ultra-low-count data obtained from undersampling by a factor of 100 (Site 1) or 

the first minute of PET acquisition (Site 2) were reconstructed for ultra-low-dose/ultra-short-time 

(1% dose and 5% time, respectively) PET images. A deep convolution neural network was pre-

trained with Site 1 data and either (A) directly applied or (B) trained further on Site 2 data using 

transfer learning. Networks were also trained from scratch based on (C) Site 2 data or (D) all data. 

Certified physicians determined amyloid uptake (+/−) status for accuracy and scored the image 

quality. The peak signal-to-noise ratio, structural similarity, and root-mean-squared error were 
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calculated between images and their ground-truth counterparts. Mean regional standardized uptake 

value ratios (SUVR, reference region: cerebellar cortex) from 37 successful Site 2 FreeSurfer 

segmentations were analyzed.

Results—All network-synthesized images had reduced noise than their ultra-low-count 

reconstructions. Quantitatively, image metrics improved the most using method B, where SUVRs 

had the least variability from the ground-truth and the highest effect size to differentiate between 

positive and negative images. Method A images had lower accuracy and image quality than other 

methods; images synthesized from methods B-D scored similarly or better than the ground-truth 

images.

Conclusions—Deep learning can successfully produce diagnostic amyloid PET images from 

short frame reconstructions. Data bias should be considered when applying pre-trained deep ultra-

low-count amyloid PET/MRI networks for generalization.
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Introduction

With the development of the imaging-based “AT(N) framework [1]” for neurodegenerative 

research, simultaneous amyloid positron emission tomography/ magnetic resonance imaging 

(PET/MRI) provides a potential “one-stop shop” imaging exam for dementia research, 

diagnosis, and clinical trials [2–4]. PET allows the acquisition of the amyloid (A) and tau 

(T) biomarkers, hallmarks of Alzheimer’s disease neuropathology [3, 5–8], while MRI with 

its exquisite soft tissue contrast allows for imaging cortical atrophy, representative of 

neurodegeneration (N) [9].

However, multiple factors will affect the utility of PET. The scan time, the cost of the tracer, 

and the radiation given for the PET imaging might all be limiting factors, affecting 

respectively the logistics, economics, and the scanned subjects. Since PET imaging quality 

is highly dependent upon the number of detected events (counts), reduced dose or reduced 

scan time typically results in lower signal-to-noise images. Previous work to tackle this issue 

involves direct interpretation of the low-count images [10–12] or with machine learning-

based methods [13, 14] but using few subjects collected at a single site. To increase the 

utility of this hybrid modality in ultra-low-dose imaging, we have previously trained deep 

learning (DL) networks using a U-net structure with residual learning [15, 16] to generate 

diagnostic amyloid PET images from PET/MRI scans with simulated ultra-low injected 

radiotracer dose [17].

To move single-site studies to multi-center studies, traditionally for multi-center machine 

learning applications, a DL network would be trained centrally, on data collected using a 

harmonized protocol from multiple sites. However, privacy issues such as sharing patient 

information and data ownership often limit the ability to collect a large number of medical 

images from multiple institutions [18–20]. Moreover, when a pre-trained network is applied 

to data acquired at other sites, performance of the network may decrease [21]. To overcome 
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this data bias, a sequential training approach may be considered for network generalization, 

a method sometimes known as “transfer learning” [22]. Under this approach, the network 

may be applied to data acquired on different scanner models, with different scan protocols, 

and reconstructed with different methods or parameters. Most previous machine learning 

work using data from different sites assume that the same image types exist for input to the 

network [18–20, 23]. However, it is more realistic that different sites with different scanners 

also employ different scan protocols that may not include all the inputs required to directly 

apply an algorithm trained elsewhere. Local populations with different disease prevalence 

might also affect the results, and there is evidence that for optimal performance, networks 

should be trained depending on the target study population [24].

In this project, we investigated various approaches to apply a pre-trained convolutional 

neural network (CNN) originally meant to denoise ultra-low-dose amyloid PET/MRI on new 

cases from a separate institution, collected on a different PET/MRI scanner, and with 

different reconstruction parameters and MR sequences. Moreover, we focused on whether 

these approaches can improve ultra-low-count PET data obtained from severely reduced 

imaging duration (1 minute, far lower counts than previous work in literature [10, 14]). A 

better understanding of how to best apply a pre-trained network to a new population should 

enable the optimal performance for generalizing DL-based image synthesis tasks.

Methods

This study was approved by the local institutional review boards. Written informed consent 

for imaging was obtained from all participants or an authorized surrogate decision-maker.

PET/MRI Data Acquisition: Site 1

40 datasets from 39 participants (23 female, 67±8 years; one female participant was scanned 

twice, 9 months apart) with MRI and PET data were simultaneously acquired on Scanner 1: 

an integrated PET/MRI scanner with time-of-flight capabilities (SIGNA PET/MR, GE 

Healthcare). T1-weighted, T2-weighted, and T2 FLAIR morphological MR images were 

acquired, with the parameters listed in Chen et al. [17].

330±30 MBq of the amyloid radiotracer [18F]florbetaben (Life Molecular Imaging, Berlin, 

Germany) was injected intravenously with PET acquired 90–110 minutes post-injection. The 

list-mode PET data were reconstructed for the ground-truth (i.e., reconstructed from 20-

minute full-dose PET acquisitions) image as well as a random subset containing 1/100th of 

the events (also taking the different randoms rate into account) to produce a low-dose PET 

image [25]. Time-of-flight ordered-subsets expectation-maximization (OSEM), with two 

iterations and 28 subsets, accounting for randoms, scatter, dead-time, and attenuation, and a 

4 mm full-width at half-maximum post-reconstruction Gaussian filter was used for all PET 

images. MR attenuation correction was performed using the vendor’s atlas-based method 

[26].

PET/MRI Data Acquisition: Site 2

Analysis was performed on 40 participants (23 female, 64±11 years) who were scanned on 

Scanner 2 (mMR, Siemens Healthineers). Only the T1-weighted and T2-weighted (no T2-
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FLAIR-weighted) MR images (parameters in Table S1) were acquired. 283±10 MBq of 

[18F]florbetaben was injected with PET and MRI acquired 90–110 minutes after injection. 

The 20-minute list-mode PET data was reconstructed for the ground-truth image. The first 

minute of PET acquisition was reconstructed to produce low-count, short-time (5% of the 

original) PET images. OSEM, with 8 iterations and 21 subsets, accounting for randoms, 

scatter, dead-time, and attenuation, and a 3 mm full-width at half-maximum post-

reconstruction Gaussian filter was used for all PET images, based on the standard protocol at 

Site 2. MR attenuation correction was performed using RESOLUTE [27].

Image Preprocessing

The Site 2 ground-truth PET images were resliced based on the Site 1 PET volumes: 89 2.78 

mm-thick slices with 256-by-256 matrix size (1.17×1.17 mm2 in-plane voxel size); to 

compensate for any residual motion between the modalities and sequences, all other images 

from Site 2 were co-registered to the resliced ground-truth PET image following the pipeline 

outlined in Chen et al. [17].

CNN Training and Testing

We trained a CNN (using a “U-net” structure [16]) with the structure, hyperparameters, and 

training algorithm described in Chen et al., using Site 1 data (32 training datasets, chosen 

randomly) [17]. The network inputs are multi-contrast MR (T1-, T2-, and T2 FLAIR-

weighted) and the ultra-low-dose PET images. The network was trained using residual 

learning, based on the ground-truth PET image [15] (Figure 1). The remaining datasets were 

used as the test set. In the previous work 5-fold cross validation was used, resulting in five 

trained networks; one was randomly selected for this study. Network training details and 

network selection can be found in the Supplementary Materials.

To apply this trained network to Site 2 data, two preliminary studies were conducted: for the 

missing T2-FLAIR channel, T1-weighted images were used as inputs. Site 2 1-minute 

images were chosen as inputs to the network. The choices for time reduction and contrast 

replacement was made based on the peak signal-to-noise ratio (PSNR) between the low-

count and its corresponding ground-truth image (details outlined in the Supplementary 

Materials, [28]). Four approaches were investigated (schematically shown in Figure 2): in 

the first (Method A), the Site 2 data were input directly into the network trained at Site 1, 

with no attempts to account for site differences. In the second (Method B), network weights 

were initialized with the final weights from Site 1 data, then further tuned for 100 epochs 

with a learning rate of 0.0001. 5-fold cross-validation (i.e., 32 datasets for training, 8 for 

testing per network trained) was used during transfer learning. For Method C, a new network 

was trained from random initialization on Site 2 data only. Finally, Method D was trained 

from random initialization on all data from both scanners (32 cases from Site 1 and 32 cases 

from Site 2, with testing on 8 cases from Site 2). The network inputs for methods C and D 

are the multi-contrast MR images (T1-, T2-weighted images only) and the low-count PET 

image. The hyperparameters and training follow that implemented in Chen et al. [17].
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Assessment of Image Quality

Dataset-specific FreeSurfer-based [29, 30] T1-derived brain masks were used for voxel-

based analyses. For each axial slice, the image quality of the synthesized PET images and 

the original low-count PET images within the brain mask were assessed using peak signal-

to-noise ratio (PSNR), structural similarity (SSIM) [31], and root mean square error 

(RMSE), where:

PSNR = 20log10(MAX(IGT )) − 10log10(MSE(IGT , Ix))
SSIM = [(2μGTμx + C1)(2σGT , x + C2)]/[(μGT2 + μx2 + C1)(σGT2 + σx2 + C2)]

RMSE = ∥ IGT − Ix ∥ / ∥ IGT ∥

and IGT denotes the ground-truth image (mean μGT, variance σGT
2, maximum pixel value 

MAX(IGT)), Ix denotes the image to be tested, σGT,x denotes the covariance of IGT and Ix, 

C1 and C2 are the square of 0.01 and 0.03 times the pixel value range of IGT, respectively, 

MSE denotes the mean squared error, and ∥ . ∥ denotes the Frobenius norm.

The respective metrics for each slice were then averaged (weighted by the number of voxels 

in the brain mask). A repeated measures analysis of variance (ANOVA) test followed by 

pair-wise paired t-tests were conducted at the p=0.05/3 level with Bonferroni correction for 

multiple (three) comparisons, to compare the values of the image quality metrics across the 

different image processing methods. Image metric improvement from the low-count to the 

synthesized image was also calculated for data from both sites; this comparison was 

conducted using the one-tailed two-sample unequal variance t-test (also at the p=0.05/3 

level).

Region-based Analyses

Region-based analyses were carried out to assess the agreement of the tracer uptake between 

images as well as differentiating between amyloid positive and negative images. FreeSurfer-

based cortical parcellations and cerebral segmentations based on the Desikan-Killiany Atlas 

[32] were created, yielding a maximum of 111 regions per dataset. Mean standard uptake 

value ratios (SUVR, normalized to the cerebellar cortex) in 4054 total regions from 37 

successful segmentations were calculated and compared between methods and evaluated by 

Bland-Altman plots. Next, a composite ROI was derived from the frontal, parietal, lateral 

temporal, occipital, anterior and posterior cingulate cortices and the mean composite SUVR 

was calculated by Hermes BRASS software for all datasets, again with the cerebellar cortex 

as reference. Using the clinical readers’ majority ground-truth reads, receiver operator 

characteristic (ROC) analysis was carried out using different SUVRs as cutoff values for 

amyloid positive vs. negative and the area under the ROC curve (AUC) was calculated for 

each image type; the AUCs were analyzed according to DeLong et al, [33] for significance 

and a non-inferiority threshold of 5% was set to compare the DL-based AUCs and the 

ground-truth AUC. Cohen’s d [34] was also calculated for the composite SUVRs between 

amyloid positive and negative groups of each image type.
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Clinical Readings

All PET images of each dataset were anonymized, their series numbers were randomized, 

then presented to four readers (H.B., O.S., G.Z.: board-certified physicians with 10+ years’ 

experience of reading amyloid images; M.E.I.K.: resident with 4 years’ experience) for 

independent reading. The amyloid uptake status (positive, negative, uninterpretable) of each 

image was determined; the ground-truth amyloid status was based on the majority read from 

the ground-truth images. A fifth reader (G.D.: board-certified physician with 10 years’ 

experience) was a tiebreaker for a single case of a 2–2 positive-negative reading. Reader 

agreement was assessed using the Krippendorff’s alpha test. The accuracy, sensitivity, and 

specificity were calculated for the readings of the short-time and synthesized images. 

Symmetry tests were also carried out to examine whether the readings produced an equal 

number of false positives and negatives.

For each PET image, the physicians also assigned an image quality score on a five-point 

scale: 1=uninterpretable, 2=poor, 3=adequate, 4=good, 5=excellent. Also, these scores were 

dichotomized into 1–3 vs. 4–5 to analyze the percentage of images with high scores.

Results

Assessment of Image Quality

Visually, all synthesized images showed marked noise reduction (Figure 3). For Site 2 data, 

the ANOVA test showed that the four methods yielded different results than the low-count 

images and from each other (Table 1), indicating that image quality improved from the low-

count images but improved the least with method A (i.e., simply applying the Site 1 model 

to Site 2 data). Pair-wise t-tests showed that image quality improved the most using method 

B (Figure 4; p<0.05/3 for all metric comparisons). Comparing the metric difference 

(improvement from the low-dose/short-time images to the images output from different 

trained/tuned networks) across sites, all methods showed more improvement (p<0.05/3) in 

SSIM than that in Site 1 data. For RMSE Methods B, C, and D results showed more 

improvement (p<0.05/3) than Site 1 results while for PSNR Methods C and D showed 

similar improvement (p>0.05/3) and Method B showed more improvement (p<0.05/3) than 

Site 1 results. Method A results showed less improvement (p<0.05/3) compared with Site 1 

results in both PSNR and RMSE.

Region-based Analyses

SUVRs derived from method B had the least variability from the ground-truth SUVRs 

(Figure 5). Images generated by method B also yielded the highest AUC (Figure 6) and the 

largest Cohen’s d values to distinguish positive and negative amyloid status out of all image 

types (Table 2). Comparing the four DL method-based AUCs with the low-count AUC and 

the ground-truth AUC yielded p-values of 0.46 and 0.70 respectively, and the 95% 

confidence interval of the DL-based AUCs fell within the non-inferiority threshold of the 

ground-truth AUC.
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Clinical Readings

Inter-reader agreement on amyloid uptake status was high (Krippendorff’s alpha>0.7) for all 

methods except for method A (Krippendorff’s alpha=0.5) and the readings from all four 

readers were pooled. 76/160 (47.5%) total reads of the ground-truth images were amyloid 

positive.

When comparing the accuracy, sensitivity, and specificity of the readings between the 

synthesized images and the ground-truth images, methods B, C, and D produced higher 

values than those from method A (Table 3). The accuracy of the readings from images 

synthesized using methods B, C, and D was high, though method B produced more false 

positives than false negatives (p=0.031 for the symmetry test). For the short-time images that 

were interpretable (only 56% of them), the accuracy, sensitivity, and specificity of the 

clinical assessments were also high (Confusion matrices in Table S2).

The mean image quality scores assigned by each reader to all PET volumes are shown in 

Table 4 and Table S3. The results showed relevant inter-reader variability and limited 

agreement and thus no statistics were done on the readings. However, for all readers, 

methods B, C, and D had similar (>−10%) or even higher proportions of high-scoring (i.e., 4 

or 5) readings compared to those of the ground-truth images. In contrast, readings of images 

from method A performed worse than the other deep-learning-based methods and the 

ground-truth images.

Discussion

When conducting retrospective multi-center imaging studies or applying trained models on 

one site to another, differences such as scanner hardware, acquisition protocol, and 

reconstruction parameters will pose challenges in the generalization of these trained models. 

In this work, we were able to apply a pre-trained network to ultra-short-time duration 

amyloid PET/MRI data from another institution, overcoming the differences in acquisition 

protocol. Through further training iterations, the pre-trained network adjusted for data bias 

stemming from the differences in acquisition and reconstruction between institutions. 

Furthermore, we showed that the network could still be used in the event of missing input 

data; providing another structurally similar MRI contrast (the approach used in this work) as 

an input for the missing channel preserved the functionality of the network [28]. From this 

and the previous study [17], we have shown that DL-assisted extreme time-shortening and 

dose-reducing methods for amyloid PET/MRI can potentially increase the utility of PET 

imaging.

Certainly, the hyperparameter space for network tuning is vast, and methods for data/

network sharing across institutions are many. However, we believe the methods investigated 

in this study represent four main DL-based approaches in multi-site studies: the first 

(Method A), naïvely applying the network trained on data from one site to another. However, 

network tuning is needed to account for data bias from each site, evidenced by the weak 

performance of this method. The second method (Method B) requires passing the network 

between sites, using pre-training from Site 1 to act as the initialization of a model that is 

further trained on Site 2 data (i.e., transfer learning). Method B represents the most extreme 

Chen et al. Page 7

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



case of optimizing the test set results, where the network is first trained on Site 1 data, then 

tuned with Site 2 training data (tuning all layers of the network), and directly applied on the 

Site 2 test set. The final two methods are extreme examples in which institutions approach 

data sharing: Method C where each site keeps its own data and trains its own network for the 

institution’s own use, and the traditional “data-sharing” approach (Method D) for multi-

center studies where all data are collected and stored in a central repository for training. To 

simulate this approach for Method D, where all data acquisition protocols are harmonized 

across sites, we did not include the T2 FLAIR channel during training.

Based on the evaluation metrics, selection of the optimal network training/tuning method is 

application-specific. In this specific study, while training an institution’s own network 

(Method C) produces good results quantitatively and qualitatively as expected (the network 

is specifically trained on the image quality of the institution), for the network generalization 

and data sharing methods using the pre-trained network (Method B), an efficient way to 

allow each institution to keep its own data, provides better quantification results overall, 

possibly due to the image quality difference from the scanner and image processing 

protocols between the two sites. The U-Net architecture, which emphasizes low-spatial 

frequencies in the input and results in a blurrier output [35], also contributes to a slightly 

blurrier image using methods C and D. On the other hand, for applications involving expert 

readers, with Methods B, C, and D performing similarly in the clinicians’ image quality 

preference and amyloid status readings, any of the methods would be sufficient as long as 

the data bias from each site is accounted for. This is not surprising since previous studies 

have shown that clinicians can confidently read PET images that have lower counts than that 

routinely acquired, though not as extremely reduced as in the current study [11, 12].

There are several limitations to this study. First, the network training and tuning methods 

evaluated are not exhaustive. Second, with the approach of method B, the problem of 

“forgetting [19, 36, 37]” how to produce an optimal image for Site 1 data is unavoidable, 

since the pre-trained network is now tuned for Site 2 data instead. However, in this project 

our focus was on sharing the pre-trained network to other sites and thus in actual practice the 

newer networks will not be applied back on Site 1 data. Finally, in this study there are 

potential sources of bias such as the Site 1 training dataset (there are two datasets from one 

participant, though the two scans are independent, with the head positioned differently, and 

took place nine months apart); the readers’ experience or institution may also lead to bias. 

For example, we enlisted multiple readers so that a consensus reading by majority vote could 

be used as the ground-truth, but in terms of image quality readers 3 and 4 (belonging to the 

same institution) showed a clear preference for the synthesized images while readers 1 and 2 

(belonging to the same institution) preferred the Site 2 ground-truth images. This preference 

may be due to many reasons, such as the PET image quality at the readers’ original sites, or 

experience with reading lower count images [11]. However, variability in the image quality 

scores also prevented pooling scores for further statistical analyses. This reader bias also 

demonstrated the need for multiple readers from different sites when conducting reader 

studies.

Chen et al. Page 8

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

To perform deep-learning-based ultra-short-time amyloid PET/MRI imaging using transfer 

learning methods, further tuning of pre-trained networks or training new networks including 

data acquired from the new scanner is required to overcome data bias. Sharing the network 

parameters between sites rather than the images themselves can be a potential way for 

collaboration across multiple amyloid PET/MRI sites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the U-Net used in this work and its inputs and outputs. The arrows denote 

computational operations and the tensors are denoted by boxes with the number of channels 

indicated above each box. Note that for the Site 2 data in which T2-FLAIR was not 

available, this input was replaced with the T1-weighted image. BN: batch normalization; 

Conv: convolution; ReLU: rectified linear unit activation.
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Figure 2. 
The various methods used in this work for network generalization. 5-fold cross validation 

was used to utilize all datasets (when coming from the same site) for testing and training. 

The training and testing data for Method A were from different sites; therefore all Site 2 data 

could be applied to one network.
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Figure 3. 
Representative amyloid positive (top)/negative (bottom) images, with T1-weighted MRI and 

the corresponding PET images overlaid onto the T1 images. Difference images between the 

ground-truth and the other images are also shown. All synthesized images show marked 

noise reduction. However, Method A images are blurrier than the other synthesized images. 

Network training methods: A-direct application of pre-trained network; B-transfer learning 

starting with pre-trained network; C-training new network from scratch; D-training new 

network with combined datasets
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Figure 4. 
The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square 

error (RMSE) of the synthesized and low-count images compared to the ground-truth image. 

Site 1 data (used to train the original network in Chen et al. [17]) are also shown for 

comparison. Network training methods: A-direct application of pre-trained network; B-

transfer learning starting with pre-trained network; C-training new network from scratch; D-

training new network with combined datasets
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Figure 5. 
Bland-Altman 2-D histograms of regional standardized uptake value ratios (SUVRs) 

compared between methods (ground-truth to low-count and methods A, B, C, and D) across 

all datasets with FreeSurfer segmentations (n=37). The scale bar denotes the number of data 

points in each pixel; the solid and dashed lines denote the mean and 95% confidence interval 

of the SUVR differences respectively. GT: ground-truth. Network training methods: A-direct 

application of pre-trained network; B-transfer learning starting with pre-trained network; C-

training new network from scratch; D-training new network with combined datasets
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Figure 6. 
The receiver operating characteristic (ROC) curves of the standardized uptake value ratios 

(SUVRs) from the various image types used to differentiate between amyloid positive and 

negative readings. Network training methods: A-direct application of pre-trained network; 

B-transfer learning starting with pre-trained network; C-training new network from scratch; 

D-training new network with combined datasets
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Table 4.

Mean and standard deviation (SD) image quality scores (1=uninterpretable; 2=poor; 3=adequate; 4=good; 

5=excellent) and the proportion of high-quality images (scores 4–5) from the four readers.

Reader Ground-truth Method A Method B Method C Method D Low-count

1

Mean±SD 4.78±0.58 3.35±0.98 4.28±0.75 4.48±0.51 4.45±0.64 3.65±1.03

High-quality images (%) 92.5 45 82.5 100 92.5 60

2

Mean±SD 3.40±0.55 2.70±0.72 3.65±0.89 3.73±0.72 3.60±0.67 2.65±0.66

High-quality images (%) 42.5 15 52.5 57.5 60 10

3

Mean±SD 2.93±0.69 2.90±0.38 4.05±0.39 3.58±0.68 3.35±0.77 1.15±0.36

High-quality images (%) 20 2.5 95 62.5 42.5 0

4

Mean±SD 2.38±0.49 2.65±0.77 3.83±0.78 4.08±0.76 3.90±0.74 1.08±0.26

High-quality images (%) 0 17.5 65 80 72.5 0

Network training methods: A-direct application of pre-trained network; B-transfer learning starting with pre-trained network; C-training new 
network from scratch; D-training new network with combined datasets
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