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Induced sputum metabolomic profiles and oxidative stress are
associated with chronic obstructive pulmonary disease (COPD)
severity: potential use for predictive, preventive,
and personalized medicine
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Abstract
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease, and metabolomics plays a hub role in
predictive, preventive, and personalized medicine (PPPM) related to COPD. This study thus aimed to reveal the role of induced
sputum metabolomics in predicting COPD severity. In this pilot study, a total of 20 COPD patients were included. The induced
sputum metabolites were assayed using a liquid chromatography-mass spectrometry (LC-MS/MS) system. Five oxidative stress
products (myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), neutrophil elastase (NE), and 8-iso-
PGF2α) in induced sputum were measured by ELISA, and the metabolomic profiles were distinguished by principal component
analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) was used for pathway enrichment analysis, and a significant difference in induced sputum
metabolomics was observed between moderate and severe COPD. The KEGG analysis revealed that the glycerophospholipid
metabolism pathway was downregulated in severe COPD. Due to the critical role of glycerophospholipid metabolism in
oxidative stress, significant negative correlations were discovered between glycerophospholipid metabolites and three oxidative
stress products (SOD,MPO, and 8-iso-PGF2α). The diagnostic values of SOD,MPO, and 8-iso-PGF2α in induced sputumwere
found to exhibit high sensitivities and specificities in the prediction of COPD severity. Collectively, this study provides the first
identification of the association between induced sputummetabolomic profiles and COPD severity, indicating the potential value
of metabolomics in PPPM for COPD management. The study also reveals the correlation between glycerophospholipid metab-
olites and oxidative stress products and their value for predicting COPD severity.
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Introduction

Chronic obstructive pulmonary disease (COPD), the most
common pulmonary disease worldwide, is characterized by
persistent airflow limitation and incompletely reversible air-
way construction. The global prevalence of COPD was ap-
proximately 11.7% (95% CI 8.4%–15.0%) in 2010 [1, 2], and
it has been estimated that COPD leads to more than 3 million
deaths each year [1–3]. COPD is considered a highly hetero-
geneous disease with multiple phenotypes and endotypes [2,
4]. According to the Global Initiative for Chronic Obstructive
Lung Disease (GOLD), the combination of the current sever-
ity of symptoms and a history of acute exacerbations within
the previous year is recommended for assessing the pheno-
types, which are divided into four different groups (A, B, C,
and D), and for guiding the management of patients with
COPD [2]. Moreover, the assessment of different aspects of
COPD has identified a number of biomarkers [5]. For in-
stance, the eosinophil percentage in the blood is a good bio-
marker for predicting the response to inhaled corticosteroids
and the risk of readmission [6–8]. Nevertheless, substantial
heterogeneities in clinical features, the treatment response,
and prognosis have also been observed in a certain subgroup
of patients with COPD [9–11]. Thus, there is an urgent need to
move the management of COPD from the current “one-size-
fits-all” approach to predictive, preventive, and personalized
medicine (PPPM).

An imbalance in metabolic homeostasis is essential for the
pathogenesis and progression of many diseases, such as can-
cers, diabetes, suboptimal health status (SHS), and COPD
[12–21]. Mounting evidence supports the notion that metabo-
lomics plays a hub role in the PPPM approach for different
aspects of COPD [11, 12, 21–23]. Moreover, recent studies
have shown that differential metabolomic profiles are associ-
ated with the COPD status in both patients and animals [22,
24–26]. Cruickshank-Quinn et al. reported that 2999 differen-
tial metabolites in plasma are associated with COPD out-
comes, including the lung function, exacerbation frequency,
degree of emphysema, and bronchodilator response (BDR)
[22]. Pinto-Plata V et al. identified 79 differential plasma me-
tabolites between surviving and nonsurviving COPD patients
[25], and Fang W et al. found that 32 differential metabolites
in plasma are associated with the COPD status in rats [26].
Therefore, a comprehensive understanding of metabolomic
profiles might provide insights for the PPPM strategy for
COPD.

Induced sputum is a commonly used method for differen-
tiating the phenotypes and inflammatory endotypes of COPD
and asthma. Compared with plasma, induced sputum is more

relevant to pathological alterations in the lower airway with
less confounders in the results. Moreover, induced sputum is
less contaminated and yields more accurate results than spon-
taneous sputum [27, 28]. Therefore, induced sputum is con-
sidered a material for the effective and accurate assessment of
airway diseases that exhibits high safety and tolerability in
clinical practice. The primary aims of this study were to reveal
the role of the metabolomic profiles of induced sputum in the
determination of COPD severity and to explore the metabolic
biomarkers in induced sputum that can predict COPD
severity.

Material and methods

Study design and population

This pilot study was performed at the Respiratory Department
of Zhongshan Hospital of Fudan University from January
2017 to December 2018. This study was approved by the
Research Ethics Committees of Zhongshan Hospital of
Fudan University (No. B2014-108) in accordance with the
Declaration of Helsinki. Informed consent was obtained from
all the patients by the responsible physician or an appropriate-
ly trained staff member. Standard care and treatments were
provided according to the current clinical guidelines [2, 29].

Inclusion and exclusion criteria

The inclusion criterion was stable COPD with a lung function
classified as Global Initiative for Chronic Obstructive Lung
Disease (GOLD) stage 2 (50% ≤ forced expiratory volume in
1st second % (FEV1%) < 80%) or 3 (30% ≤ FEV1% < 50%)
[2]. Additionally, FEV1 was defined as the maximum amount
of air that the subject can forcibly expel during the 1st second
following maximal inhalation [30]. The exclusion criteria
were as follows: age < 40 years, active pulmonary tuberculo-
sis (TB), asthma, bronchiectasis, pneumoconiosis, interstitial
lung diseases (ILDs), pulmonary thromboembolism (PTE),
other chronic lung diseases, systemic steroid use within the
previous 4 weeks, history of malignant diseases, renal failure,
and liver failure. A total of 60 patients with stable COPD at
GOLD stages 2 and 3 were recruited, and 29 were excluded
based on the abovementioned criteria. Furthermore, four pa-
tients were unable to complete or tolerate sputum induction.
The induced sputum from seven patients was disqualified (the
sputum samples from four patients had ≥ 20% squamous ep-
ithelial cells, and the sputum samples from three patients had
cell counts < 3500) [31]. In the end, 20 patients with qualified
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induced sputum samples were included: eight patients with
COPD at GOLD stage 2 (moderate) and 12 patients with
COPD at GOLD stage 3 (severe) (Fig. 1).

Clinical data collection

In our study, demographic data, underlying diseases, comorbid-
ities, modified Medical Research Council dyspnea scale
(mMRC) scores, and inhalation therapy information were re-
corded and collected. Routine blood, erythrocyte sedimentation

rate (ESR), C-reactive protein (CRP), and lung function tests
were performed on the same day. To ensure the accuracy of the
diagnosis and exclude most other lung diseases, all the patients
underwent a high-resolution CT (HRCT) scan (64-channel CT
machines with 64 × 0.625-mm collimation, 1.00-mm slice
thickness, 1.00-mm intervals, reconstruction with standard al-
gorithm, 120 kVp, and 90 mAs) within 24 h after admission.
The radiation dose of HRCT was in the safe range [32, 33]. All
CT results were reviewed by one independent radiologist and
one pulmonologist at the hospital.

Fig. 1 Flow diagram of the study
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Induced sputum collection

Prior to nebulization, the enrolled subjects drank 500 mL of
water and gargled. Before hypertonic saline induction, 400 μg
of salbutamol (Ventolin, GSK, UK) was inhaled. The partic-
ipants were then nebulized using an ultrasonic atomizer
(DeVilbiss Healthcare, Australia) with 3% NaCl for 7 min.
After a short rest period, the abovementioned procedures were
repeated up to three times. All phlegm clots with visibly great-
er solidity were carefully selected and placed in a preweighed
Eppendorf tube (Eppendorf Corp. Germany). Phlegm clots
less than 0.02 g indicated sputum induction failure. Phlegm
clots greater than 0.02 g were processed as follows. The
phlegm clots were diluted 4 times with a mixture of 0.05%
dithiothreitol (Sputolysin; Calbiochem Corp., San Diego, CA,
USA) and Dulbecco’s PBS (ThermoFisher Corp., USA). The
mixture was placed into a shaker at room temperature (RT) for
30 min until the sputum mass dissolved. The mixture of spu-
tum and Sputolysin was passed through a nylon filter appara-
tus. The filtrate was collected and centrifuged at 1000 g and
4 °C for 4 min. The supernatant was collected and stored in
liquid nitrogen, and the cell pellet was resuspended in PBS.
Qualification of the induced sputum sample was checked by
H&E staining. The samples with a squamous cell percentage ≤
20% and/or sputum cell count > 3500 satisfied the test
criteria, and the other (unqualified) samples were not subject-
ed to further processed [31]. Subsequently, the cell sediments
were resuspended in 1400 μL of quencher solution (including
200 μL of 0.085% ammonium bicarbonate (Ambic) and
1200 μL of 60% methanol). The samples were then centri-
fuged at 1000 g and 4 °C for 4 min, and the cell pellets and
supernatants were stored in liquid nitrogen for further analyses
[34].

Identification of metabolites in induced sputum

According to previous reports and the manufacturer’s instruc-
tions, the metabolites of cells in induced sputum were assayed
using an Q Exactive Orbitrap LC-MS/MS system [35–37].
Biotree Biotech Co., Ltd. (Shanghai, China) helped with the
LC-MS analysis.

First, the cell pellet was dried under a gentle nitrogen flow,
and 1000 μL of extracted solution (acetonitrile:methanol:water =
2:2:1) with 1 μg/mL internal standard was added to the sample.
After vortexing for 30 s, the sampleswere homogenized at 35Hz
for 4 min and sonicated for 5 min in an ice-water bath. The
homogenization-and-sonication cycle was repeated three times.
The samples were then incubated at − 20 °C for 1 h and centri-
fuged at 11000 rpm and 4 °C for 15 min. The resulting superna-
tant was transferred to a fresh glass vial for LC-MS analysis.
Moreover, a mixture from various samples (10 μL) was used
as a quality control (QC) sample. Subsequently, a 1290 Infinity
series UHPLC System (Agilent Technologies, CA, USA)

coupled with a UPLC Waters ACQUITY UPLC HSS T3
(2.1 mm×100 mm, 1.8 μm) and an Q exactive mass spectrom-
eter (Thermo) was used to identify and analyze themetabolites in
induced sputum. Mobile phase A consisted of 0.1% formic acid
in water in the positive mode and 5 mmol/L ammonium acetate
in water in the negative mode, and mobile phase B was acetoni-
trile. The elution gradient was set as follows: 0~1.0 min, 1% B;
1.0~8.0 min, 1~99% B; 8.0~10.0 min, 99% B; 10.0~10.1 min,
99~1% B; and 10.1~ 12 min, 1% B. The flow rate was 0.5 mL/
min, and the injected volume was 2 μL. The QEmass spectrom-
eter was used for its ability to acquireMS/MS spectra in the data-
dependent acquisition (DDA) mode, and this process was con-
trolled by the acquisition software (Xcalibur 4.0.27, Thermo). In
this mode, the acquisition software continuously evaluates the
full-scan MS spectrum. The ESI source conditions were set as
follows: sheath gas flow rate of 45 Arb, Aux gas flow rate of 15
Arb, capillary temperature of 400 °C, full MS resolution of
70,000, MS/MS resolution of 17,500, collision energy of 20/
40/60 eV in the normalized collisional energy (NCE) mode,
and spray voltage of 4.0 kV (positive) or − 3.6 kV (negative).
The injection volume was 1 μL. The MS/MS spectra were mea-
sured with the Triple TOF mass spectrometer on a data-
dependent acquisition (DDA) in the LC-MS experiment.
Meanwhile, top 3 intensive ions (peaks) in each MS1 scan were
selected for MS/MS analysis.

Levels of myeloperoxidase, superoxide dismutase,
glutathione, neutrophil elastase, and 8-iso-PGF2α in
induced sputum

According to our previous studies [38–41] and the manufac-
turer’s instructions, the levels of myeloperoxidase (MPO), su-
peroxide dismutase (SOD), glutathione (GSH), neutrophil
elastase (NE), and 8-iso-PGF2α in the supernatant of induced
sputum were measured by ELISA (R&D Systems,
Minneapolis, MN, USA). In brief, a 96-well microplate was
coated with 100 μL of the capture antibodies (MPO, SOD,
GSH, NE, or 8-iso-PGF2α) overnight at 4 °C. Unbound cap-
ture antibody was blocked at RT for 1 h, and 100 μL of
induced sputum supernatant was added to each well of the
microplate for incubation at RT for 2 h. The detection anti-
body was added, and the plate was incubated at RT for 2 h.
Between each step, the plate was washed with a detergent
solution to remove any nonspecifically bound proteins or an-
tibodies. Subsequently, 50 μL of termination solution was
added to each well, and the absorbance was read using a
microplate reader at 450 nm [38].

Statistical analysis

The data were entered into a computer spreadsheet program
(Microsoft Office Excel 2010) by designated staff members.
All the analyses were performed using SPSS 22.0. The
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baseline characteristics of the study population are described.
Continuous variables are expressed as the means ± standard
deviations (SDs), and categorical data are expressed as fre-
quencies. Non-normally distributed continuous data are pre-
sented as the medians and interquartile ranges (IQRs). The
distribution of categorical groups was examined using the
Kolmogorov-Smirnov test. The categorical variables were an-
alyzed using the chi-square test, and the continuous variables
were analyzed by Student’s t test. Ordinal variables and con-
tinuous variables without a normal distribution were analyzed
with the Mann-Whitney U test. The Spearman rank correla-
tion coefficient was used for the correlation analyses. A
threshold of P < 0.05 was considered significant.

For the metabolomics analysis, mass spectrometry (MS)
raw data files were converted to mzXML format using
ProteoWizard software (version 3.0.19282) and processed
with R software package XCMS (version 3.2) for peak detec-
tion, extraction, alignment, and integration [35, 42, 43]. The
peaks were detected, and metabolites could be identified
through the interquartile range denoisingmethod. The missing
values in the raw data were filled by half of the minimum
value. Additionally, the overall normalization method was
used for data analysis. To make the metabolomics data repro-
ducible, the relative standard derivation (RSD) of the peaks in
the QC samples larger than 30% were filtered out. The multi-
variate analysis, principal component analysis (PCA), and or-
thogonal projections to latent structure discriminant analysis
(OPLS-DA) were performed using SIMCA software (v14.1;
Sartorius Stedim Data Analytics AB, Umea, Sweden). PCA
was used to show the distribution of the original data. OPLS-
DA was used to further observe the separation between two
groups and to further understand the variables responsible for
classification. The variable importance in the projection (VIP)
of the first principal component obtained in the OPLS-DA
analysis was obtained. The metabolites with a VIP value > 1
in the OPLS-DA analysis and a P value < 0.05 in the univar-
iate analysis were considered significantly different.
Moreover, the OPLS-DA model quality was evaluated with
standard parameters (R2Y and Q2) by 200 permutations.
Additionally, the data were matched using BiotreeDB (V2.1)
to establish a secondary mass spectrometry database for ma-
terial annotation [44]. The commercial database KEGG
(http://www.genome.jp/kegg/) was used for pathway analysis.

Results

Demographic characteristics and laboratory
parameters of patients with COPD

A total of 60 patients were initially enrolled in this study, and
in the end, eight patients with moderate (GOLD stage 2)
COPD and 12 patients with severe (GOLD stage 3) COPD

from whom qualified induced sputum samples were obtained
were included in this study (Fig. 1). The FEV1% and
FEV1/FVC% values of the patients with severe COPD were
noticeably lower than those of the patients with moderate
COPD (Table 1). No differences in age, sex, smoking status,
BMI, mMRC scores, inhalation therapies, underlying dis-
eases, or laboratory parameters were found between the pa-
tients with moderate COPD and those with severe COPD.

Identification and quantification of LC-MS/MS system
compounds

The ionization source for the LC-MS/MS was electrospray
ionization, including the positive (POS) and negative (NEG)
ion modes, and a total of 10,503 POS peaks and 4958 NEG
peaks were found after data preprocessing (Supplementary
Table S1).

Multivariate analysis of metabolites

Multivariate analyses, namely, PCA and OPLS-DA, were per-
formed to comprehensively compare the induced sputum
metabolomic profiles between moderate and severe COPD
and to reveal the degree of diversity between the two groups.
Four quality control (QC) samples were included to evaluate
the stability and repeatability of the system, and the QCs were
clustered together and separated from the samples from the
study subjects, which indicated the correctness of the PCA
(Fig. 2a). The PCA score plot presented clear differences be-
tween moderate and severe COPD, and one outlier was locat-
ed beyond 95% Hotelling’s T-squared ellipse (Fig. 2b). As
shown in Fig. 2b, most moderate COPD samples clustered
on the left, whereas all severe COPD clustered on the right.
However, three moderate COPD samples located on the right
were also observed in the PCA score plots.

An OPLS-DA was performed to further compare the in-
duced sputum metabolomic profiles between moderate and
severe COPD. The OPLS-DA score plot showed significant
differences in the induced sputum metabolomic profiles be-
tween the moderate and severe COPD samples (Fig. 2c). As
shown in Fig. 2c, all moderate COPD samples clustered on the
right, whereas all severe COPD clustered on the left, and no
overlap was observed. This result indicated the existence of
significant differences in the induced sputum metabolomic
profiles between patients with moderate COPD and those with
severe COPD. Additionally, the permutation test yielded R2Y
(cum) and Q2 (cum) values of 0.77 and − 0.58, respectively,
and these results indicated the lack of overfitting and the good
predictive ability of the OPLS-DA model (Fig. 2d), which
indicated the suitability of the model for subsequent optimi-
zation analyses.
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Identification of significantly different metabolites
and pathways associated with COPD severity

In our study, 573 positive-ion-mode (POS) metabolites with
VIP values > 1 in the OPLS-DA analysis and P values < 0.05
in the univariate analysis were found between moderate and
severe COPD samples (Supplementary Table S2), which in-
dicated that these 573 POS metabolites were associated with
COPD severity. Among these metabolites, 237 were mass
spectrometry 1 (MS1) metabolites, 21 were mass spectrome-
try 2 (MS2) metabolites, and 315 were “unknown” metabo-
lites based on the BiotreeDB database. However, no negative-
ion-mode (NEG) metabolites associated with COPD severity
were found.

Specifically, 42metabolites were increased and 531metab-
olites were reduced in severe COPD compared with moderate

COPD (Supplementary Table S2). These 573 POS metabo-
lites associated with COPD severity were then summarized in
a volcano plot (Fig. 3a): the 42 metabolites (red spots) in-
creased in severe compared with moderate COPD were locat-
ed on the right, and the 531 reduced metabolites (blue spots)
were located on the left (Fig. 3a). In addition, 1 and 20 of the
21 MS2 metabolites was found at higher and lower levels,
respectively, in severe compared with moderate COPD
(Supplementary Table S2). Furthermore, a heatmap was used
to classify the upregulated and downregulated MS2 metabo-
lites in patients with severe COPD compared with those with
moderate COPD (Fig. 3b).

Additionally, a KEGG pathway analysis was per-
formed to explore the enriched metabolic pathways asso-
ciated with COPD severity. The results showed that the
glycerophospholipid metabolism pathway was the only

Table 1 The demographic data
and laboratory findings from
COPD patients (n = 20)

Moderate COPD
(n = 8)

Severe COPD
(n = 12)

Statistical
values

P

Sex (male, (%)) 8 (100.00%) 11 (91.67%) 0.702 0.402
Age (years) 67.5000 ± 8.60233 67.0000 ± 5.30866 0.162 0.873
Body mass index (BMI) 21.6350 ± 2.41780 21.8017 ± 3.10319 − 0.128 0.900
Smoking 0.208 0.901
Non-smoking 2 2
Ex-smoking 3 5
Current-smoking 3 5
mMRC scores 1.2500 ± 0.70711 1.7500 ± 0.86603 − 1.356 0.192

Lung functions
Forced expiratory volume in 1st second
% (FEV1%)

62.2250 ± 8.02064 40.3500 ± 7.24061 6.345 0.000*

Forced expiratory volume in 1st
second/forced vital capacity %
(FEV1/FVC%)

60.6788 ± 8.07667 47.5508 ± 9.40506 3.227 0.005*

Underlying diseases/comorbidities
Cor pulmonale 1 1 0.093 0.761
Pulmonary hypertension (PH) 0 1 0.702 0.402
Coronary artery disease (CAD) 2 3 0.000 1.000
Hypertension 4 5 0.135 0.714
Type 2 diabetes (T2DM) 2 3 0.000 1.000
Atrial fibrillation (Af) 0 1 0.702 0.402

Inhalation therapy 0.104 0.949
ICS/LABA 3 5
LAMA 4 6
ICS/LABA/LAMA 1 1

Laboratory parameters
White blood cells (WBC) (× 109/L) 6.4988 ± 2.12200 6.8625 ± 1.41555 − 0.462 0.650
Neutrophils (NS) (× 109/L) 4.2525 ± 1.98737 4.7558 ± 1.20220 − 0.709 0.487
Lymphocytes (× 109/L) 1.5988 ± 0.66398 1.4308 ± 0.42374 0.694 0.497
Eosinophils (EOS) (× 109/L) 0.2275 ± 0.23236 0.1833 ± 0.10369 0.583 0.567
Neutrophils-to-lymphocytes ratio (NLR) 3.1438 ± 2.24662 3.5950 ± 1.34660 − 0.564 0.580
NS% 63.6275 ± 11.04820 68.9108 ± 6.29898 − 1.367 0.189
EOS% 3.4962 ± 3.2007 2.7450 ± 1.61699 0.697 0.495
Lymphocytes% 26.4613 ± 10.58444 21.0542 ± 5.78485 1.481 0.156
C-reactive protein (CRP) (mg/mL) 8.5750 ± 10.11163 20.0750 ± 14.78796 − 1.913 0.072
Erythrocyte sedimentation rate (ESR)
(mm/first hour)

14.0000 ± 14.10167 15.6667 ± 17.55166 − 0.224 0.825

Red blood cells (RBC) (× 1012/L) 4.2875 ± 0.59122 4.5325 ± 0.24893 − 1.288 0.214
Hemoglobin (Hb) (g/L) 133.7500 ± 15.42493 139.3333 ± 7.31541 − 1.093 0.289
Platelets (PLT) (× 109/L) 161.0000 ± 92.48784 204.4167 ± 60.20036 − 1.278 0.218

*P value < 0.05
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enriched metabolic pathway associated with COPD sever-
ity, and this pathway was downregulated in severe com-
pared with moderate COPD (Supplementary Table S2).

Predictive value of five oxidative stress products in
induced sputum for predicting COPD severity

Because the glycerophospholipid metabolism pathway is es-
sential for oxidative stress [45–47], the levels of five oxidative
stress products (MPO, SOD, GSH, NE, and 8-iso-PGF2α) in
induced sputum were measured by ELISA to evaluate the
association between oxidative stress and COPD severity.
The levels of SOD, MPO, and 8-iso-PGF2α in the induced
sputum samples from the patients with severe COPD were
significantly higher than those in the samples from the patients
with moderate COPD (Table 2). No differences in GSH and
NE were observed between moderate and severe COPD.
Moreover, the levels of SOD (AUC = 0.885), MPO (AUC=
0.781), and 8-iso-PGF2α (AUC = 0.813) in induced sputum
showed high sensitivities and specificities for the prediction of
COPD severity (Fig. 4).

Correlations between glycerophospholipids (choline,
N-methylethanolamine phosphate, and 1-
linoleoylglycerophosphocholine) and levels of
oxidative stress products in induced sputum from
patients with COPD

The correlations between glycerophospholipids (choline, N-
methylethanolamine phosphate (NMethy), and 1-
linoleoylglycerophosphocholine (1-LGPC)) and the levels of
five oxidative stress products in induced sputum from patients
with stable COPD were explored by Spearman correlation anal-
ysis. As shown in Table 3, SOD was significantly negatively
correlated with three glycerophospholipids (choline, NMethy,
and 1-LGPC), and 1-LGPC was markedly negatively correlated
with MPO and 8-iso-PGF2α.

Correlations between lung function and SOD, MPO,
GSH, NE, and 8-iso-PGF2α levels in induced sputum of
COPD patients

Because COPD severity is defined by the degree of lung function
impairments [2], the correlations between lung function (FEV1%

Fig. 2 PCA score plots, OPLS-DA score plot, and corresponding
validation plot of OPLS-DA results derived from the metabolomics
profiles of induced sputum between moderate and severe COPD. a

PCA score plot with four quality controls (QC). b PCA score plot
without the QC samples. c OPLS-DA score plot. d Permutation test
(n = 200) of the OPLS-DA model
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and FEV1/FVC%) and five oxidative stress products in induced
sputum from patients with stable COPD were explored by
Spearman correlation analysis. Significant negative correlations
were observed between FEV1% and the 8-iso-PGF2α level and
between FEV1/FVC% and the MPO and 8-iso-PGF2α levels
(Table 3).

Discussion

This pilot study provides the first demonstration of an associ-
ation between the metabolomics profile of induced sputum
and COPD severity, and the results indicate the potential value
of induced sputum metabolomics in the PPPM-based

Fig. 3 Identification of the differential metabolomics profiles of induced
sputum between moderate and severe COPD based on a volcano plot and
hierarchical clustering analysis. a Volcano plot. The downregulated and
upregulated metabolites in severe compared with moderate COPD are
marked in blue and red, respectively. X-axis: log2 fold change of

metabolites; Y-axis: fold change of –log10 P value determined by
Student’s t test. The dot size represents the variable importance in the
projection (VIP) value. b Heatmap of the hierarchical clustering analysis.
Twenty-one MS2 differential metabolites are presented
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management of COPD. Simultaneously, a subset of COPD
severity–associated metabolites were identified, and these
were found to be promising biomarkers for predicting
COPD severity. In this study, we found that 573 POS differ-
ential metabolites (DMs), including 237 MS1, 21 MS2, and
315 “unknown” metabolites, were associated with lung func-
tion impairments (GOLD stages) in patients with stable
COPD. Among the 573 DMs, 42 and 531 metabolites were
found at higher and lower levels, respectively, in patients with

severe COPD. Moreover, among the 21 MS2 metabolites, 1
and 20 metabolites were increased and reduced, respectively,
in severe compared with moderate COPD.We then found that
the glycerophospholipid metabolism pathway was associated
with COPD severity. Additionally, three oxidative stress prod-
ucts (MPO, SOD, and 8-iso-PGF2α) in induced sputum that
exhibited high sensitivities and specificities for the prediction
of COPD severity were identified. We also found that the
MPO and 8-iso-PGF2α levels in induced sputum were

Table 2 The levels of SOD,
MPO, GSH, NE, and 8-iso-
PGF2α in induced sputum in
COPD patients (n = 20)

Moderate COPD (n = 8) Severe COPD (n = 12) Statistical
values

P

SOD (ng/mL) 2.81702750 ± 1.481169877 5.87841667 ± 1.684597522 − 4.170 0.001*

MPO (ng/mL) 5.20834875 ± 0.849961544 7.11504083 ± 2.127440318 − 2.393 0.028*

GSH (pg/mL) 48.89454875 ± 81.860376895 59.50663000 ± 100.387792570 − 0.248 0.807

NE (pg/mL) 275.44425000 ± 253.353683063 250.36500000 ± 262.347043724 0.212 0.834

8-iso-PGF2α
(pmol/mL)

131.84655462 ± 50.691770294 343.47142350 ± 226.995290954 − 2.572 0.019*

*P value < 0.05

Fig. 4 Values of the SOD, MPO,
and 8-iso-PGF2α levels in
induced sputum for predicting
COPD severity. a ROC curves. b
Sensitivity, specificity, Youden
index, AUC, and cutoff value
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negatively correlated with lung function and that the SOD,
MPO, and 8-iso-PGF2α levels in induced sputum were neg-
atively correlated with glycerophospholipids (choline,
NMethy, and 1-LGPC) in patients with stable COPD.

The prevalence of COPD has continued to increase in re-
cent decades [2], and it has been estimated that COPD will
become the third leading cause of disease-induced mortality
worldwide by 2025 to 2030 [1, 2]. In addition, COPD is a
highly heterogeneous disease [11]. Significant individual dif-
ferences in many variables, including risk factors, clinical fea-
tures, comorbidities, and therapeutic responses to prognosis,
have been observed among patients with COPD [2]. From one
point of view, the consideration of COPD as a single disease is
less appropriate because COPD is probably a syndrome that
encompasses several obstructive airway disorders that share a
common exposure but differ in terms of the mechanism of the
disease and the response to treatment [48, 49]. Therefore,
predictive, preventive, and personalized medicine (PPPM)–
based management approaches are urgently needed to guide
the diagnosis, severity assessment, therapeutic options, and
prognosis of COPD. Accumulating evidence obtained in re-
cent studies reveals that abnormal metabolism plays a key role
in the pathogenesis of COPD [12, 24, 50]. Compared with
traditional metabolic study methods, metabolomics tools pro-
vide insight into underlying relationships among metabolites,
and these findings allows researchers to obtain a complete
picture of the role of metabolites in the pathogenesis of dis-
eases. Moreover, several studies have shown that metabolo-
mics is an ideal and promising method for evaluating the
phenotype, severity, and individual differences among pa-
tients with COPD, which indicates that metabolomics is an
essential tool for PPPM in COPD [12, 50]. Several studies
have found distinct differences in the metabolomic profile
between patients with COPD and without COPD, and similar
findings have been obtained in humans and animals [24, 26,
42, 50, 51]. Fang et al. showed that 32 dysregulated metabo-
lites in plasma are associated with the COPD status in rats

[26]. Van der Does et al. revealed that the levels of free
alpha-linolenic acid, linoleic acid, eicosapentaenoic acid
(EPA), omega-3, and EPA- and docosahexaenoic acid-
derived oxylipins in the sputum of patients with COPD are
noticeably lower than those in the sputum of healthy subjects
[36]. These researchers also noticed that the levels of free
arachidonic acid and docosapentaenoic acid in sputum were
significantly increased in acute exacerbation of COPD
(AECOPD) compared with stable COPD. Fortis et al. showed
that both the serum and urine metabolomic profiles showed
marked differences between patients with stable COPD and
those with AECOPD [42]. Additionally, Ghosh et al. revealed
that 12 differential metabolites in serum were dysregulated in
patients with asthma-COPD overlap (ACO) compared with
both patients with asthma and patients with COPD [51].
However, the association between the metabolomic profiles
of induced sputum and COPD severity has not been previous-
ly studied. This study aimed to explore the differential metab-
olites in induced sputum between patients with moderate
(GOLD stage 2) and severe (GOLD stage 3) stable COPD.
In our study, 60 patients were enrolled, and 20 patients with
qualified induced sputum samples were included: 8 with mod-
erate (GOLD stage 2) COPD and 12with severe (GOLD stage
3) COPD (Fig. 1). No differences in sex, age, BMI, smoking
status, underlying diseases, inhalation therapies, complica-
tions, or laboratory parameters were found between these
two groups. These results suggested that demographic charac-
teristics, treatments, and included laboratory parameters are
not associated with the severity of stable COPD, and these
data also indicated that the internal validity of the study was
good.

Induced sputum is a direct, reliable, sensitive, simple, and
repeatable approach for evaluating inflammatory phenotypes
and severity and for studying the pathogenesis of COPD and
other pulmonary diseases, such as asthma and interstitial lung
diseases (ILDs) [52–57]. In our study, the metabolites in in-
duced sputum were assayed using a Q Exactive Orbitrap LC-

Table 3 The correlations
between lung function and 3
glycerophospholipids and
induced sputum 5 oxidative stress
products in COPD patients
(n = 20)

SOD MPO GSH NE 8-iso-
PGF2α

FEV1% R − 0.405 − 0.432 0.171 − 0.174 − 0.606
P 0.077 0.057 0.470 0.462 0.005*

FEV1/FVC% R − 0.313 − 0.512 0.275 − 0.217 − 0.705
P 0.179 0.021* 0.240 0.359 0.001*

Choline R − 0.650 − 0.409 − 0.185 0.117 − 0.411
P 0.002* 0.073 0.435 0.622 0.072

NMethy R − 0.653 − 0.421 − 0.188 − 0.200 − 0.259
P 0.002* 0.064 0.427 0.398 0.271

1-Linoleoylglycerophosphocholine
(1-LGPC)

R − 0.489 − 0.514 − 0.132 − 0.281 − 0.504
P 0.029* 0.021* 0.578 0.230 0.024*

*P value < 0.05
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MS/MS system. The results showed that 573 POS differential
metabolites were associated with COPD severity, and among
these, 237 were MS1 metabolites, 21 were MS2 metabolites,
and 315 were “unknown” metabolites. However, no COPD
severity–associated NEG metabolites were detected.
Furthermore, a KEGG pathway analysis revealed that the
glycerophospholipid metabolism pathway was the only
enriched metabolic pathway associated with COPD severity.
Glycerophospholipids, which are the most abundant phospho-
lipids in the lungs [58], are critical for the synthesis of pulmo-
nary surfactant (PS), lung development, oxidative stress, lung
defense, and the inflammatory response [58–60]. Xu et al.
found that both the glycerophospholipids levels in both serum
and the bronchoalveolar lavage fluid (BALF) are upregulated
in rats with LPS-induced acute lung injury (ALI) [58]. In
addition, some studies have revealed that the glycerophospho-
lipid metabolism pathway is involved in COPD [22, 26, 61].
Telenga et al. found that the concentrations of glycerop
hospholipids and fatty acids in induced sputum are signifi-
cantly lower in smokers with COPD than in smokers without
COPD [61]. Cruickshank-Quinn et al. showed that
glycerophospholipid metabolism in plasma is associated with
worse airflow obstruction and more acute exacerbation in
COPD [22]. Kelly et al. revealed that serum glycerop
hospholipids are associated with AHR, FEV1%, and
FEV1/FVC% in asthmatic children, which indicates that the
glycerophospholipid metabolism pathway plays a critical role
in the pathogenesis of asthma [62]. Our study provides the
first demonstration that glycerophospholipids in induced spu-
tum are associated with lung function in patients with stable
COPD. Therefore, the underlying mechanism of the
glycerophospholipid metabolism pathway in COPD should
be explored in future studies. Subsequently, multivariate anal-
yses, namely, PCA and OPLS-DA, were used to observe the
differences in the metabolomics profiles between moderate
and severe COPD. Both the PCA and OPLS-DA results con-
firmed the significant separation between patients with mod-
erate COPD and patients with severe COPD (Fig. 3).
Collectively, these data indicate that the metabolomic profiles
in induced sputum are associated with the severity of COPD.

Among the 21 MS2 metabolites (Supplementary
Table S1), choline [63, 64], allopurinol [65, 66], o-xylene
[67, 68], linoelaidyl carnitine [69, 70], vaccenyl carnitine
[71, 72], pirimicarb [73, 74], and oxandrolone [75, 76] are
involved in the oxidative stress response. It has been reported
that the glycerophospholipid metabolism pathway plays an
essential role in oxidative stress [22, 45–47, 77]. Therefore,
the levels of five key oxidative stress products (MPO, SOD,
GSH, NE, and 8-iso-PGF2α) in induced sputum were mea-
sured by ELISA in our study. We found that the levels of
SOD, MPO, and 8-iso-PGF2α in patients with severe COPD
were noticeably higher than those in patients with moderate
COPD (Table 2). Moreover, negative correlations between

SOD and three glycerophospholipids (choline, NMethy, and
1-LGPC) and between 1-LGPC and MPO and 8-iso-PGF2α
were also detected (Table 3). Additionally, ROC curves were
drawn to identify the values of the SOD, MPO, and 8-iso-
PGF2α levels in induced sputum for predicting COPD sever-
ity. As shown in Fig. 4, the SOD, MPO, and 8-iso-PGF2α
levels in induced sputum showed a good ability to predict the
severity of stable COPD. Subsequently, we also identified
significant negative correlations between FEV1% and the 8-
iso-PGF2α levels and between FEV1/FVC% and the MPO
and 8-iso-PGF2α levels (Table 3). Collectively, our results
suggest that glycerophospholipid metabolism–associated oxi-
dative stress is essential for the progression of COPD. The
severity of oxidative stress is highly correlated with lung func-
tion impairments in patients with COPD. Therefore, the SOD,
MPO, and 8-iso-PGF2α levels in induced sputum are prom-
ising markers for predicting the severity of COPD in clinical
practice.

Strengths and limitations

To the best of our knowledge, this study is the first to
reveal that the association between the metabolomic pro-
files of induced sputum and COPD severity. The main
strength of this study was that relatively comprehensive
data, including demographic characteristics, underlying
diseases, lung function, inhalation therapy, and laboratory
parameters, were collected. Moreover, internal validity
was good, which led to more convincing results. Of note,
a chest HRCT scan was obtained from each patient, which
enhanced the diagnosis accuracy and reduced the con-
founders. However, the limited sample size is one of the
ma jo r weaknes se s o f t h i s s t udy . The ro l e s o f
glycerophospholipid metabolism and its associated oxida-
tive stress in COPD severity should be explored with a
larger sample size. The predict ive values of the
glycerophospholipid and oxidative stress products (SOD,
MPO, and 8-iso-PGF2α) levels for COPD severity should
also be replicated in other populations and ethnic groups.
Additionally, the alterations in COPD severity–associated
differential metabolites and oxidative stress products can-
not be comprehensively evaluated by a cross-sectional de-
sign. Thus, a cohort study should be performed to further
explore the mechanisms underlying the metabolomics and
oxidative stress changes in the progression of COPD.

Conclusions and expert recommendations

Overall, our study provides the first identification of the
COPD severity–associated metabolomic profiles of in-
duced sputum. We also revealed the potential value of
the induced sputum metabolomics for predicting the
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severity of COPD. In addition, a subset of COPD severity–
associated metabolites was identified, and the data indicate
that the glycerophospholipid metabolism pathway plays a
hub role in the progression of COPD and is thus likely a
potential therapeutic target in COPD. Our results also sug-
gest that the levels of SOD, MPO, and 8-iso-PGF2α in
induced sputum are potential biomarkers for predicting
COPD severity. Collectively, our complex analysis of in-
duced sputum at the metabolomics level not only provides
confirmation of the association between the metabolomic
profiles of induced sputum and COPD severity but also
indicates the promising value of induced sputum metabo-
lomics in the PPPM-based management of COPD. We hy-
pothesized that induced sputum metabolites could be used
to predict the progression, treatment response, and progno-
sis of COPD at an early stage, which would allow PPPM-
based intervention in COPD.

We recommend the utilization of metabolomics in PPPM-
associated studies of COPD. COPD is one of most common
global diseases with high heterogeneity, and PPPM is a future
trend for COPD management. Complicated metabolomic al-
terations are involved in different aspects of COPD. Metabo
lomics is a valuable and meaningful tool for the application of
PPPM to COPD. Additionally, in future studies, the role of
induced sputum metabolomics in the individual treatment re-
sponse will be explored to further elucidate the value of meta-
bolomics in the PPPM-based management of COPD.
Specifically, based on individual metabolomic profiles, per-
sonalized management could be provided to patients with
COPD.
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