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Abstract

Recombinant human bone morphogenetic proteins (BMPs) have shown clinical success in 

promoting bone healing, but they are also associated with unwanted side effects. The development 

of improved BMP carriers that can retain BMP at the defect site and maximize its efficacy would 

decrease the therapeutic BMP dose and thus improve its safety profile. In this review, we discuss 

the advantages of using self-assembling peptides, a class of synthetic supramolecular biomaterials, 

to deliver recombinant BMPs. Peptide amphiphiles (PAs) are a broad class of self-assembling 

peptides, and the use of PAs for BMP delivery and bone regeneration has been explored 

extensively over the past decade. Like many self-assembling peptide systems, PAs can be designed 

to form nanofibrous supramolecular biomaterials in which molecules are held together by non-

covalent bonds. Chemical and biological functionality can be added to PA nanofibers, through 

conjugation of chemical moieties or biological epitopes to PA molecules. For example, PA 

nanofibers have been designed to bind heparan sulfate, a natural polysaccharide that is known to 

bind BMPs and potentiate their signal. Alternatively, PA nanofibers have been designed to 

synthetically mimic the structure and function of heparan sulfate, or to directly bind BMP 

specifically. In small animal models, these bio-inspired PA materials have shown the capacity to 

promote bone regeneration using BMP at doses 10 – 100 times lower than established therapeutic 

doses. These promising results have motivated further evaluation of PAs in large animal models, 

where their safety and efficacy must be established before clinical translation. We conclude with a 

discussion on the possiblity of combining PAs with other materials used in orthopedic surgery to 

maximize their utility for clinical translation.
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CLINICAL CHALLENGES IN BONE HEALING

Despite the relatively robust capacity for bone to regenerate after injury, delayed healing or 

non-union (failure to heal) is a significant clinical challenge in orthopaedic surgery. Non-

union rates of >10% are commonly reported, with much higher rates in at-risk populations 

such as smokers, diabetics, and osteoporotic patients1–11. Treatment of the nearly 8 million 

fractures that occur in the U.S. annually is estimated to cost $21 billion/year1.

Autologous bone grafting is the historical “gold standard” for surgical bone repair, 

delivering the three requirements for successful bone regeneration: 1) osteoinductive signals; 

2) an osteoconductive matrix; and 3) osteogenic cells12–14. However, the procedure requires 

a longer operative time and is associated with greater blood loss, increased infection risk, 

and donor site pain15–21. Morbidity (e.g., bleeding and hematoma) is not uncommon, and 

significant acute and chronic donor site pain at the iliac crest have been reported15, 22, 23, 

although the incidence rates of these complications have more recently been disputed24, 25. 

Graft volume/availability is also a limitation, and despite its historical use, autologous bone 

grafting still results in non-unions (failed healing), reportedly in 5–30 % of patients, 

depending on the injury or defect as well as patient-specific conditions2, 10, 26–29. As a 

result, the use of iliac crest autograft bone (ICBG) has dropped dramatically in the past two 

decades7, 16, 30, and interest has risen in developing alternative approaches to augment bone 

healing. An ideal solution would be a synthetic bone graft substitute that safely promotes 

bone regeneration and healing while obviating the need to harvest iliac crest or local 

vertebral bone.

THE BONE HEALING CASCADE

Bone healing occurs through a highly orchestrated sequence of events involving both 

biochemical and biomechanical cues31. The initial disruption of blood vessels after injury 

results in the formation of a clot, which provides hemostasis. In closed fractures, a non-

infectious inflammatory response is then initiated, whereupon inflammatory cells are 

recruited to the defect32. This is followed by a fibrovascular phase involving recruitment of 

mesenchymal stem cells (MSCs) via chemotactic signals. These cells undergo proliferation 

for several days, and then condense and differentiate into chondroblasts or osteoblasts, 

depending on the microenvironment and growth factor signals received33, 34. In the case of 

endochondral ossification, a cartilaginous intermediate first forms, which undergoes 

hypertrophy after 10–14 days35. The cartilage is gradually replaced by bone, which becomes 

ossified after several weeks. Finally, osteoclasts are recruited to the ossified bone, which 

then undergoes remodeling to produce mature, lamellar bone32. Fracture healing is 

ultimately considered complete with the restoration of functional and biomechanical 

properties36.

Despite the generally robust capacity for skeletal tissue to regenerate, delayed healing or 

failure to heal (non-union) are not uncommon. The FDA defines a non-union as a fracture 

that has not healed by 9 months after injury, with radiography showing no improvement over 

the final 3 months37. The risk for non-union is determined by many patient-specific factors. 
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Smokers, diabetic patients, and elderly patients with or without osteoporosis are at increased 

risk for delayed healing and non-union1–8, 11, 37. Other factors include the type of bone 

involved, mechanics of the fracture, degree of initial bone loss, time since initial injury, and 

the extent to which the adjacent soft tissue is disrupted. Consideration of these individual 

factors is important in determining the ideal approach for the initial treatment or in 

addressing delayed healing and non-unions.

THE HISTORICAL ROLE OF BMPs IN BONE REGENERATION

The three major mechanisms of osteoconductivity, osteoinductivity, and osteogenesis are 

well-established requirements for bone healing. The first refers to the capacity of a material 

to serve as a scaffold that allows for bone ingrowth and mineral deposition. Examples of 

osteoconductive materials include hydroxyapatite and other calcium phosphate ceramics, 

allograft, and to a lesser degree, demineralized bone matrix and other collagen-based 

scaffolds. Osteoinductivity refers to factors with the ability to signal progenitor cells to 

differentiate into bone-forming cells (osteoblasts). Classic examples of osteoinductive 

factors are BMPs, reviewed in this section35, 38–40. Finally, osteogenic materials are those 

that contain cell types capable of forming new bone, or osteoprogenitor cells. Examples of 

osteogenic materials include autologous bone and bone marrow.

Bone morphogenetic protein (BMP) was first discovered in 1965 by Marshall Urist, a bone 

biologist, orthopaedic surgeon, and pioneer in the field of bone regenerative medicine39–41. 

In his original 1965 publication, Dr. Urist showed that demineralized bone matrix (DBM)—

prepared from human cadaveric bone and processed to remove mineral—could induce new 

bone formation when implanted at non-bony sites in animal models39. Urist postulated that 

this result was indicative of a previously unknown substance present in bone, which he 

termed, bone morphogenetic protein. He and others then undertook the challenge over the 

next 30 years of isolating BMPs and determined that these proteins play a critical role in 

several steps of the bone healing cascade, including mitogenic, chemotactic, and 

osteoinductive actions, as well as promoting callus formation and mineralization33, 34, 42. 

Since then, many studies have validated the role of BMPs in the growth, recruitment, 

attachment, proliferation, and differentiation of mesenchymal progenitor cells, ultimately 

resulting in new bone formation41, 43.

BMP-2

Although eight of the BMPs have established osteochondral functions44, BMP-2 appears to 

be the most potently osteoinductive and has therefore garnered the most interest. BMP-2 was 

first cloned in 1988 by a team led by John Wozney, which led to its classification as a 

member of the TGF-β superfamily34. The clinical use of the growth factor for augmentation 

of bone healing soon followed45. Over the next several decades, the newly available 

recombinant human BMPs (rhBMPs) were evaluated in pre-clinical animal models for safety 

and efficacy35, 41, 46–56. With the ability to induce progenitor cells to both the chondrogenic 

and osteogenic lineages, BMP-2 thus has utility in both endochondral and 

intramembraneous ossification applications32, 57. Initial in vivo studies typically evaluated 

the efficacy of rhBMP-2 using simple carriers, such as an absorbable type 1 collagen 
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sponge, although advances in the past two decades have enabled more sophisticated delivery 

modalities. BMP-2 shows osteoinductivity in vivo, as evidenced by the formation of ectopic 

bone after implantation in non-bony sites (i.e., subcutaneous and intramuscular 

implantation)58–64. Bony defect models in which rhBMP-2 has shown pre-clinical efficacy 

include spinal fusion (rats, rabbits, goats, sheep, non-human primates)65–75, extremity 

segmental defects (rats, rabbits, dogs, non-human primates)62, 76–83, and cranial defects 

(mice, rats, rabbits, dogs, and goats)84–90, among others. Dosing for these studies is highly 

variable, and is dependent upon not only the carrier, but also the species, anatomy of the 

defect, and implant size57.

Clinical studies evaluating the efficacy of BMP-2 have been performed in several 

orthopaedic settings, including open tibial shaft and other traumatic extremity fractures91, 92. 

The growth factor has also been extensively utilized in interbody and posterolateral spine 

fusion procedures93–100. In 2002, rhBMP-2 (Infuse™) was approved for open tibial shaft 

fractures as well as in anterior lumbar fusions in the setting of degenerative disc disease91. 

Many of the clinical studies leading up to and following FDA approval suggest that 

rhBMP-2 performs comparably to autogenous bone graft, and in some cases promotes more 

efficient bone healing while obviating the need for graft harvest94, 96, 100. However there are 

a number of more recent studies which suggest that initial reports of efficacy were 

exaggerated, and adverse events associated with its use underreported97, 101, 102. 

Complications which are well-established to result from supraphysiologic rhBMP-2 dosing 

include ectopic and heterotopic bone formation, exacerbated inflammation and seroma 

formation, bone resorption, urogenital complications, and dysphagia when used in the 

cervical spine97, 103. Induction of cancer was also a concern by some, although this has been 

much debated97, 104, 105. Although more judicious use of the growth factor—in terms of 

both dose and clinical indications—has now been adopted by many surgeons, the delivery of 

rhBMP-2 using a more efficient carrier would both reduce the necessary dose to achieve 

high rates of union and reduce or potentially even eliminate the complications associated 

with its clinical use.

BMP-7

When delivered using a collagen carrier, rhBMP-7 (originally referred to as Osteogenic 

Protein-1, OP-1) was originally shown in 1992 to induce ectopic bone formation in 

intramuscular and subcutaneous models106. Following that discovery, BMP-7 was 

investigated extensively to assess its capacity to promote bone and cartilage regeneration, 

resulting in a large body of pre-clinical research that has validated its use as a means to 

augment bone healing in orthopaedic applications. The growth factor is sufficiently 

osteoinductive to promote healing of critical sized defects in rabbits, dogs, and non-human 

primates, and could promote spinal fusion in large animals after delivery using collagen 

matrix and other similar carriers54, 107–116. Some of these studies found that BMP-7 delivery 

surpassed even autogenous bone graft in some functional outcomes, such as biomechanical 

strength109, 116.

The promise of these pre-clinical results led to the first prospective randomized controlled 

trial on a BMP, which compared OP-1 Device (rhBMP-7) to autograft bone in the capacity 
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to heal established nonunions of the tibiae117. The experimental group, which received 3.5 

mg rhOP-1 with 1g bovine type I collagen matrix (“OP-1 Device”), achieved comparable 

clinical outcomes to the autograft control group, while obviating the morbidity associated 

with autograft harvest (donor site pain, increased blood loss, and increased infection risk).

In 2001, rhBMP-7 (rhOP-1) was approved by the FDA for the treatment of tibial nonunions, 

where it performed similarly to autogenous bone graft117. RhBMP-7 was also investigated 

as an adjunct to allograft bone as well as hydroxyapatite, where it enhanced osseointegration 

and new bone formation118, 119. Although rhBMP-7 is not approved generally for spinal 

fusion indications and requires a humanitarian device exemption in that setting, based on 

equivalence in clinical and radiographical outcomes, the combined use of rhBMP-7 and 

local autograft has been recommended as a viable alternative to iliac crest autologous bone 

graft (ICBG) for single-level instrumented spinal fusion procedures93. However, due to 

conflicting evidence for the use of rhBMP-7 delivered with an absorbable collagen sponge 

as a bone graft substitute for spine fusion, no recommendation has been made for its use in 

this clinical application93. Furthermore, similar to the supraphysiologic dosing of rhBMP-2, 

bone resorption associated with rhBMP-7 use has been reported120, 121.

BMP-6

Although not yet FDA-approved, BMP-6 is another osteoinductive BMP that has received 

significant attention for its potential for clinical translation. The capacity to promote 

osteogenic differentiation is well-established, and its ability to promote bone formation and 

healing have been tested in a number of pre-clinical models122–126. Studies have been 

performed to compare the osteoinductivity and bone forming capacity of rhBMP-6 with that 

of either rhBMP-7 or rhBMP-2, with conflicting results125, 127–129. Despite this, continued 

investigations exploring the utility of rhBMP-6 in combination with a variety of carriers for 

bone regenerative medicine are ongoing125, 126, 130–132.

RhBMP-6 is the biologic component of a product currently under development for clinical 

translation for bone regenerative purposes. The carrier in this OSTEOGROW device, is 

autologous blood coagulum, which has a greater affinity for rhBMP-6 than does the FDA-

approved rhBMP-2 and rhBMP-7 carriers for their respective growth factors. This property 

is expected to eliminate the burst release and enable delivery of a significantly lower 

therapeutic dose of the growth factor133. OSTEOGROW is currently being evaluated in GLP 

and GMP studies for safety and efficacy in both acute radial fracture and high tibial 

osteotomy (HTO) indications, and in the first report of Phase I results from the HTO trial, no 

serious side effects were reported125.

SYNTHETIC CARRIERS FOR BMP

The safety of BMPs for clinical use came into question after serious side effects were noted 

with use of rhBMP-2 in spine surgery applications97, 105, and its use subsequently dropped 

dramatically. The adverse outcomes are attributed to the supraphysiologic dosing required 

for successful healing, and the need for such high doses is due to the inefficiency of growth 

factor delivery with the use of the FDA-approved carriers. This understanding highlights the 
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importance of the carrier in delivering GF for optimal efficacy while maintaining an 

acceptable safety profile. In recent years, a wide variety of delivery vehicles have been 

investigated for improved efficiency in growth factor delivery. One such approach is the use 

of self-assembling peptides.

To obviate the requirement for supraphysiologic doses of recombinant growth factor, 

improved carriers for BMP should more efficiently bind and retain the growth factor. This 

enables the maintenance of local concentrations sufficient to induce signaling while 

preventing unwanted diffusion and off-target effects such as heterotopic/ectopic bone growth 

or uncontrolled inflammation. In addition to slowing BMP release, the ideal carrier would 

also provide an osteoconductive scaffold that can support the infiltration of bone-forming 

cells and bony ingrowth. Researchers have loaded BMP onto a wide variety of materials, 

including minerals such as hydroxyapatite134 and tricalcium phosphate135, proteins such as 

collagen136 and fibrin137, and natural polymers such alginate138, hyaluronic acid,139 and 

chitosan140. BMP carriers have also been crafted from synthetic polymers, usually covalent 
polymers such as polyethylene glycol (PEG)141, poly(ethyl acrylate) (PEA),142 and 

polylactic-co-glycolic acid (PLGA)143.

The use of completely synthetic materials can offer improved control over materials 

properties, since the chemical structures can be rationally tuned. Historically, synthetic 

carriers for BMPs and other growth factors have been traditional polymers in which 

structural units are linked through covalent bonds. However, polymers may take a long time 

to biodegrade or be cleared, and thus compromise biocompatibility of the carriers. At the 

same time, formation of ordered structures designed to optimize function of carriers, 

particularly for bioactivity, is rather challenging with covalent polymers. Over the past two 

decades supramolecular materials have emerged144, in which structural units or monomers 

interact through non-covalent bonds. An early example of a supramolecular biomaterial with 

liquid crystalline properties was reported by the Stupp laboratory145, and many of these 

materials are known as supramolecular polymers.146 Thus, the use of supramolecular 
biomaterials based on formation of non-covalent bonds among their constituent molecules 

may offer distinct advantages as osteoconductive carriers for BMP delivery. In 

supramolecular biomaterials, the individual molecular building blocks are not tethered 

together by covalent bonds, but instead self-assemble through non-covalent interactions such 

as hydrogen bonds, hydrophobic interactions, metal chelation, van der Waals forces, or π-π 
stacking.

SELF-ASSEMBLING PEPTIDES FOR BMP DELIVERY

Within supramolecular biomaterials, self-assembling peptides have gained attention and 

shown promise in a variety of applications147. Since signal transduction is largely mediated 

by proteins, which requires peptide chains to engage in non-covalent interactions, self-

assembling peptides are an attractive platform for designing bioactive materials. The non-

covalent connections among the monomers facilitate the formation of ordered structures that 

may be important for bioactivity and biodegradation rates might be much faster than those 

associated with covalent polymers148. The library of natural and unnatural amino acids 
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offers great combinatorial diversity, and many amino acids have hydrogen bonding or 

hydrophobic regions that can participate in non-covalent self-assembly.

PuraMatrix™ is a hydrogel scaffold comprised of a 16 amino acid peptide sequence called 

RADA16, which forms non-covalent β-sheeted structures to self-assemble into peptide 

nanofibrils149 (Figure 1A). In one study, PuraMatrix™ mixed with recombinant human 

BMP-2 successfully regenerated calvarial bone in New Zealand white rabbits, while 

PuraMatrix™ alone and BMP-2 alone did not150. In another study, researchers created an 

injectable hydrogel of RADA16 mixed with BMP-2, which transitions from a solution to a 

gel in an ex-vivo pig femoral head model151. The RADA16 hydrogel successfully slowed 

BMP-2 release, and in vitro experiments demonstrated that the BMP-2 released retained its 

bioactivity151. The RADA16 peptide may also be modified to incorporate biological motifs, 

in particular short peptide sequences that can signal cells152 (Figure 1B). One study found 

that the incorporation of cell adhesion motifs into RADA16 hydrogels improved osteoblast 

cell adhesion and migration into the scaffolds152 (Figure 1B). Another self-assembling 

peptide system is SPG-178, a 13-amino acid sequence that forms nanofibrous structures153 

(Figure 2A). Similar to RADA16, SPG-178 self-assembles into nanofibers due to β-sheet 

structures among the peptide monomers153 (Figure 2A). A network of SPG-178 nanofibers 

can form hydrogels, which have been shown to have some inherent osteoinductive properties 

(Figure 2B)154, 155. While RADA16 and SPG-178 are both relatively short peptide 

sequences (16 and 13 amino acids long, respectively), longer peptide chains can also be the 

basis for self-assembling peptide materials. For example, Poly(VPAVG)220 is an 

thermoresponsive elastin-like polymer with the sequence VPAVG repeated 220 times156. 

Poly(VPAVG)220 self-assembles into spherical nanoparticles (Figure 3), which are capable 

of encapsulating and delivering both BMP-2 and BMP-14156. These examples show the 

potential of self-assembling peptides for BMP delivery and bone regeneration as well as the 

diversity that is possible with the use of self-assembling peptide biomaterials. However, 

peptides can be further improved by modification with other types of molecules, similar to 

the post-translational modification of proteins in biology. One example is peptide 
amphiphiles (PAs), a class of synthetic molecules that contain a short peptide chain 

conjugated to an aliphatic tail.148, 157–159

PEPTIDE AMPHIPHILE SCAFFOLDS FOR BMP DELIVERY

In canonical form, peptide amphiphile (PA) molecules that can self-assemble into 

supramolecular nanofibers and form hydrogels contain a single aliphatic tail covalently 

bonded to a peptide sequence that induces hydrophobic collapse. The peptide segment 

commonly is one that leads to the formation of β-sheets with high densities of 

intermolecular hydrogen bonding148, 157–161. These non-covalent interactions can be tuned 

to enable self-assembly into a variety of structures, making PAs a versatile platform for 

biomaterials design.148, 157–159 Since the first report in 2001157, work on PA nanofibers over 

the past two decades has demonstrated their ability to regenerate a variety of tissues 

including bone162–165, cartilage166, muscle167, vasculature168, and neural tissue169. For 

bone regeneration specifically, PA-based biomaterials have successfully healed bone defects 

with low doses of recombinant BMP-2.163–165.
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In 2008 the authors’ laboratory developed a “heparin-binding PA,” which contained a short 

peptide sequence that binds heparan sulfate170, a highly sulfated polysaccharide that 

regulates growth factor activity. In addition to their heparan sulfate-binding activity, the PA 

molecules were designed to self-assemble into nanofibrous structures reminiscent of the 

natural extracellular matrix (ECM)170. Heparan sulfate naturally exists as a 

glycosaminoglycan bound to fibrillar proteins within the ECM, from where it binds a 

multitude of growth factors and controls their interactions with cell receptors171. Since one 

of these growth factors is BMP-264, 172, the ability of the heparin-binding PA to regenerate 

bone was explored in 2013163. In that study, it was postulated that PA nanofibers would bind 

heparan sulfate, which would in turn bind BMP-2 and present it to cell receptors163 (Figure 

4A). The heparin-binding PA nanofibers were combined with low-dose (1 μg) BMP-2, 

loaded onto a porous collagen sponge to improve surgical handling properties, and then 

heparan sulfate was added to this scaffold (Figure 4B–C)163. This synthetic biomaterial was 

implanted in rat critical sized femoral defects, where the combination of PA, BMP-2, and 

heparan sulfate achieved full bony bridging in over half of animals (Figure 4D)163. Both the 

PA and heparan sulfate were required to achieve this healing rate with use of the low-dose 

BMP-2 (Figure 4D)163. Since heparan sulfate is a natural glycosaminoglycan that can 

potentiate BMP signaling, its co-delivery with PA nanofibers is an attractive strategy for 

bone regeneration. However, to avoid the need to source the highly diverse heparan sulfate, 

supramolecular polymers with “built-in” synthetic ability to potentiate BMP-2 signal would 

be desirable.

PA nanostructures can be synthetically designed with biological function by adding 

bioactive epitopes, usually short amino acid sequences that comprise the bioactive portion of 

natural proteins (Figure 5A)168, 169, 173, 174. Compared to natural proteins which have short 

half lives, these synthetic epitopes that mimic proteins are more stable when embedded in 

supramolecular assemblies and can remain bioactive for longer periods of time. 

Furthermore, the presentation of epitopes on PA nanofibers can result in higher bioactivity 

than the soluble peptides, given the stability of the supramolecular construct with all of its 

internal cohesive energy relative to the soluble peptide174 (Figure 5B–C). In addition, since 

supramoleciular polymers are dynamic175, 176, the internal structure of bioactive signals may 

rearrange to optimize effective binding with cells receptors146 (Figure 5D). The chemical 

sequence and structural diversity of heparan sulfate allows this natural polysaccharide to 

interact with many different proteins – one report suggests up to 435 unique proteins177 - 

using the proteins’ heparin-binding domains that recognize the sulfated moieties with 

specific chemical sequences. Due to this structural diversity, capturing the function of 

heparan sulfate presents unique challenges compared to proteins on which short bioactive 

sequences have been clearly identified.

To mimic the structure and function of natural heparan sulfate, the authors’ laboratory 

synthesized an abiotic tri-sulfated monosaccharide and conjugated it to a PA molecule, thus 

creating a “glycopeptide PA”165 (Figure 6A). When the glycopeptide PA self-assembles into 

nanofibers, the tri-sulfated monosaccharides are presented at the surface of those nanofibers 

(Figure 6B). Because non-covalent bonds within supramolecular structures can dynamically 

rearrange,175, 176 the tri-sulfated monosaccharides can access different configurations and 

thus adapt to the heparin-binding domains of different proteins.165 Interestingly, it was 

Chen et al. Page 8

Bone. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discovered that supramolecular assemblies of the glycopeptide PA were able to bind five 

different important proteins in biological development and regenerative medicine, BMP-2, 

BMP-4, FGF-1, FGF-1, and VEGF, which demonstrates its potential for multipotent protein 

activation165. When the tri-sulfated monosaccharide was replaced with a non-sulfated 

counterpart (Figure 6A), protein binding to PA assemblies did not occur165. Furthermore, in-
vitro experiments measuring alkaline phosphatase (ALP) expression showed that 

supramolecular nanofibers of the glycopeptide PA enhanced signaling of wild type BMP-2, 

but not of a mutant BMP-2 lacking its heparin-binding domain165.

The glycopeptide PA supramolecular polymers were tested for in vivo bioactivity by 

absorbing them into porous collagen sponges, and interestingly these biomaterials were 

found to reduce by a factor of 100 the necessary therapeutic dose to achieve rat spinal 

fusion. This extremely low dose was sufficient to achieve a fusion rate of 100% when pre-

loaded with only 0.1 μg BMP-2/rat165 (Figure 6C). High-resolution microCT (computerized 

tomography) revealed the robust formation of bone throughout the entire fusion bed165 

(Figure 6D). PA nanofibers bearing a non-sulfated version of the same monosaccharide 

achieved minimal fusion (10%) at the sub-therapeutic dose of 0.1 μg rhBMP-2/rat165 (Figure 

6C). Similar to the heparin-binding PA supramolecular polymers, the glycopeptide PA ones 

potentiate BMP-2 signal, but the bioactivity derives from the PA assemblies themselves and 

not from bound heparan sulfate. Given the experiment mentioned above about the system 

with a mutated heparin-binding domain, it is reasonable to conclude that the glycopeptide 

PA supramolecular nanofibers orient BMP-2 protein molecules in the correct spatial 

orientation to signal their receptor. This may be the basis of the biomaterial’s remarkable 

bioactivity toward bone regeneration in spinal fusion165.

Motivated by the clinical translation of BMP-2 to promote bone regeneration, a PA 

supramolecular polymer with capacity to directly bind this protein was developed in the 

authors’ laboratory164, 178. The monomer of this supramolecular system is known as the 

BMP-2- binding PA which includes a bioactive peptide sequence discovered by phage 

display178 (Figure 7A–B). While the glycopeptide PA utilizes a tri-sulfated monosaccharide 

to emulate sequences in heparan sulfate that would recognize BMP-2’s heparin binding 

domain, the BMP-2 binding PA is functionalized instead with a short peptide sequence 

capable of binding the protein. The BMP-2 binding PA was tested in a pre-clinical rat model 

of spinal fusion, where the established positive control—rhBMP-2 delivered using a 

collagen sponge (similar to the clinical product Infuse™)—requires a dose of 10 μg/rat in 

order to achieve a fusion rate of 100%164. When deployed in this model, the BMP-2-binding 

PA reduced the therapeutic BMP-2 requirement 10-fold, achieving successful fusion in 

100% of the animals, using a dose of 1 μg BMP-2/rat (0.5 μg/implant)164 (Figure 7C–D). 

Interestingly, when this PA was delivered alone (i.e. without any rhBMP-2), successful 

fusion was noted in 42% of animals, which was assumed to be a result of the capacity for the 

supramolecular PA assembly to bind endogenous BMP-2 and potentiate signaling (Figure 

7C–D)164.

In summary, all three of the PA-based bone regenerative materials described here have 

demonstrated ability to lower the therapeutic BMP dose in animal models. Osteoinductive 

signals were incorporated into these PA supramolecular polymers not only by encapsulating 
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BMP-2, but also by rational chemical design to potentiate its signal. All three PA systems 

formed nanofibrous structures reminiscent of natural ECM, which likely contributed to the 

ability of cells to infiltrate the scaffolds containing PA assemblies. In surgical settings, the 

periosteum and bone marrow space are typically exposed and serve as a source of 

osteoprogenitor cells that can infiltrate the scaffold. Although obviating the need to source 

live cells is ideal, given that PA nanofibers can present bioactive signals, PA-based materials 

for cell delivery may also lead to promising therapies. In particular, bone marrow aspirate 

contains self-renewing cells with the capacity to synthesize growth factors such as BMPs 

and VEGF179, 180. Thus, if these cells were delivered with a PA vehicle, the PA scaffold may 

increase cell survival as well as potentiate the signal of the synthesized growth factors.

In addition to BMP delivery, the PA platform offers many other advantages for bone 

regeneration applications. Although PA nanofibers can support cell adhesion without added 

biological functionality160, 181, 182, cell adhesion to PA nanofibers can be improved by 

adding the fibronectin cell adhesion motif, RGD183, and the chemical structure of RGD-

bearing PAs can be tuned to optimize biological response173. Furthermore, PA nanofibers 

can support mineral deposition, a critical process in new bone formation. In particular, PAs 

with phosphoserine residues show the ability to nucleate hydroxyapatite crystallization157, 

as well as the ability to promote the expression of early osteogenic markers in vitro184. In 

one report, a composite of RGD-bearing PA and phosphoserine-bearing PA was implanted in 

a rat femoral defect model, where the combination of both PAs led to more bone growth than 

either PA alone162. Furthermore, the morphology of PA assemblies can be tuned to template 

macroscopic alignment of hydroxyapatite across length scales, thus orienting hydroxyapatite 

in ways that emulate the structure of bone.185

Beyond direct BMP-2 delivery, PAs can also potentiate BMP-2 signaling via modulation of 

lipid raft mobility186. A PA molecule lacking a bioactive epitope was shown to significantly 

enhance both BMP-2 and Wnt signaling in vitro; this was attributed to the ability of PA 

assemblies to associate with the cell membrane and affect lipid raft structures186. More 

specifically, this PA had positive charge, opposite to negatively charged cell membranes, and 

its supramolecular assemblies also had weak internal cohesion186. This allowed the PA 

molecules to interact with the cell membrane and increase diffusion within its lipid rafts, 

which interestingly led to an increase in signaling186. An analogous PA with similar charge 

but strong internal cohesion in fact did not enhance BMP-2 signaling186. While many 

studies have examined how PAs can influence BMP-2 signaling, other signaling pathways 

are of course integral in the bone healing process. PAs with biomimetic epitopes for 

VEGF168 and FGF-2187 have been developed, which could promote angiogenic, mitogenic, 

and chemotactic activities that are all required for successful bone regeneration.

Comprised of the same amino acids that build natural proteins, self-assembling peptides are 

uniquely qualified as biomaterials with cell-signaling capabilities. Compared to covalent 

polymers, supramolecular polymers based upon dynamic non-covalent bonds more closely 

mimic the nature of biological tissues and are therefore often more biocompatible and 

biodegradable. With the potential for further modification of peptides, particularly through 

conjugation of an aliphatic tail or monosaccharides, the PA platform can achieve physical 

and biological properties not possible with self-assembling peptides alone. The ability of 
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PAs to regenerate bone with low BMP-2 doses was first observed in rodents and the next 

challenge is to establish their safety and efficacy in large animal models, which will clearly 

be necessary for these systems to advance toward clinical translation. Large animals will 

require higher BMP doses to promote bone regenearation, so the ability of PAs to potentiate 

BMP signaling safely on scales closer to the ones required in humans will be investigated in 

these models. At the same time, in large animals greater amounts of PA will be required to 

fill defects or achieve spinal fusion. On these larger scales, the kinetics of biodegradation, 

overall biocompatibility, as well as mechanical and rheological properties will have to be 

tested as well. PA nanofibers have a high charge density by design in order to promote 

solubility in aqueous media159, and interactions of these charges with cells and proteins 

might be different in large versus small animals. In this regard it is encouraging that there 

have been reports where self-assembling peptides were used effectively in in large animals 

such as rabbits166 and pigs188. Also, we are greatly encouraged by the fact that preliminary 

work in the authors’ laboratory and elsewhere has demonstrated great efficacy and safety in 

rabbit models of spinal fusion with low dose BMP-2 and PAs189.

CONCLUSIONS AND OUTLOOK

Given the many requirements for successful bone healing, the ideal synthetic biomaterial to 

support the regeneration of bone will likely require the integration of multiple components. 

Although recombinant BMPs provide a highly effective osteoinductive signal, this family of 

growth factors cannot be used effectively without a self-supporting, implantable carrier. 

Absorbable collagen sponges have been used as carriers for recombinant human BMP-2 and 

BMP-7 with clinical efficacy, but not without side effects, which are attributed to the 

supraphysiological BMP dosages required. Thus, the development of carriers that can reduce 

the effective BMP dose by slowing BMP release and/or potentiating BMP signal would be 

beneficial. In this review, we have discussed the use of self-assembling peptides to fulfill 

these important functional features. Bio-inspired strategies based upon our understanding of 

the composition and function of natural extracellular matrices, as well as osteoinductive 

growth factor signaling, have led to the design of PA structures which not only slow BMP-2 

release, but may also to recruit and potentiate endogenous growth factor activity. Beyond 

BMP, we discussed the notion of multipotent protein activation by heparan sulfate-mimetic 

PA systems, which are capable of binding a multitude of growth factors involved in bone 

regeneration, including VEGF, and FGF. In addition to binding and delivering growth 

factors, the filamentous structures that result from PA self-assembly are highly mimetic of 

the natural extracellular matrix, which can support cell adhesion as well as mineralization.

Self-assembling peptides such as PA-based supramolecular polymers have demonstrated 

potential to become effective BMP carriers, and can complement the large variety of existing 

materials in orthopedic surgery. In this respect, since PAs are relatively soft materials, the 

combination of PAs with materials that have load-bearing capacity would be beneficial. The 

heparin-binding PA and glycopeptide PA discussed in this review were applied to collagen 

sponges, similar to how recombinant BMP-2 is currently used. PA liquid solutions may also 

be loaded onto metal, ceramic, or 3D-printed scaffolds, creating completely synthetic 

composites that have both load-bearing capabilities and bioactive functions. A composite of 

PA and demineralized bone matrix (DBM) represents an alternative strategy to PA-based 
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recombinant growth factor delivery. Furthermore, cells can be suspended in a PA solution, 

which could then be used to coat a scaffold. With the capacity to safely harness growth 

factor-based bioactivity, PA-functionalized composite materials could potentially overcome 

the limitations associated with many currently available bone regenerative products. We 

anticipate that self-assembling peptides combined with BMPs as well as load-bearing 

materials for structural integrity could generate highly effective systems for bone 

regeneration and completely novel clinical opportunities.
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Figure 1. 
(A) Molecular graphics representation of RADA16 nanofibrils, and scanning electron 

micrograph (SEM) of a RADA16 hydrogel. Adapted with permission.190, 191 Copyright 

2013, American Chemical Society; Copyright 2011, Royal Society of Chemistry (B) 
Molecular graphics representation of RADA16 nanofibrils with a bioactive motif 

incorporated, and calcein-stained cells cultured on RADA16 hydrogels with and without 

bioactive motifs (in this case, a cell adhesion ligand). The bioactive cell adhesion motif 

improves cell spreading on and infiltration into RADA16 hydrogels. Adapted with 

permission under the terms of the Creative Commons Attribution License.152 Copyright 

2007, S. Zhang, published by PLOS.
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Figure 2. 
(A) Molecular graphics representation of SPG-178 peptide nanofiber assemblies, and 

transmission electron micrograph (TEM) of a SPG-178 hydrogel. Adapted with permission.
153 Copyright 2012, Elsevier (B) Representative microCT (computerized tomography) 

reconstructions of rat calvarial defects, showing the degree of bone healing after 3 weeks 

when untreated (Control) or treated with SPG-178 hydrogels. Reproduced with permission.
155 Copyright 2017, Mary Ann Liebert, Inc.
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Figure 3. 
Scanning electron micrograph (SEM) of elastin-like Poly(VPAVG)220 supramolecular 

assemblies. Reproduced with permission.156 Copyright 2010 Elsevier.
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Figure 4. 
(A) Molecular graphics representation of heparin-binding PA structure and function. The 

heparin-binding PA nanofiber binds heparan sulfate, which is a lengthy polysaccharide. The 

heparan sulfate in turn binds BMP-2 growth factor and presents it to receptors on the cell 

membrane, thus potentiating the signal of BMP-2. (B) Empty porous collagen sponge, which 

heparin-binding PA nanofibers were loaded onto to improve surgical handling properties. 

(C) Scanning electron micrograph (SEM) of heparin-binding PA nanofibers, mixed with 

heparan sulfate and loaded onto a porous collagen sponge. (D) Representative microCT 

(computerized tomography) reconstructions of rat femur defects, showing the degree of bone 

healing after 6 weeks when treated with the indicated materials. Abbreviations: Coll – 

collagen sponge; HBPA – heparin-binding PA; HS – heparan sulfate. A) Adapted B-D) 

Reproduced with permission.163 Copyright 2013, Elsevier.
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Figure 5. 
Molecular graphics representations showing (A) a PA molecule incorporating a bioactive 

peptide epitope and (B) the supramolecular nanofiber formed by these PA molecules. Due to 

hydrophobic collapse of the lipid tail in aqueous environments, the bioactive signals are 

displayed at high density of the surface of the nanofiber (idealized in red portions). The blue 

portions represent idealized water domains. (C) Molecular graphics representation of PA 

nanofibers concentrating and presenting biological signals to cell membranes. (D) Due to 

their non-covalent nature, PA nanofibers may dynamically rearrange over time as they 

interact with cells. In this molecular graphics representation, PA nanofibers have 

concentrated around a lipid raft structure where cell signaling activity is centered. 

Reproduced with permission.146 Copyright 2012, AAAS.

Chen et al. Page 28

Bone. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(A) Chemical structure of PA containing a tri-sulfated monosaccharide, highlighted in green, 

and the same PA bearing a non-sulfated version of the monosaccharide, highlighted in blue. 

(B) Cryogenic transmission electron micrograph (cryoTEM) of the tri-sulfated glycopeptide 

PA and molecular graphics representation of the PA nanofibers. The tri-sulfated 

monosaccharide moities are displayed on the surface of supramolecular nanofibers. (C) 
Representative sagittal cross-sectional images of the fusion bed in rat spines, visualized with 

hematoxylin and eosin (H&E) staining. Rats received 0.1 μg of BMP-2 and the indicated 

PAs. (D) High-resolution microCT (computerized tomography) reconstruction from a fused 

rat treated with tri-sulfated glycopeptide PA and 0.1 μg BMP-2. A) Adapted B-D) 

Reproduced with permission.165 Copyright 2017, Springer Nature.
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Figure 7. 
(A) Chemical structure of a PA containing a short peptide sequence identified to bind 

BMP-2 via phage display. The bioactive peptide portion is highlighted in green. (B) 
Scanning electron micrograph (SEM) of a hydrogel containing the BMP-2 binding PA. (C) 
MicroCT (computerized tomography) reconstruction of an unfused animal treated with no 

PA and no BMP-2, included for comparison with (D) microCT (computerized tomography) 

reconstructions of fused animals treated with BMP-2 bindign PA and indicated BMP-2 

dosages. The images are specifically of fused animals in the groups; the overall fusion 

rates164 are indicated. The white arrows indicate the fusion bed. Adapted with permission.
164 Copyright 2015, Wiley VCH.
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