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Abstract

Objective Energy metabolism abnormality is the hallmark in epithelial ovarian carcinoma (EOC). This study aimed to investigate
energy metabolism pathway alterations and their regulation by the antiparasite drug ivermectin in EOC for the discovery of
energy metabolism pathway-based molecular biomarker pattern and therapeutic targets in the context of predictive, preventive,
and personalized medicine (PPPM) in EOC.

Methods iTRAQ-based quantitative proteomics was used to identify mitochondrial differentially expressed proteins (mtDEPs)
between human EOC and control mitochondrial samples isolated from 8 EOC and 11 control ovary tissues from gynecologic
surgery of Chinese patients, respectively. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative
proteomics was used to analyze the protein expressions of energy metabolic pathways in EOC cells treated with and without
ivermectin. Cell proliferation, cell cycle, apoptosis, and important molecules in energy metabolism pathway were examined
before and after ivermectin treatment of different EOC cells.

Results In total, 1198 mtDEPs were identified, and various mtDEPs were related to energy metabolism changes in EOC, with an
interesting result that EOC tissues had enhanced abilities in oxidative phosphorylation (OXPHOS), Kreb’s cycle, and aerobic
glycolysis, for ATP generation, with experiment-confirmed upregulations of UQCRH in OXPHOS; IDH2, CS, and OGDHL in
Kreb’s cycle; and PKM2 in glycolysis pathways. Importantly, PDHB that links glycolysis with Kreb’s cycle was upregulated in
EOC. SILAC-based quantitative proteomics found that the protein expression levels of energy metabolic pathways were regu-
lated by ivermectin in EOC cells. Furthermore, ivermectin demonstrated its strong abilities to inhibit proliferation and cell cycle
and promote apoptosis in EOC cells, through molecular networks to target PFKP in glycolysis; IDH2 and IDH3B in Kreb’s
cycle; ND2, ND5, CYTB, and UQCRH in OXPHOS; and MCT1 and MCT#4 in lactate shuttle to inhibit EOC growth.
Conclusions Our findings revealed that the Warburg and reverse Warburg effects coexisted in human ovarian cancer tissues,
provided the first multiomics-based molecular alteration spectrum of ovarian cancer energy metabolism pathways (aerobic
glycolysis, Kreb’s cycle, oxidative phosphorylation, and lactate shuttle), and demonstrated that the antiparasite drug ivermectin
effectively regulated these changed molecules in energy metabolism pathways and had strong capability to inhibit cell prolifer-
ation and cell cycle progression and promote cell apoptosis in ovarian cancer cells. The observed molecular changes in energy
metabolism pathways bring benefits for an in-depth understanding of the molecular mechanisms of energy metabolism hetero-
geneity and the discovery of effective biomarkers for individualized patient stratification and predictive/prognostic assessment
and therapeutic targets/drugs for personalized therapy of ovarian cancer patients.
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Introduction

Ovarian neoplasms consist of several clinic solid tumors, and
their treatment depends on tumor grade and clinical stage.
Epithelial ovarian carcinoma (EOC) constitutes the majority
(nearly 90%) of malignant ovarian neoplasms with high mor-
tality [1]. Despite advances in surgery, target therapy, and
chemotherapy, EOC patients still have a poor 5-year overall
survival rate (~ 30%) [2]. Early-stage diagnosis is a challeng-
ing clinical problem in EOC because of its hidden location [3].
Although ultrasound and cancer antigen 125 (CA-125) can be
used to monitor high-risk factor women, they still cannot
achieve good clinical effects [4]. The encouraging reports
from the FDA in 2017 [5] show that olaparib (AZD2281), a
PARP (polyADP-ribose polymerase) inhibitor, showed its ef-
ficacy on EOC patients with BRCA1 and BRCA2 mutations
[6]. Therefore, it is urgently needed to develop novel molec-
ular biomarkers for early diagnosis, treatment, and prognosis
for EOC patients [7].

Proteomics was widely used in protein identification and
quantification [8, 9]. Subcellular proteome research might
provide more subtle clues to protein functions [10]. The mi-
tochondria are the center of energy metabolism in eukaryotic
cells; however, they are also involved in the processes of
autophagy, apoptotic, cell cycle, cellular differentiation, and
oxidative stress regulations [11]. All those biological process-
es are closely associated with tumor relapse or metastasis.
Thus, exploration of mitochondria-mediated tumorigenesis
and tumor progression mechanisms should be a novel way
to the next generation of cancer therapeutics [12, 13]. The
mitochondrial structural and morphological alterations were
observed between cancer cells and control cells, and the
changed structure and morphology were presumably associ-
ated with mitochondrial differentially expressed proteins
(mtDEPs) [14]. Ovarian cancer mitochondrial proteomics
proved that the mitochondria may mediate energy metabolism
heterogeneity and chemoresistance signaling pathway
[15—17]. Mitochondrial dysfunction in cancer cells is one of
the important characteristics, and mitochondria-rejuvenating
drugs would prevent from tumorigenesis [18]. Quantitative
mitochondrial proteomics in EOC tissues revealed multiple
signaling pathway changes [16, 19].

The Warburg effect and reverse Warburg effect promote
the study of energy metabolic reprogramming in cancer cells
[20]. The traditional Warburg effect refers to that cancer cells
tend to produce ATP via glycolysis, even in aerobic condition
[21]. A previous study observed increasing activity of glyco-
lytic enzymes [22] and decreased energy production from the
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Kreb’s cycle and oxidative phosphorylation (OXPHOS) [23].
However, in the novel “reverse Warburg effect” model, cancer
cells could rely on both aerobic glycolysis and OXPHOS [24].
Oxidative stress is increased in cancer-associated fibroblasts
(CAFs), and CAFs secrete plenty of nutriment to the sur-
rounding cancer cells through aerobic glycolysis [25].
Monocarboxylate transporters (MCTs), including MCT1 and
MCT4, form the “lactate shuttle” to accomplish metabolic
symbiosis between cancer cells and CAFs [26]. Thus,
Warburg and reverse Warburg effects are complementary to
each other in the study of energy metabolic reprogramming
[18]. The Warburg and reverse Warburg effects coexist in
tumor tissues [27]. Upregulation and flexibility of both aero-
bic glycolysis and OXPHOS pathways in EOC cells have
been shown previously. For example, expression of PKM2
induces a high glycolytic rate in ovarian cancer, and PKM2
inhibitor suppresses ovarian cancer cell migration and growth
by disturbing Warburg effects [28]. A large number of evi-
dence also shows contradictory findings with regard to the
Warburg effect, including high mitochondrial activities and
low ATP contribution of glycolysis in highly invasive ovarian
cancer [29]. EOC cells presented metabolic flexibility but en-
ergy metabolic reprogramming in EOC cells remains unclear.
It is necessary to study in-depth the energy metabolism
inhibitors.

Ivermectin is an effective medication in the treatment of
many kinds of parasites, through increasing cell membrane
penetrability to cause paralysis and death of the parasites
[30]. Ivermectin that was initially discovered from soil in
Japan in 1973 was used in the clinic in 1981, which was
collected from the list of essential medicines of the World
Health Organization [31]. Satoshi Omura who discovered
ivermectin received the Gairdner Global Health Award in
2014 and the Nobel Prize in 2015. Today, ivermectin shows
multiple potential roles against bacteria and virus and as anti-
cancer, which is continuously surprising scientists and re-
searchers [32]. In 2004, a Russian group found that ivermectin
had significant antiproliferative activity against human mela-
noma and a few other cancers [33]. A Chinese group reported
that ivermectin regulated autophagy to suppress breast cancer
growth, and found that ivermectin decreased the expression of
p21-activated kinase 1 though the ubiquitination-mediated
degradation pathway and resulted in the decreased phosphor-
ylation level of Akt to block the Akt/mTOR signaling path-
way [34]. Some studies also found that ivermectin induced
oxidative damage and mitochondrial dysfunction in renal cell
carcinoma, and ivermectin demonstrated the preferential tox-
icity to renal cell carcinoma rather than normal kidney cells
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[35]. Ivermectin also selectively induced cell apoptosis in
chronic myeloid leukemia (CML) through regulating oxida-
tive stress and mitochondrial dysfunction [36]. However, it is
still a long way for ivermectin to be applied in cancer treat-
ment. A study found that EOC patients with worse prognosis
had higher expression of oncogene KPNBI regulating p21,
p27, and APC/C family member, and ivermectin induced
death of EOC cell models by inhibition of oncogene KPNBI1
[37]. However, KPNB1 was not found to be a differentially
expressed protein in human EOC tissues by isobaric tag for
relative and absolute quantification (iTRAQ)-quantitative tis-
sue proteomics [38] and iTRAQ quantitative tissue mitochon-
drial proteomics [16]. Ivermectin also blocked human epidid-
ymis protein 4/importin-4 nuclear accumulation and PAK1-
dependent growth in human ovarian cancer [39, 40]. The an-
titumor effect of ivermectin is attracting many researches and
has made some advances. However, the accurate molecular
mechanism of its antitumor effect remains unclear. This study,
for the first time, focused on the effects of ivermectin on en-
ergy metabolism pathways in human EOC cells through reg-
ulating energy metabolism—related enzymes to suppress EOC
cell growth.

In our long-term program of EOC mitochondrial proteo-
mics, mtDEPs were identified in EOCs compared with con-
trols [16], and these mtDEPs were involved in multiple sig-
naling pathways [19]. In combination with quantitative prote-
omics of whole EOC tissues [38], this study revealed the mo-
lecular profiling changes of energy metabolism pathways in
EOC. Here is the experimental flowchart to study mtDEPs in
EOC:s relative to controls (Fig. 1a). Furthermore, the effect of
ivermectin on human ovarian cancer cell lines was also inves-
tigated to show the roles of ivermectin in inhibiting prolifera-
tion and cell cycle progression and promoting apoptosis in
EOC cells via regulating energy metabolism pathways.

Materials and methods

Ovarian cancer tissue specimen and preparation of
mitochondria protein samples

Eight EOC tissues and eleven control ovaries with benign
gynecologic disease (Table 1) were collected during gyneco-
logic surgery from Chinese patients from the Department of
Obstetrics and Gynecology, Xiangya Hospital, Central South
University, China, after approval of Xiangya Hospital
Medical Ethics Committee, and informed consent was collect-
ed from Chinese patients who had never been treated with
radiotherapy or chemotherapy prior to surgery. The mitochon-
dria were isolated and purified from EOC and control tissues
with differential speed centrifugation and Nycodenz density
gradient centrifugation [16, 17]. The mitochondria prepared
from eight EOC tissues were combined as the EOC

mitochondrial sample. The mitochondria prepared from elev-
en control ovaries were combined as the control mitochondrial
sample. The purified mitochondria were verified with electron
microscopy and western blot with different antibodies specific
to different subcellular organelles, including COX4I1 (mito-
chondrion), flotillin-1 (cytomembrane), GM130 (Golgi appa-
ratus), catalase (peroxisomes), cathepsin B (lysosome), and
lamin B (cell nucleus). The proteins were extracted from pu-
rified mitochondrial samples for iTRAQ-labeled quantitative
proteomic analysis. The detailed procedure was described pre-
viously [16, 17].

iTRAQ-based quantitative proteomics to identify
mtDEPs

The extracted mitochondrial proteins (200 pg/each sam-
ple) were treated with N-hydroxysuccinimide (SDT),
followed by reduction, alkylation, digestion with trypsin,
and desalination. The tryptic peptides (100 pg/each sam-
ple) were labeled with iTRAQ reagents, and each sample
was labeled three times. The six labeled tryptic peptide
samples were equally mixed, followed by peptide frac-
tionation with strong cation exchange (SCX) chromatog-
raphy. Each SCX-fractionated sample was subject to lig-
uid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis on a Q Exactive mass spectrometer (Thermo
Scientific) within a 60-min LC separation gradient to ob-
tain MS/MS data. The MS/MS data were used to identify
proteins with MASCOT search engine. The iTRAQ
reporter-ion intensities were used to determine each
mtDEP. The mtDEP data were subject to Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis. The detailed pro-
cedure was described previously [16, 17].

Immunoaffinity verification of mtDEPs in tissue
mitochondrial samples

One-dimensional gel electrophoresis (1DGE)-based western
blot was used to verify mtDEPs (PFKP, PKM2, PDHB, CS,
IDH2, IDH3A, IDH3B, OGDHL, ND2, ND5, CYTB,
UQCRH, MCT1, and MCT4) between EOC and control mi-
tochondrial samples. Because the mitochondria interact exten-
sively with the actin cytoskeleton [41], (3-actin was unavoid-
able to be contained in the isolated mitochondrial sample.
Furthermore, iTRAQ quantitative proteomics found that (3-
actin (accession no. K4ENJ5) was equal between EOC and
control mitochondrial samples [Ratio of T/N (T = tumor; N =
control) = 1.06, p = 0.314] [16]. Moreover, cytochrome
(Cyto), COXVI, VDACI, and TOMM20 are commonly used
as internal standard of western blot in the analysis of mito-
chondria; however, these proteins are all identified as differ-
entially expressed proteins by our iTRAQ quantitative
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a Isolating and identifying the mitochondria b
(EOCs and controls)
Extracting proteins from mitochondria
iTRAQ and LC-MS/MS analysis
mtDEPs d
Molecular
weight and GO KEGG
isoelectric Pathway
point
C
LaminB Cell nucleus
Flotillin-1 Cytomembrane
e
cox4in Mitochondrion
GM130 Golgi apparatus
Catalase Peroxisomes

CathepsinB Lysosome

B. Control

A. Ovarian cancer

Fig. 1 Identification of mitochondrial differentially expressed proteins in
EOCs relative to controls. a Experimental flowchart to study
mitochondrial differentially expressed proteins. b Electron micrograph
analysis of mitochondria isolated from epithelial ovarian cancer (A) and
control (B) tissues. ¢ Organelle-specific antibody-based western blot
analysis of mitochondria isolated from epithelial ovarian cancer (A) and
control (B) tissues. Equal amounts of proteins were loaded onto a 10%
SDS-PAGE and analyzed by western blotting with indicated antibodies
against marker proteins from the cell nucleus, cytomembrane,
mitochondrion, Golgi apparatus, peroxisomes, and lysosome. d

proteomics between ovarian cancer and control mitochondrial
samples [16]. Therefore, 3-actin was used as internal standard
of western blot.

Ingenuity Pathway Analysis of ivermectin

Ingenuity Pathway Analysis (IPA) was used to reveal the
relationship of ivermectin and potential target genes in
energy metabolism pathways. IPA was the classical and
very popular pathway network analysis software (http://
www.ingenuity.com) [19]. Ivermectin and potential
target genes in energy metabolism pathways were input
into the IPA tools (build tool and grow tool) to create new
“my pathway” and to show molecule networks.
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Distribution status of 1198 mtDEPs according to their molecular mass
(M,). e Distribution status of 1198 mtDEPs according to their isoelectric
points (p/). EOC, epithelial ovarian carcinoma; SDS-PAGE, sodium
dodecyl sulfate polyacrylamide gel electrophoresis; mtDEPs,
mitochondrial differentially expressed proteins; iTRAQ, isobaric tags
for relative and absolute quantitation; LC-MS/MS, liquid
chromatography-tandem mass spectrometry; GO, Gene Ontology;
GM130, golgin A2; KEGG, Kyoto Encyclopedia of Genes and
Genomes; COX4I1, cytochrome ¢ oxidase subunit 411

SILAC-based protein quantification of effects of
ivermectin on EOC cells

Stable isotope labeling with amino acids in cell culture
(SILAC) labeling used kits from Thermo Fisher Scientific
with RPMI 1640 lacking lysine (K) and arginine (R) supple-
mented with 100 mg/l [*C6,'°N4] arginine and 100 mg/Il
['°C6,'"N2] lysine with 10% dialyzed fetal bovine serum
(BI-Biological Industries, Cromwell, CT, USA). TOV-21G
OC cells were cultured with normal RPMI 1640 and heavy
chain—labeled RPMI 1640. After 10 passages, TOV-21G cells
cultured with heavy chain—labeled RPMI 1640 were treated
with 20 uM ivermectin. TOV-21G cells were cultured with
normal RPMI 1640 treated with DMSO. Cells were collected
after 24 h of ivermectin treatment for protein extraction. The
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Table 1

Clinical information of EOC and control ovary tissues that were used to prepare the mitochondria

Type Patient Age
ofthe no. (years)
sample

Clinical diagnosis

Pathological characteristics

Other diseases

EOC T4 49 Stage I1IC ovarian serous

cystadenocarcinoma

T8 46 Stage I1IC poorly
differentiated human
ovarian adenocarcinoma

T9 47 Stage IIIC ovarian serous

cystadenocarcinoma

T10 49 Stage IIIA ovarian cancer
with endometrioid
adenocarcinoma plus

serous adenocarcinoma

T16 52 Stage I1IC moderately and
poorly differentiated
papillary serous
adenocarcinoma in both

ovaries

T22 45 Stage I1IC moderately and
poorly differentiated
endometrioid
adenocarcinoma in right

ovary

T29 45 Moderately and poorly
differentiated serous

ovarian carcinoma

T39 67 Stage 1IC moderately and
poorly differentiated
mucinous papillary

ovarian adenocarcinoma

High-grade serous adenocarcinoma; cancer

Serous cystadenocarcinoma (grades II-111

Ovary mixed moderately—poorly

Moderately and poorly differentiated

Moderately and poorly differentiated

Moderately and poorly differentiated serous

Moderately and poorly differentiated

Moderate anemia; postoperative status of
appendectomy; adenomatous polyp in
transverse colon; endometrial hyperplasia;
cervicitis

cells were found in ascites; the poorly
differentiated adenocarcinoma in bilateral
ovaries; metastasis of cancer cells to both
sides of the fallopian tube, uterine surface,
omentum majus, and intestinal wall; THC:
CK7 (+), CEA (-), CA125 (=), CDX-2 (-),
WTI (+), P63 (), P53 (+), villin (),
CK20 (-), CK20 (-), CK19 (+), and PLAP
+)

Poorly differentiated adenocarcinoma in left  Chronic vaginitis with squamous epithelial

ovary; metastasis of cancer cells to the
epiploon and peritoneum; and no
metastatic carcinoma to other places

hyperplasia; uterus leiomyoma; cervicitis;
endometrial hyperplasia; hepatitis B

Cervicitis; uterus leiomyoma; chronic

and size 10 x 6.5 x 3 cm); no vascular or salpingitis; chronic superficial gastritis

nerve invasiveness; metastasis of cancer

cells to epiploon (size 10 x 6.5 X 3 cm);

IHC: Ki67 (50%+), CA125 (+), CK (+),

and CK20 (-)

Chronic cervicitis; chronic gastritis;
cholecystic polypus; depressive disorder;
pulmonary infection; hypoproteinemia

differentiated adenocarcinoma with
endometrioid adenocarcinoma plus serous
adenocarcinoma; cancer embolus in right
pelvic funnel ligament; no metastatic
carcinoma to other places; IHC: CA125
(+), CK7 (+), CK-Pan (+), vimentin (—),
ER (+), PR (+), P53 (), Ki67 (60%-+),
desmin (—), and actin (-)
Cervicitis with squamous hyperplasia; senile
endometrium; postoperative status after
resection of left breast

papillary serous adenocarcinoma in both
ovaries without cancer embolus in vessel;
cancer cells in right fallopian tube; no
metastatic carcinoma to other places; a
small amount of proliferative granulation
tissue in pelvic cavity; dyskaryotic cell in
ascites smear
Cervicitis with squamous hyperplasia; deep
venous thrombosis; pleural effusion;
pulmonary infection; respiratory failure
type I; postoperative status after
cystectomy of left ovarian cysts

endometrioid adenocarcinoma in right

ovary (size 25 x 19 x 7 cm); no vascular or

neurological invasion; metastatic
carcinoma in the surface of colon
sigmoideum; no metastasis to other places;

IHC: Ki67 (60%+), P53 (-), ER (++), PR

(+), CK7 (+), CA125 (+), CK-L (-), and

CD31 (+)

Chronic salpingitis; chronic cervicitis

ovarian carcinoma in both ovaries; no

definite vascular or neurologic invasion; no

metastatic carcinoma to other place; IHC:

CA125 (+), ki67(30-40%+), PR (+), ER

(+), villin (=), ck20 (=), CDX-2 (), and

ck7 (+)

Senile endometrium; chronic cervicitis with
squamous metaplasia; cervical
intraepithelial neoplasia (CIN grade I);
hypertension; mild anemia

mucinous papillary ovarian
adenocarcinoma without cancer embolus;
cancer cells in abdominal cavity; no
metastatic carcinoma to other places; IHC:
ki67 (30%+), wtl (-), pax-8 (+), p%3 (+),
PR (-), ER (=), and P16 (-)
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Table 1 (continued)

Type Patient Age  Clinical diagnosis Pathological characteristics Other diseases

ofthe no. (years)

sample

Con C51 60 Normal ovaries No abnormality in bilateral ovaries; Uterine prolapse (degree II); vaginal anterior

mesosalpinx cyst in the right fallopian tube ~ wall prolapse (degree I1I); vaginal posterior

wall prolapse (degree I); cervical
intraepithelial neoplasia (CIN grade I);
cervical chronic cervicitis; senile
endometrium; diabetes (type 1I);
hypertension (grade III); bronchial asthma

C52 56 Normal ovary (right) Ovary serous cystadenoma (left) covering Ovary serous cystadenoma (left),
with mucous epithelial cell in special mess; ~ hypertension; pelvic inflammatory disease
mesosalpinx cyst in the right fallopian (sequelae phase)
tube; no abnormality in left ovary and the
left fallopian tube

C54 50 Normal ovaries No abnormality was observed in bilateral Cervical intraepithelial neoplasia (CIN grade
ovaries; mesosalpinx cyst was observed in  III); chronic cervicitis with squamous
bilateral fallopian tubes epithelial hyperplasia and metaplasia;

postoperative status of loop electrosurgical
excision procedure (LEEP) for the
treatment of CIN; HPV infection

C55 49 Normal ovaries No abnormality was observed in bilateral Cervical intraepithelial neoplasia (CIN grade
ovaries and bilateral fallopian tubes; IIT); chronic cervicitis; uterine fibroids
adenomyoma and multiple leiomyoma in (multiple); mild anemia; liver dysfunction
uterus; endometrial polyp

C60 53 Normal ovaries No abnormality was observed in bilateral Uterine fibroids; chronic cervicitis with
ovaries and bilateral fallopian tubes squamous hyperplasia; senile

endometrium; fatty liver; mild anemia

C66 44 Normal ovaries No abnormality was observed in bilateral Uterine fibroids; chronic cervicitis; renal
ovaries and left fallopian tubes; hamartoma (right side)
mesosalpinx cyst in right fallopian tubes;
multiple uterus leiomyoma (6.5 X 7 x 9 cm,

S5x4x8cm,5%x3.5x5cm)

C68 54 Normal ovaries No abnormality in bilateral ovaries, right Endometrial atypical hyperplasia (serious);
fallopian tubes, vagina, and parametrial fibrous tissue hyperplasia and glass-like
tissues; mesosalpinx cyst was observed in changes in ligament tissues; hypertension;
left fallopian tubes coronary heart disease; postoperative status

after cholecystectomy

C77 47 Normal ovary (left) No abnormality in left ovary; cystic bleb in ~ Ovarian follicular sac (right side);
right ovary; effusion and cystic dilation in adenomyosis; chronic cervicitis with
right fallopian tube squamous metaplasia; chronic vaginitis;

postoperative status after resection of left
ovarian cyst

C79 44 Normal ovary (right) No abnormality in right ovary and bilateral ~ Ovarian serous cystadenoma (left side);
fallopian tube; no cancer metastasis and postoperative status after
enlarged lymph nodes in omentum post-hysterectomy and cystectomy of

benign ovarian cysts

C92 51 Normal ovaries No abnormality was observed in bilateral Cervical intraepithelial neoplasia (CIN grade
ovaries, bilateral fallopian tubes, and I1I); uterine fibroids (multiple); senile
parametrial tissues endometrium; chronic cervicitis;

hypertension (grade 1I); hepatic cysts

C93 52 Normal ovaries White body formation in bilateral ovaries; Multiple uterine fibroids; senile

multiple uterus leiomyoma (1 x 1 x 0.8 cm
to 8 x 8 x 4 cm); mesosalpinx cyst in
bilateral fallopian tubes

endometrium; chronic cervicitis;
hyperlipemia

All samples were from female Chinese patients

EOC, epithelial ovarian cancer; Con, control ovary, /[HC, immunohistochemistry
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extracted proteins from TOV-21G cell treated with (heavy-
labeling “H”’) and without (light-labeling “L”) ivermectin
were digested with trypsin, followed by peptide fractionation
(n = 15 fractions), LC-MS/MS, and database searching to
identify and quantify proteins in TOV-21G cells treated with
(H) and without (L) ivermectin.

Effects of ivermectin on EOC biological behaviors

Two EOC cell lines (SKOV3 and TOV-21G) and one normal
control cell line (IOSE80) were purchased from Keibai
Academy of Science (Nanjing, China) and used in this study.
First, CCKS assay was used to detect the IC50 of ivermectin in
SKOV3, TOV-21G, and IOSER80, with different concentration
gradients (0—60 uM) of ivermectin for 24 h. Second, EdU
assay was used to measure DNA synthesis in cells SKOV3
and TOV-21G after treatment with ivermectin (0 uM, 10 uM,
20 uM, and 30 uM) for 24 h. Third, clonogenic assay was
used to investigate the in vitro effects of ivermectin in cells
SKOV3 and TOV-21G after treatment with ivermectin (0 uM,
10 uM, 20 uM, and 30 uM) for 48 h. Fourth, flow cytometry
was used to measure cell cycle and cell apoptosis changes in
cells SKOV3 and TOV-21G after treatment with ivermectin
(0 uM, 10 uM, 20 uM, and 30 uM) for 24 h.

Effects of ivermectin on target genes in energy
metabolism pathways

Quantitative real-time PCR (qQRT-PCR) and western blot were
used to measure the mRNA and protein expressions of target
genes (PFKP, PKM, CS, PDHB, IDH2, IDH3A, IDH3B,
OGDHL, ND2, ND5, CYTB, UQCRH, MCTI1, and MCT4)
in cells SKOV3 and TOV-21G after treatment with ivermectin
(0 uM, 10 uM, 20 uM, and 30 uM) 24 h treatment for RNA
and 48 h for protein.

Statistical analysis

For GO and KEGG enrichment analyses and IPA analysis,
p values were corrected with Benjamini—Hochberg (FDR)
for multiple testing. For western blot and qRT-PCR data, data
were expressed as the mean + SD, and the statistically signif-
icant level of p < 0.05 was used, with Student’s 7 test in SPSS
13.0 (SPSS Inc., Chicago, USA) (n = 3).

Results
Quality of the prepared mitochondrial samples
The mitochondrial samples from EOC and control tissues

were prepared with differential speed centrifugation and
Nycodenz density gradient centrifugation [16, 17],

followed by quality evaluation with electron microscopy
and western blot. Electron microscopic images showed
that mitochondria were present as main organelles in the
prepared EOC and control mitochondrial samples (Fig.
1b). No other organelles and cell debris were found ex-
cept a small amount of peroxisomes, which demonstrated
that the quality of the prepared mitochondrial samples was
very good. Moreover, the quality of mitochondrial sam-
ples was also evaluated by western blotting with the an-
tibodies of subcellular organelles’ feature proteins such as
COX4I1, flotillin-1, GM130, catalase, cathepsin B, and
lamin B (Fig. 1c). COX4I1 was specifically located in
mitochondrion, flotillin-1 in cytomembrane, GM130 in
Golgi apparatus, catalase in peroxisome, cathepsin B in
lysosome, and lamin B in cell nucleus. For the whole
tissue samples, all subcellular organelles were detected
in EOC and control tissues. For the prepared mitochon-
drial samples, only mitochondria were detected as the ma-
jor component in EOCs and controls, respectively (Fig.
1c), whereas the cell nucleus, Golgi apparatus, and lyso-
some were not detected at all. A certain amount of perox-
isomes and cytomembranes were detected (Fig. lc),
which is very reasonable because mitochondria interact
extensively with the cytosol cytoskeleton [41] and perox-
isomes [42] to further reflect the functional complexity of
mitochondria. These results clearly demonstrated that the
prepared mitochondrial samples were of a very good
quality.

The mtDEP profiling in EOC

In total, 1198 mtDEPs between EOC and control mitochon-
drial samples were determined with iTRAQ-SCX-LC-MS/
MS (Supplementary Table 1) [17]. Those mtDEPs were most-
ly distributed within a M, range of 10-200 kDa (Fig. 1d) and a
pl range of 4-11 (Fig. 1e). No protein was detected in the area
of p/ < 4 and the majority of proteins were within p/ 4-10,
which showed good consistency of p/ distribution pattern in
this study compared with that of a previous study [43].
Moreover, most of mtDEPs were localized within the mito-
chondria. However, some DEPs were not annotated in the
mitochondria but in other cellular compartments, and the rea-
son for this observation would be that these DEPs were de-
rived from the proteins that interacted with outer mitochondri-
al membrane or mitochondria-related proteins [44].
Furthermore, functional analysis revealed that those
1198 mtDEPs were involved in multiple biological process-
es. Especially interesting was the observation that mito-
chondrial ribosome and energy metabolism pathways were
significantly changed. iTRAQ quantitative proteomics
found 17 mitochondrial ribosome proteins were changed,
including MRPL41, MRPL46, MRPL49, MRPL51,
MRPLS52, MRPL53, MRPL54, MRPL55, MRPS10,
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Table 2  DEPs in ribosome-associated proteins

Accession no. Protein Unique Coverage PSMs calc. MW Ratio p value (¢
peptides (%) p!/ (kDa) (T/N) test)
015235 28S ribosomal protein S12, mitochondrial 1 5.8 1 103 152 23 1.21E-03
P82914 28S ribosomal protein S15, mitochondrial 10 33.07 20 105 298 1.5 7.14E-03
E9PE17 28S ribosomal protein S17, mitochondrial (fragment) 4 51.94 10 9.8 14.4 1.8 1.52E-03
AO0A075B746 28S ribosomal protein S21, mitochondrial 3 39.08 6 99 10.7 2.0 3.18E-03
Q9Y3D9 28S ribosomal protein S23, mitochondrial 7 40.53 24 89 218 1.8 1.06E-03
C9JBY7 28S ribosomal protein S33, mitochondrial 2 21.88 3 102 114 1.5 6.00E-03
P82932 288 ribosomal protein S6, mitochondrial 5 39.2 11 93 142 2.6 1.33E-03
P82933 28S ribosomal protein S9, mitochondrial 13 39.14 29 95 458 1.6 1.98E-02
Q8IXM3 39S ribosomal protein L41, mitochondrial 5 38.69 9 96 154 1.5 3.78E-02
QI9H2W6 39S ribosomal protein L46, mitochondrial 8 36.92 13 7.0 31.7 1.5 7.89E-03
Q13405 39S ribosomal protein L49, mitochondrial 5 30.12 6 9.5 19.2 1.6 2.91E-03
Q4U2R6 39S ribosomal protein L51, mitochondrial 1 547 1 11.3  15.1 1.6 8.25E-03
G5E9P5 39S ribosomal protein L52, mitochondrial 1 30 1 9.5 11.7 1.8 2.20E-02
Q96EL3 39S ribosomal protein L53, mitochondrial 4 4375 9 8.8 12.1 1.6 5.88E-04
Q6P161 39S ribosomal protein L54, mitochondrial 3 48.55 6 9.6 158 1.8 8.11E-03
X6RIW1 39S ribosomal protein L55, mitochondrial (fragment) 1 10.53 2 11.9 8.6 1.6 9.50E-03
P05141 ADP/ATP translocase 2 6 49.66 304 9.7 328 1.8 1.21E-03
Q6PI41 AURKAIPI protein (fragment) 1 6.17 3 105 18.6 2.0 8.96E-04
B4DP77 c¢DNA FLJ57413, highly similar to Mitochondrial 28S 4 35 11 64 187 1.6 1.12E-02
ribosomal protein S10
QI96RPY Elongation factor G, mitochondrial 25 36.22 56 7.0 83.4 1.9 9.21E-04
P43897 Elongation factor Ts, mitochondrial 12 43.69 32 84 354 1.6 2.12E-03
P49411 Elongation factor Tu, mitochondrial 29 63.27 251 7.6 49.5 1.5 2.10E-03
Q96DP5 Methionyl-tRNA formyltransferase, mitochondrial 2 54 2 9.7 438 1.5 1.15E-04
QIUBX3 Mitochondrial dicarboxylate carrier 34.49 12 95 313 2.5 1.06E-02
Q8TEM1 Nuclear pore membrane glycoprotein 210 19 13.14 30 6.8  205.0 1.5 1.39E-02
QI9Y5M8 Signal recognition particle receptor subunit beta 11 44.28 37 9.0 29.7 1.5 1.88E-02
QI9BSK2 Solute carrier family 25 member 33 1 6.85 3 9.6 354 1.6 1.40E-02

T/N refers to protein ratio of EOC/control

DEP, differentially expressed protein; MW, molecular weight; pl, isoelectric point; PSMs, peptide spectrum matches

MRPS12, MRPS15, MRPS17, MRPS21, MRPS23,
MRPS33, MRPS6, and MRPS9, which were all upregulated
(Table 2). Mitochondrial ribosome was a protein complex
that monitors mitochondrial translation for mRNAs
encoded in mtDNA. It revealed that mitochondrial func-
tions and its involved pathophysiological activities were
unavoidably changed. A quantitative analysis of mitochon-
drial ribosome proteins can reveal mechanisms of mito-
chondrial translational control. Though most of the mito-
chondrial proteins are synthesized by cytoplasmic ribo-
somes, the crucial protein components in the electron trans-
port chain (ETC) complexes are partially translated in the
mitochondria [45]. It clearly demonstrated that the mito-
chondrial ribosome function was changed in EOC, which
results in changes of its synthesized key protein components
in the ETC complex to affect energy metabolism in EOC.

@ Springer

Enhanced activities of three energy metabolism
pathways in EOCs

A previous iTRAQ-labeled quantitative proteomic study be-
tween EOC and control whole tissues found that the key en-
zymes in the glycolysis pathway [38], located in the cyto-
plasm, were significantly upregulated in the EOC relative to
control tissues. It demonstrated the increased activities of gly-
colysis pathway in EOC tissues, which coincided with the
Warburg effect proposed in 1926 [46]. Moreover, the
KEGG pathway analysis of those 1198 mtDEPs found that
the Kreb’s cycle and OXPHOS pathways, located in the mi-
tochondria, were significantly involved in the identified
mtDEPs, and the key proteins (PDHB, CS, IDH2, OGDHL,
and UQCRH) in the OXPHOS and Kreb’s cycle pathways
were significantly upregulated. It demonstrated the increased
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activities of OXPHOS and Kreb’s cycle pathways in EOC
tissues, namely the reverse Warburg effect [24].

(i) The enhanced glycolysis: iTRAQ-SCX-LC-MS/MS
analysis of the whole tissue samples revealed that the
glycolysis-related enzymes were significantly increased
in EOC tissues relative to controls, including phospho-
fructokinase platelet (PFKP), pyruvate kinase muscle
(PKM)), lactate dehydrogenase B (LDHB), lactate dehy-
drogenase A (LDHA), enolase 1 (ENOL1), alcohol dehy-
drogenase 5 class III chi polypeptide (ADHS), and
glucose-6-phosphate isomerase (GPI) (Fig. 2 and
Table 3) [38]. Among them, PFKP (fold change = 1.90,
p =2.28E-2) and PKM (fold change =2.38, p = 1.50E-4)
were the rate-limiting enzymes. PFKM took part in an
irreversible reaction in the process of glycolysis, and it
served as one of the rate-limiting enzymes. Pyruvate ki-
nase catalyzed the final step of glycolysis to form pyru-
vate and ATP. GPI (fold change = 1.31, p =2.96E-2) was
not the rate-limiting enzyme of glycolysis but was one of
the important regulatory enzymes. GPI protein has dif-
ferent functions inside and outside the cell; it was in-
volved in the breakdown and buildup of glucose in the
cytoplasm inside the cell or acted as neuroleukin outside
the cell [47]. In short, those results demonstrated that
EOC relied mainly on high levels of glycolysis.

(i) The enhanced Kreb’s cycle: Quantitative mitochondrial
proteomics revealed that the related enzymes of Kreb’s
cycle were significantly increased in EOCs relative to
controls, including CS, IDH, OGDHL, SUCLG2, FH,
MDH2, and PDHB (Fig. 3 and Table 4). Among them,
CS (fold change = 1.59, p =4.00E-3), IDH2 (fold change
=2.02, p = 2.00E-3), IDH3A (fold change = 0.56, p =
2.54E-3), IDH3B (fold change = 1.60, p = 2.20E-2), and
OGDHL (fold change = 1.55, p = 1.00E-3) were the rate-
limiting enzymes. It is well-known that the enzyme py-
ruvate dehydrogenase complex (PDC) converted pyru-
vate to acetyl CoA by pyruvate decarboxylation, which
connected cytoplasmic glycolysis with mitochondrial
Kreb’s cycle. What was notable in the PDC was that
PDHB (fold change = 1.75, p = 0.008) as one subunit
of PDC was obviously upregulated in EOC tissues.
Those findings demonstrated that EOC had an enhanced
Kreb’s cycle, which coincided with the well-known re-
verse Warburg effect.

(i) The enhanced OXPHOS: In most eukaryotes, Kreb’s
cycle-generated NADH and FADH2 were fed into
OXPHOS inside the mitochondria. The eukaryotic
ETCs contain complex -—NADH-coenzyme Q oxido-
reductase, complex II—succinate-Q oxidoreductase,
complex [II—Q-cytochrome ¢ oxidoreductase, complex
IV—cytochrome coxidase, and complex V—ATP syn-
thase. The expressions of complex III subunits (CYTB

and UQCRH), complex IV (COX17, COX412,
COX6C, COX7A2L, COX7A2, COXI1, and COX2),
and complex V (ATP6, ATP5G1, ATP6VOC, and
ATP6V1D) were significantly upregulated in EOC tis-
sues (Fig. 4 and Table 5). It clearly demonstrated that
the eukaryotic ETCs were enhanced in EOC tissues.
The main function of the mitochondria was to produce
ATP and ROS [48]. Although the implications of elec-
tron “leakage” was not always clear, ROS productions
were increased in cancer cells compared with normal
cells [49]. Thus, the increase of ROS productions in
cancer cells enhanced oxidative stress in stromal
CAFs, which coincided with the well-known reverse
Warburg effect.

Western blot validation of the rate-limiting enzymes
in energy metabolism pathways

For validation of mtDEPs identified with iTRAQ-SCX-LC-
MS/MS, those rate-limiting enzymes were further analyzed
with western blot, including PKM2, PDHB, CS, IDH2,
OGDHL, and UQCRH, between human EOC and control
mitochondrial samples. Western blot found that the protein
levels of PDHB, CS, IDH2, OGDHL, and UQCRH were sig-
nificantly increased in EOCs relative to controls (Fig. 5 a and
b), whereas PKIM2 showed a rising trend without a statistical
significance. The western blot results showed a very good
consistency with the results of iTRAQ quantification and also
confirmed the enhanced capabilities of three energy metabo-
lism pathways (Kreb’s cycle, OXPHOS, and glycolysis) in
EOC tissues.

The Warburg and reverse Warburg effects in EOCs

Some cancer cells mainly depended on aerobic glycolysis,
whereas other cancer cells depended mainly on OXPHOS
for energy supply. The evidence proved that “Warburg
effect” and “reverse Warburg effect” coexisted in a pop-
ulation of cancer cells such as a cancer tissue. Cancer
cells released ROS into extracellular interstitium, which
resulted in CAFs in a state of stress and produced lots
of nourishment for ATP generation through Kreb’s cycle
and OXPHOS (Fig. 5¢). Our previous study [17] found
that MCT1 and MCT4, which link the oxidative cancer
cells and the high glycolytic cancer cells/CAFs, were sig-
nificantly upregulated in EOC cells (SKOV3 and
TOV21G) compared with ISOE80 normal cells by qRT-
PCR analysis, with the fold change of MCT-1 in SKOV3
cells (fold change = 3.70, p = 0.009) and in TOV21G
cells (fold change = 2.67, p = 0.005) and with the fold
change of MCT-4 in SKOV3 cells (fold change = 5.93, p
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Fig. 2 Glycolysis/gluconeogenesis pathway altered in epithelial ovarian
cancer. Green rectangle with red mark means the differentially expressed
proteins. Green rectangle without red mark means species-specific
enzymes. White rectangle means reference pathway. The solid line
means molecular interaction. The dot line means indirect effect. The

= 0.002) and in TOV21G cells (fold change = 10.38, p =
0.00001). The western blot results showed a very good
consistency with the results of qPCR quantification and
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circle means mostly chemical complex. ADHS, alcohol dehydrogenase
5 class III chi polypeptide; GPI, glucose-6-phosphate isomerase; LDHB,
lactate dehydrogenase B; LDHA, lactate dehydrogenase A; ENOI,
enolase 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase;
PFKP, phosphofructokinase, platelet; PKM, pyruvate kinase muscle

also confirmed significantly increased levels of MCT1
and MCT4 in EOCs (both tissue and cell samples) relative
to controls (Fig. 5d).
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Table 3 Glycolysis pathways
involved DEPs operated in Pathway = Accessionno.  Protein cale. MW Ratio p value (¢
ovarian cancer biological system code pI (kDa)  (T/N)  test)
1.1.1.1 P11766 Alcohol dehydrogenase 5 (class III), 7.5 39.70 0.50 6.60E-05
chi polypeptide (ADHS5)
42.1.11 P06733 Enolase 1 (ENO1) 7.4 47.14 1.59 2.60E-11
53.1.9 K7EQ48 Glucose-6-phosphate isomerase 8.7 53.37 1.31 2.96E-02
(GPI)
1.2.1.12 P04406 Glyceraldehyde-3-phosphate 8.5 36.03 1.85 2.24E-44
dehydrogenase (GAPDH)
1.1.1.27 P00338 Lactate dehydrogenase A (LDHA) 8.3 36.67 1.56 4.00E-04
1.1.1.27 P07195 Lactate dehydrogenase B (LDHB) 6.1 36.62 1.50 6.40E-03
2.7.1.11 Q01813 Phosphofructokinase, platelet 7.5 85.54 1.90 2.28E-02
(PFKP)
2.7.1.40 AO0A024R5Z9  Pyruvate kinase, muscle (PKM) 7.7 58.02 2.38 1.50E-04
Ratio (T/N) means the ratio of tumor to control
DEPs, differentially expressed proteins; pl, isoelectric point; MW, molecular weight
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Fig.3 Kreb’s cycle altered in ovarian cancer. Green rectangle without red
mark means species-specific enzymes. White rectangle means reference
pathway. The solid line means molecular interaction. The dot line means
indirect effect. The circle means mostly chemical complex. ACO1,
cytoplasmic aconitate hydratase; PDHB, pyruvate dehydrogenase E1
subunit beta; IDH2, isocitrate dehydrogenase (NADP(+)) 2; CS, citrate

Pathway code Protein Ratio(TI/H)

1.1.1.37 MDH2
6.2.1.4 SUCLG2
1.1.1.41 IDH3B
1.1.1.42 IDH2
4.1.1_32 PCK2

synthase; IDH3A, mitochondrial isocitrate dehydrogenase [NAD]
subunit alpha; FH, fumarate hydratase; MDH2, malate dehydrogenase
2; SUCLG2, succinate—CoA ligase GDP-forming subunit beta; IDH3B,
isocitrate dehydrogenase (NAD(+)) 3 noncatalytic subunit beta; OGDHL,
oxoglutarate dehydrogenase L; PCK2, mitochondrial
phosphoenolpyruvate carboxykinase [GTP]
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Table 4 Kreb’s cycle involved mtDEPSs operated in ovarian cancer biological system

Pathway Accession Protein Unique Coverage PSMs Cale. MW Ratio  p value (¢

code no. peptides (%) p!/ (kDa) (T/N) test)

42.13  P21399 Aconitase 1 (ACO1) 10 13.27 13 6.7 9834 0.65 6.04E-03

41.1.32 Q16822  PCK2 protein (PCK2) 1 35.00 31 76 7068 2.18 4.48E-03

124.1 P11177 Pyruvate dehydrogenase E1 component subunit beta, 14 52.92 79 6.7 3921 151 3.25E-03
mitochondrial (PDHB)

1.1.1.37  Q75MT9 Malate dehydrogenase (fragment) (MDH2) 21 74.37 262 83 3321 1.71 5.51E-03

23.3.1 B4DJV2  Citrate synthase (CS) 13 26.93 73 79 5040 159 4.65E-03

1.1.1.42  P48735 Isocitrate dehlydrogenase (NADP), mitochondrial 27 56.64 355 87 50.88  2.02 2.07E-03
(IDH2)

1.1.141 043837  Isocitrate dehydrogenase (NAD) subunit beta, 13 41.56 43 85 4216 1.75 8.69E-03
mitochondrial (IDH3B)

1.1.1.41  P50213 Isocitrate dehydrogenase (NAD) subunit alpha, 18 47.81 53 69 3957 1.60 2.27E-02
mitochondrial (IDH3A)

42.1.2 P07954 Fumarate hydratase, mitochondrial (FH) 7 35.69 137 88 54.60 1.61 8.84E-03

6.2.1.4 Q96199 Succinate-CoA ligase (GDP-forming) subunit beta, 19 4491 115 64 4648 1.71 8.17E-04
mitochondrial (SUCLG2)

1242  QOULDO 2-Oxoglutarate dehydrogenase-like, mitochondrial 13 26.83 58 6.7 114.41 1.55 1.25E-03

(OGDHL)

Ratio (T/N) means the ratio of tumor to control

mtDEPs, mitochondrial differentially expressed proteins; pl, isoelectric point; MW, molecular weight; PSMs, peptide spectrum matches

IPA analysis indicated the association of the
antiparasite drug ivermectin with production of ROS
and energy metabolism

Disease and function analysis of ivermectin based on the IPA
database showed that ivermectin was not only a broad-
spectrum antiparasite drug but also associated with cancer
treatment and production of ROS (Fig. 6a). Biomolecular net-
work analysis of ivermectin based on the IPA database
showed that ivermectin regulated enzymes (PKM, OGDHL,
ND2, NDS, CytB, and UQCRH) in energy metabolism path-
ways through other molecules (Fig. 6b—g), which showed that
ivermectin might have an impact on energy metabolism of
cancer cells. Other molecules included the ivermectin directly
regulated molecules such as CYP3A4, Rbp, GLRB, P2RX4,
P2RX7, ABCB1, ABCG2, Abcb1b, P glycoprotein, cytokine,
insulin, and strychnine, and the ivermectin indirectly regulated
molecules such as APP, TNF, ERK1/2, MAPK1, MAPK13,
MAPK3, NFKBIA, reactive oxygen species, STAT3, and tes-
tosterone (Supplementary Table 2).

Ivermectin-mediated key molecular changes in
energy metabolism pathways of EOC

It is significant to explore ivermectin-mediated enzymes in
energy metabolism pathways in EOCs. SILAC-based quanti-
tative proteomics was used to analyze the protein expressions
of energy metabolic pathways in ovarian cancer cells treated
with (SILAC: H) and without (SILAC: L) 20 uM ivermectin
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for 24 h (Table 6). The results revealed that the glycolysis-
related enzymes were significantly altered in EOC cells treat-
ed with vs. without ivermectin, including ADHS5 (ratio H/L =
0.45, 0 = 0.000), ENO1 (ratio H/L = 0.44, Q = 0.000), GPI
(ratio H/L = 0.44, Q = 1.000), GAPDH (ratio H/L =/, which
means the protein with expressed value 0 in both H and L
groups; O = 0.000), LDHA (ratio H/L = 0.34, O = 1.000),
LDHB (ratio H/L = 0.42, O = 0.000), PFKP (ratio H/L = 0.54,
0=10.000), and PKM (ratio H/L = +, which means the protein
expressed in the H group but not in the L group; O = 0.00745).
The related enzymes of the Kreb’s cycle were also significant-
ly altered in EOC cells treated with vs. without ivermectin,
including ACON (ratio H/L = —, which means the protein
expressed in the L group but not in the H group; O = 0.000),
PCK2 (ratio H/L = 0.56, Q = 0.000), PDHB (ratio H/L = 0.46,
0 = 0.000), MDH2 (ratio H/L = 0.42, O = 0.000), CS (ratio
H/L = 0.45, O = 0.000), IDH2 (ratio H/L = 0.46, Q = 0.000),
IDH3A (ratio H/L = 0.40, Q = 0.000), IDH3B (ratio H/L =
0.41, 0=0.000), SUCLG2 (ratio H/L = 0.41, O = 0.000), and
OGDHL (ratio H/L = 0.56, O = 0.000). The related enzymes
of OXPHOS were also significantly altered in EOC cells treat-
ed with vs. without ivermectin, including CYTB (ratio H/L =
0.55, 0 = 0.00359), UQCRH (ratio H/L = 0.51, Q = 0.000),
COX17 (ratio H/L = 0.36, Q = 0.000), COX1 (ratio H/L =
0.38, 0 = 0.000789), COX6C (ratio H/L = 0.34, O = 0.000),
COX4I1 (ratio H/L = 0.40, Q = 0.000), COX2 (ratio H/L =
0.38, O = 0.000), COX7A2L (ratio H/L = 17.81, QO =
0.000534), COX7A2 (ratio H/L = 0.32, O = 0.000),
ATP6VOC (ratio H/L = 0.47, Q = 1.000), and ATP6 (ratio
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Pathway code Protein Ratio (T/H)
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1.9.3.1 COXe6C

3.6-.3-1.4 ATP6V1D

1.9.3.1 COX7A2

3.6-3.1.4 ATP5G1

1.10.2.2 QCR6

Fig. 4 Oxidative phosphorylation altered in ovarian cancer. Green
rectangle with red mark means the differential proteins. Green rectangle
without red mark means species-specific enzymes. White rectangle
means reference pathway. The solid line means molecular interaction.
The dot line means indirect effect. The circle means mostly chemical
complex. COX412, cytochrome ¢ oxidase subunit 412; ND2,
mitochondrially encoded NADH dehydrogenase 2; NDS5,
mitochondrially encoded NADH dehydrogenase 5; COX17,
cytochrome ¢ oxidase copper chaperone COX17; COX6C, cytochrome

H/L =0.73, 0 = 0.000). The lactate shuttle [MCT1 (ratio H/L
=0.53, O =0.000) and MCT4 (ratio H/L = 0.38, Q = 0.000)]
were also changed in EOC cells treated with vs. without
ivermectin.

Ivermectin inhibited the proliferation of EOC cells
in vitro

The anticancer ability of ivermectin was measured with CCK8
assay before and after ivermectin treatment of EOC cells
SKOV3 and TOV-21G and normal control cells IOSESO0.
After ivermectin treatment for 24 h, the viability of EOC cells
was significantly decreased with an inhibition rate from 0,
28.1, 35.5, 64.9, 81.4, 93.7 to 93.8% for the control cells
IOSE80; from 0, 5.6, 38.5, 87.1, 87.9, 88.2 to 90.7% for
SKOV3; and from 0, 5.2, 33.6, 69.7, 82.1, 85.3 to 85.4% for
TOV-21G, corresponding to the ivermectin concentration
from 0, 10, 20, 30, 40 uM, 50 to 60 uM, which had a dose-

Pathway code Protein Ratio (T/NH)

3.6.3.1.4 ATP6VO0C
1.9.3.1 COX2
cytb
COoX1
-4 ATP6
Fragment COX2
COX7A2L
COX17

¢ oxidase subunit 6C; ATP6V1D, ATPase H+ transporting V1 subunit D;
COX7A2, cytochrome ¢ oxidase subunit 7A2; ATP5G1, ATP synthase
membrane subunit ¢ locus 1; QCR6, mitochondrial cytochrome b-cl
complex subunit 6; ATP6VOC, ATPase H+ transporting VO subunit c;
COX2, cytochrome ¢ oxidase subunit II; CYTB, mitochondrially
encoded cytochrome b; CYP3A4, cytochrome P450 family 3 subfamily
A member 4; COX1, cytochrome ¢ oxidase subunit; ATP6, ATP synthase
FO subunit 6; COX7A2L, cytochrome ¢ oxidase subunit 7A2 like;
COX4lI1, cytochrome ¢ oxidase subunit 411

dependent relationship (Fig. 7a). IC50 (29.46 uM) of the con-
trol cells IOSE80 was significantly higher than that of EOC
cells (20.85 uM in SKOV3 and 22.54 in TOV-21G).
Consistently, 20 pM ivermectin (which was close and slightly
lower than their IC50) significantly suppressed cell prolifera-
tion in SKOV3 and TOV-21G cells as evidenced by CCK8
cell proliferation test (Fig. 7b, c), EAU cell proliferation test
(Fig. 7d—f), and reduced clonogenic survival (Fig. 7g, h) in
ivermectin-treated cells compared with controls (0 uM iver-
mectin), which had a time-dependent relationship (Fig. 7b, c).
Further analysis found that 10 uM ivermectin (which was
much lower than their IC50) did not suppress cell proliferation
in SKOV3 and TO-21G cells (Fig. 7b-h), and 30 uM iver-
mectin (which was much higher than their IC50) caused cell
death in SKOV3 and TO-21G cells (Fig. 7d-h). These results
clearly demonstrated that 20 pM ivermectin was a suitable
dose and significantly inhibited in vitro proliferation and
growth of ovarian cancer cells.
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Table 5 Oxidative phosphorylation involved mtDEPs operated in ovarian cancer biological system
Pathway Accession no. Protein Unique  Coverage PSMs Calc. MW  Ratio p value (¢
code peptides (%) p! (kDa) (T/N) test)
1.6.5.3 AOA059T3A1 NADH-ubiquinone oxidoreductase chain 2 (ND2) 1 4.61 2 9.8 38.93 0.38 6.03E-04
1.6.5.3 AO0A096WB60 NADH-ubiquinone oxidoreductase chain 5 (NDS5) 1 5.14 6 9.0 67.01 0.38 3.34E-04
1.10.22  AOAOAOQN99 Cytochrome b (cytb) 1 421 4 80 4271 1.71  7.60E-03
1.10.22  P07919 Cytochrome b-c1 complex subunit 6, mitochondrial 5 51.65 18 44 10.73 1.59  1.63E-02
(QCRO)
1.93.1  H7C4E5 COX17, cytochrome ¢ oxidase copper chaperone 1 12.07 1 7.7 641 2.75 233E-03
(COX17)
1.9.3.1 HI9LP39 Cytochrome ¢ oxidase subunit I (COX1) 1 6.04 1 6.7 57.01 1.79  2.44E-03
1.9.3.1 P09669 Cytochrome ¢ oxidase subunit 6C (COX6C) 7 52 30 104 878 1.54 5.97E-03
1.9.3.1 Q96KJ9 Cytochrome ¢ oxidase subunit 412 (COX412) 1 5.85 1 9.6 20.00 0.21 6.28E-04
1.93.1  P13073 Cytochrome ¢ oxidase subunit 4 isoform 1, 7 36.09 48 9.5 19.56 152  4.37E-03
mitochondrial (COX411)
1.9.3.1 AO0A097Q0T5 Cytochrome ¢ oxidase subunit 2 (COX2) 1 26.43 64 4.8 2555 1.68  4.38E-02
1.9.3.1 HO9E7BS8 Cytochrome ¢ oxidase subunit 2 (fragment) (COX2) 1 27.27 65 4.7 24.84 1.88 1.97E-02
1.93.1 014548 Cytochrome ¢ oxidase subunit 7A2 like (COX7A2L) 4 54.39 8 9.4 12.61 1.88  5.33E-03
1.93.1  P14406 Cytochrome ¢ oxidase subunit 7A2 (COX7A2) 2 27.71 15 9.8 939 1.55 3.89E-02
3.6.3.1.4 P27449 ATPase H+ transporting VO subunit ¢ (ATP6VOC) 1 11.61 18 8.4 15.73 1.63  4.24E-04
3.6.3.1.4 AO0A059QB80 ATP synthase subunit a (ATP6) 1 4.42 17 10.1 2474 179  6.63E-03
3.63.1.4 G3V2V6 ATPase H+ transporting V1 subunit D (ATP6V1D) 1 743 1 9.5 1741 1.54  8.22E-04
3.6.3.1.4 I3LOYS ATP synthase, H+ transporting, mitochondrial Fo 1 7.14 6 10.0 10.03 1.58  9.78E-03

complex subunit C1 (subunit 9) (ATP5G1)

Ratio (T/N) means the ratio of tumor to control

mtDEPs, mitochondrial differentially expressed proteins; pl, isoelectric point; MW, molecular weight; PSMs, peptide spectrum matches

Ivermectin inhibited cell cycle progression and
promoted EOC cell apoptosis

To gain insights into the mechanism that ivermectin inhibited
EOC cell proliferation, differences in cell cycle distributions
were analyzed after treatments with different concentrations of
ivermectin (0, 10, 20, and 30 uM) for 24 h with fluorescence-
activated cell sorting (FACS). The results found that signifi-
cant GO/G arrest was observed in the high drug concentration
(20 uM and 30 uM) groups compared with the control (0 uM)
and low drug concentration (10 M) groups (Fig. 8a—) and
that the proportion of cells was significantly increased in G0/
G phase, significantly decreased in S phase, and no change in
G2/M phase in the 20- and 30-uM ivermectin groups com-
pared with the 0- and 10-uM ivermectin groups (Fig. 8b, ¢).
These data strongly demonstrated that ivermectin inhibited
cell proliferation by blocking cell cycle progression from
GO/G to S phase. Furthermore, the apoptosis was measured
with FACS in EOC cells that were stained with PI and annexin
V. The results showed that the proportion of apoptosis cells
was significantly increased in the 10-, 20-, and 30-uM drug
concentration groups compared with the control (0 pM)
groups, and the proportion of apoptosis cells was increased
with the increased drug concentrations (Fig. 8d, e). These

@ Springer

findings clearly demonstrated that ivermectin inhibited EOC
cell cycle progression from GO/G to S phases and promoted its
apoptosis.

Fig. 5 Western blot analysis to validate results of iTRAQ labeling. a, b P
Mitochondrial proteins of EOC and control tissues were analyzed by WB
using antibodies against PKM2, PDHB, CS, IDH2, OGDHL, and
UQCRH. The levels of PKM2, PDHB, CS, IDH2, OGDHL, and
UQCRH were normalized relative to 3-actin. Data represent mean
values £ SD. ¢ Warburg effect and the reverse Warburg effect.
Parenchymal cells showed metabolic heterogeneity. Some cancer cells
were high glycolytic cancer cell consisting with “Warburg effect,” and
the other cancer cells were oxidative cancer cell consisting with “the
reverse Warburg effect.” Tumor cells and stroma cells (especially
CAFs) have metabolic symbiosis; thus, cancer cell induced oxidative
stress of CAFs by secreting ROS and enhanced aerobic glycolysis in
CAFs. In turn, CAFs produced lots of nourishment, which was “eaten”
up by the cancer cells to produce ATP. *p < 0.05, **p < 0.01, **¥*p <
0.001. iTRAQ, isobaric tags for relative and absolute quantitation; EOC,
epithelial ovarian carcinoma; WB, western blot; ROS, reactive oxygen
species; PKM2, pyruvate kinase M2; PDHB, pyruvate dehydrogenase E1
subunit beta; CS, citrate synthase; IDH2, isocitrate dehydrogenase
(NADP(+)) 2; OGDHL, oxoglutarate dehydrogenase L; UQCRH,
ubiquinol-cytochrome ¢ reductase hinge protein; CAFs, cancer-
associated fibroblasts; PDK, pyruvate dehydrogenase (acetyl-
transferring)] kinase; MCT1, solute carrier family 16 member 1; MCT4,
solute carrier family 16 member 4
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«Fig. 6 IPA analysis revealed that ivermectin was associated with
production of ROS and energy metabolism. a Disease and function
analysis of ivermectin based on IPA software. b Biomolecular networks
analysis of ivermectin based on IPA software showed that ivermectin
regulated PKM. ¢ Biomolecular networks analysis of ivermectin based
on IPA software showed that ivermectin regulated OGDHL. d
Biomolecular networks analysis of ivermectin based on IPA software
showed that ivermectin regulated ND2. e Biomolecular networks
analysis of ivermectin based on IPA software showed that ivermectin
regulated ND5. f Biomolecular networks analysis of ivermectin based
on IPA software showed that ivermectin regulated UQCRH. IPA,
Ingenuity Pathway Analysis; ROS, reactive oxygen species; PKM,
pyruvate kinase muscle; OGDHL, oxoglutarate dehydrogenase L; ND2,
mitochondrially encoded NADH dehydrogenase 2; NDS5,
mitochondrially encoded NADH dehydrogenase 5; UQCRH, ubiquinol-
cytochrome ¢ reductase hinge protein

Ivermectin affected energy metabolism pathways for
its anticancer effects through targeting PFKP, IDH2,
IDH3B, ND2, ND5, CYTB, UQCRH, MCT1, and MCT4 in
the energy metabolism pathways

To further investigate the molecular mechanisms that iver-
mectin inhibited proliferation and promoted apoptosis in
EOC cells, EOC cells treated with ivermectin (10 uM, 20
1M, and 30 uM) and control cells (within 0.1% DMSO) were
established. The mRNA expressions of target genes (PFKP,
PKM, CS, PDHB, IDH2, IDH3A, IDH3B, OGDHL, ND2,
NDS5, CYTB, UQCRH, MCTI, and MCT4) were analyzed
by qRT-PCR (Fig. 9a—f). A significant change was found
for the mRNA expressions of target genes in energy metabo-
lism pathways. Furthermore, western blot revealed that the
protein expressions of target genes were significantly changed
in ivermectin-treated EOC cells, including PFKP, IDH2,
IDH3A, IDH3B, ND2, ND5, CYTB, UQCRH, MCT1, and
MCT4 (Fig. 10). For the first time, these findings clearly dem-
onstrated that ivermectin significantly changed the expres-
sions of key molecules in energy metabolism pathways, which
indicated that ivermectin might regulate ovarian cancer energy
metabolism pathways.

Discussion

EOC is a type of ovarian malignant neoplasms with high mor-
tality in women and unclear molecular mechanisms [50].
Cancer cell metabolism alteration became one of the research
hot spots. Cancer cells in tumor tissues are highly heteroge-
neous. For tumor energy metabolism, the coexistence of
Warburg and reverse Warburg effects in cancer tissues has
become the common sense [20, 24, 27]. However, the land-
scape of detailed molecular profiling changes in energy me-
tabolism pathways remains unclear in EOC. This study made
the advances in clarifying the molecular profiling changes in

EOC energy metabolism pathways, including glycolysis,
Kreb’s cycle, oxidative phosphorylation, and lactate shuttle.

Cancer cells needed more fuel to maintain high growth rate
compared with normal cells [51]. In 1956, Warburg found that
the principal energy supplies of cancer cells were from aerobic
glycolysis [21]. “Warburg effect” played a leading role for
energy generations in cancer cells, and many researchers were
engaged in developing drugs against the anti-Warburg effect.
It is well-known that splicing and posttranslational modifica-
tions (PTMs) were tightly associated with diseases [52, 53].
PKM2 was closely related to energy metabolic
reprogramming, because the activity of PKM2 was regulated
by many ways including PTMs [54]. PKM2 might be associ-
ated with the Warburg effect. It was reported that PKM2 mod-
ification might lead to increased glucose consumption [22].
Thus, anti-Warburg effect drugs would be potential inhibitors
for cancer treatment. For example, one kind of anti-Warburg
effect agents, the erastin-like agent, could effectively decrease
lactate formation in cancer cells to prevent mitochondrial de-
polarization [55].

However, the interactions between cancer cells and stromal
cells, or cancer cells and cancer cells, were completely ignored
according to the Warburg effect. The reverse Warburg effect
took into consideration the tumor microenvironment, which
complemented the Warburg effect in terms of energy metab-
olism. In the novel reverse Warburg effect model, energy me-
tabolism involved high aerobic glycolysis in cancer cells and
the neighboring stromal fibroblasts and increasing OXPHOS
process in other cancer cells. The interaction among those
cells relied on the “lactate shuttle” (MCT1 and MCT4).
Energy-rich metabolites were transported through the “lactate
shuttle” from high aerobic glycolysis cells to increasing
OXPHOS cancer cells [24]. Thus, the coexistence of the
Warburg effect and reverse Warburg effect made the regula-
tory mechanism of energy metabolism more reasonable. The
Warburg effect and reverse Warburg effect could not suppress
each other, and the new reverse Warburg effect theory could
not replace the Warburg effect. In a word, the coexistence of
two effects reflected the heterogeneity and plasticity of energy
metabolism in cancer [56]. The detailed mechanisms of ener-
gy metabolism heterogeneity still remain unclear. The ques-
tions were as follows: How was the metabolic coupling proc-
essed? Which was competing for the leading role in the cancer
energy metabolism? What kind of drugs could block both the
Warburg and reverse Warburg effects?

This study found that many key protein molecules were
significantly changed in three energy metabolism pathways
(glycolysis, Kreb’s cycle, and OXPHOS) in EOC.
Interestingly, the results demonstrated the enhanced ability
of those three energy pathways for ATP generation, with the
upregulation of rate-limiting enzyme subunits (PKM, CS,
IDH2, and OGDHL). Furthermore, immunoaffinity experi-
ments confirmed the upregulated PKM2 in the glycolysis
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Ratio
H/L

Intensity L

Intensity H

Sequence Mol. Sequence Score Q value
weight length
[kDa]

peptides coverage

Peptides  Unique

Protein name

Gene
name

Protein ID

Table 6 (continued)

Pathway

@ Springer

[%]

237,890,000 0.57

88,536,000

0.00E+

83

83 75

26.7

2

Cytochrome b-cl complex subunit 8

UQCRQ

QCR8

00
0.00E+

0.53

115,420,000

23,799,000

21.3

480

51.9

6.7

c¢DNA FLJ53399, highly similar to

B4E106 MCT1

Lactate shuttle

00

43.453 0.00E+

monocarboxylate transporter 1
Monocarboxylate transporter 4

0.38

2,103,700,000

818,320,000

49.469 465

16.1

MCT4

MOT4

00

— means the protein expressed in the L group but not in the H group. + means the protein expressed in the H group but not in the L group. / means the protein with expressed value 0 in both the H and L

groups. Ratio H/L means the ratio of the ivermectin-treated group (SILAC: H) to the no ivermectin-treated group (SILAC: L)

pathway; the upregulated CS, IDH2, and OGDHL in the
Kreb’s cycle pathway; and the upregulated UQCRH in
OXPHOS. PDHB was significantly upregulated in EOC tis-
sues, which catalyzed pyruvate into acetyl-CoA to link gly-
colysis with the Kreb’s cycle. These results clearly demon-
strated that EOC relied on both aerobic glycolysis and
OXPHOS to produce energy, namely energy metabolism het-
erogeneity in EOC tissues. The reason why defective complex
I was performing a principal role in urinary system
oncocytomas and complex III deficiency caused by cyto-
chrome b mutations was frequently occurring in thyroid
oncocytomas remains to be determined [57]. It suggested that
different cancers had totally different pathways. Cancer cells
could proceed with high aerobic glycolysis or increased
OXPHOS to produce ATP [58]. Even though the “Warburg
effect” was very popular, more and more evidence indicated
its limitations. The Warburg effect merely emphasized meta-
bolic symbiosis between cancer cells and stroma cells in the
microenvironment, with evidence that glycolysis only offered
< 50% ATPs for some human cancer cells. Especially, in
gynecological cancer cells, such as MCFs and Hela,
OXPHOS had the main position in producing energy [59].
Moreover, OXPHOS and aerobic glycolysis were not always
completely independent of one another. To some extent, alter-
ations of the tumor microenvironment (in normoxia and in
hypoxia) affected the status of OXPHOS and aerobic glycol-
ysis to produce ATPs [27]. Moreover, a study found that gly-
colysis inhibitor had an unsatisfactory curative effect, such as
drug resistance or strong side effects [60]. On the other hand,
recent clinical research found that the mitochondria operated
more efficiently in gynecological tumor cells and that those
kinds of cancers might be sensitive to OXPHOS inhibitors
[61]. Here, some scientists suggested to focus on metabolic
target drug, and the real potential method might be combina-
tion therapy to block both glycolysis and mitochondrial
OXPHOS pathways.

Today, the antiparasite drug ivermectin remains a relatively
unknown drug and has been extended to various disease
models [62]. Recently, ivermectin has broken through the
bondage of traditional clinical medication, and its abilities to
inhibit tumor growth in several types of cancers, including
ovarian cancer, breast cancer, and colon cancer, have been
reported [34]. However, the mechanisms of its anticancer ef-
fects remain unclear. IPA-based network analysis of ivermec-
tin (Fig. 6) revealed that ivermectin could regulate the target
molecules PKM, OGDHL, ND2, ND5, CYTB, and UQCRH
in various ways. For example, ivermectin could regulate
PKM, OGDHL, CYTB, ND2, ND5, and UQCRH by
influencing the localization of insulin and controlling the ex-
pression of cytokine. Additionally, ivermectin could regulate
CYTB, ND2, ND5, and PKM by affecting the chemical pro-
tein interactions of ABCB1 and ABCG2. Interestingly, PKM
as a key enzyme involved in glycolysis could be regulated by
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ivermectin through insulin and also could be regulated by
ivermectin through downstream target genes of insulin.
Also, SILAC quantitative proteomics revealed that the molec-
ular profiling in glycolysis, Kreb’s cycle, oxidative phosphor-
ylation, and lactate shuttle pathways was extensively affected
by ivermectin (Table 6). The experimental evidence suggested
that the molecular mechanisms were complex between iver-
mectin and energy metabolism pathways. This present study
clearly showed that ivermectin suppressed the energy metab-
olism system by affecting energy metabolism pathways via
targeting PFKP, IDH2, IDH3B, ND2, ND5, CYTB,
UQCRH, MCT1, and MCT4 (Figs. 9 and 10), and thereby
activated apoptosis, promoted cell cycle arrest, and inhibited
cell proliferation (Figs. 7 and 8).

In summary, these findings provided novel insights into the
energy metabolism pathway changes in EOC and the antitu-
mor effects of ivermectin via targeting energy metabolism
pathways in EOC. These altered molecules and their regula-
tors in EOC energy metabolism pathways were the precious
resource in the field of ovarian cancer energy metabolism,
which offers increasing promise in the in-depth understanding

of EOC energy metabolism and the discovery of energy
metabolism-based molecular biomarker pattern and novel an-
titumor targets/drugs to effectively treat EOC in the context of
predictive, preventive, and personalized medicine (PPPM)
practice.

Strength and limitations

Energy metabolism abnormality is the important pathophysi-
ological characteristics in EOC. This study revealed the
changes of key proteins in the Kreb’s cycle and oxidative
phosphorylation pathways with quantitative mitochondrial
proteomics of EOC tissues, the changes of key proteins in
the glycolysis pathway with quantitative proteomics of EOC
tissues, and the changes of key proteins in lactate shuttle with
quantitative proteomics of EOC tissues. These changed key
proteins in these energy metabolism pathways were signifi-
cantly regulated by the drug ivermectin, and ivermectin can
inhibit EOC cell proliferation, suppress cell cycle progression,
and promote EOC cell apoptosis. These findings, for the first
time, provide the complete landscape of molecule profiling
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changes at the level of protein in the energy metabolism path-
ways in EOC tissues and their regulation by the drug ivermec-
tin in EOC cell models. These changed molecule profiles in
energy metabolism pathways in individualized ovarian cancer
patients are the potential biomarker pattern for predictive/
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Apoptosis cell percentage following ivermectin at multiple drug
concentrations (0 uM, 10 pM, 20 uM, and 30 uM) by fluorescence-
activated cell sorting (FACS). *p < 0.05, **p < 0.01, ***p < 0.001.
EOC, epithelial ovarian carcinoma

prognostic diagnosis, patient stratification, and personalized
management of EOC patients, and/or therapeutic targets for
effective personalized therapy of EOC patients. Therefore, the
main strength of this study is that the landscape of molecule
profiling changes at the protein level in energy metabolism
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pathways was revealed with multiple proteomics strategies in
EOC tissues, and these changed molecules can be regulated
by the drug ivermectin.

However, one must realize that energy metabolism
reprogramming is very complex in EOC, and the findings of
this study offer important clues to deeply study energy metab-
olism abnormality in EOC. The following aspects are pro-
posed to further study EOC energy metabolism abnormality:
(1) most of the changed molecules in the energy metabolism
pathways are the enzymes, and we will further investigate the
activity change of those enzymes. (ii) The mitochondria play
important roles in EOC energy metabolism, and we will
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dehydrogenase (NADP(+)) 2; IDH3B, isocitrate dehydrogenase
(NAD(+)) 3 noncatalytic subunit beta; ND2, mitochondrially encoded
NADH dehydrogenase 2; ND5, mitochondrially encoded NADH
dehydrogenase 5; UQCRH, ubiquinol-cytochrome ¢ reductase hinge
protein; MCT1, solute carrier family 16 member 1; MCT4, solute
carrier family 16 member 4; EOC, epithelial ovarian carcinoma; CYTB,
mitochondrially encoded cytochrome b; DMSO, dimethyl sulfoxide;
qRT-PCR, quantitative real-time PCR

further investigate the functions and activities of the mito-
chondria in EOC with multiple methods such the sea horse
experiment. (iii) We will further investigate the regulatory
mechanism system of EOC energy metabolism abnormality,
including IncRNAs such as SNHG3 [17, 63], microRNAs
such as miRNA-186-5p [17], RNA-binding proteins such as
EIF4A3 [17, 63], and drugs such as ivermectin [63] (including
the results of this present study). (iv) The changed molecules
in the EOC energy metabolism pathways and their regulatory
molecules will be the potential biomarker pattern and effective
therapeutic targets for the management of EOC patients in the
context of PPPM practice.
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<« Fig. 10 Ivermectin affects energy metabolism for its anticancer
efficiency through targeting PFKP, IDH2, IDH3B, ND2, ND5, CYTB,
UQCRH, MCT1, and MCT#4 at the protein levels analyzed with western
blot. EOC cells adding ivermectin (10 uM, 20 uM, and 30 uM) and
control cell lines (within 0.1% DMSO) were verified by western blot to
detect the protein expression of FPKP, PKM, PDHB,CS, IDH2, IDH3A,
IDH3B, OGDHL, ND2, ND5, CYTB, UQCRH, MCT1, and MCT4 (n =
3). *p < 0.05, **p < 0.01, ***p < 0.001. PFK, phosphofructokinase
platelet; IDH2, isocitrate dehydrogenase (NADP(+)) 2, IDH3A,
mitochondrial isocitrate dehydrogenase [NAD] subunit alpha; IDH3B,
isocitrate dehydrogenase (NAD(+)) 3 noncatalytic subunit beta; ND2,
mitochondrially encoded NADH dehydrogenase 2; NDS5,
mitochondrially encoded NADH dehydrogenase 5; UQCRH:,
ubiquinol-cytochrome ¢ reductase hinge protein; MCT1, solute carrier
family 16 member 1; MCT4, solute carrier family 16 member 4; EOC,
epithelial ovarian carcinoma; CYTB, mitochondrially encoded
cytochrome b; DMSO, dimethyl sulfoxide; PKM, pyruvate kinase
muscle; PDHB, pyruvate dehydrogenase E1 subunit beta; CS, citrate
synthase; OGDHL, oxoglutarate dehydrogenase L

Moreover, one must also note that the SILAC quantifica-
tion results of ivermectin-treated TOV-21G cells (Table 6)
were not fully consistent with PCR and western blot quantifi-
cation results of ivermectin-treated TOV-21G (Figs. 9 and
10), which might be due to several factors: (i) There are lots
of proteoforms with much different abundance that are de-
rived from the same one gene, because of many factors such
as alternative RNA splicing and protein PTMs [52, 53, 64].
Protein is the umbrella term for all proteoforms encoded by
the same gene [65, 66]. (ii) Each proteoform should have its
corresponding specific antibody. The commercially available
antibodies used in this study were not the proteoform-specific
antibodies. (iii) In the process from gene to proteoforms, there
are lots of alternative RNA splicing and PTMs [52, 65, 66],
which might result in much difference between the gene and
protein (exactly speaking, proteoforms). It can be evidenced
by the difference between mRNA and protein expressions of
vimentin and multidrug resistance-associated protein 1
(MRP1) in lung squamous carcinoma in our other study
[67]. The final abundance of a proteoform is determined by
the balance between protein synthesis and degradation system
at a given condition. Thus, the abundance of a protein (exact-
ly, proteoform) is dynamically changed with the given condi-
tions. Therefore, in order to accurately reveal the effect of
ivermectin on the key molecules in EOC energy metabolism
pathways, we propose in future studies to investigate the dose-
dependent effect (e.g., 0, 5, 10, 20, 30, 40, and 50 uM iver-
mectin treatment) and time-dependent effect (e.g., 0, 6, 12, 24,
48, and 72 h after a given ivermectin treatment) of ivermectin
on each key molecule in EOC energy metabolism pathways at
the levels of mRNA and protein. Anyway, our study clearly
demonstrated that ivermectin regulated a wide range of key
molecules in energy metabolism pathways—glycolysis,
Kreb’s cycle, oxidative phosphorylation, and lactate shuttle,
which suggests that energy metabolism pathways might be the
drug target of ivermectin for its anticancer effects on EOC.

Conclusion and recommendation

Energy metabolism abnormality is the hallmark in EOC. For
the first time, this study used iTRAQ quantitative proteomics
and mitochondrial proteomics approaches to reveal the
changed molecule landscape of energy metabolism pathways
in ovarian cancer, with the upregulated key protein molecules
PKM?2 in glycolysis; IDH2, CS, and OGDHL in Kreb’s cycle;
UQCRH in oxidative phosphorylation; and MCT1 and MCT4
in lactate shuttle pathways, and SILAC quantitative proteo-
mics, immunoaffinity blot, and RT-qPCR to reveal the
antiparasite drug ivermectin effectively inhibited cell prolifer-
ation, suppressed cell cycle progression, and promoted cell
apoptosis of EOC cells through targeting the key protein mol-
ecules PFKP and PKM2 in glycolysis; IDH2 and IDH3B in
Kreb’s cycle; ND2, ND5, CYTB, and UQCRH in OXPHOS;
and MCT1 and MCT4 in lactate shuttle. We concluded that (i)
the Warburg and reverse Warburg effects coexisted in human
ovarian cancer tissues, with the changed molecular profile of
energy metabolism pathways; (ii) ivermectin had the antitu-
mor capability in ovarian cancer cells through targeting ener-
gy metabolism pathways; and (iii) those altered key molecules
in the energy metabolism pathways are the potential molecular
pattern biomarkers for patient individualized stratification,
predictive/prognostic diagnosis, and personalized treatment
of ovarian cancer patients and are therapeutic targets for per-
sonalized therapy of ovarian cancer. Therefore, those findings
provide new scientific evidence about the understanding of
energy metabolism abnormality of ovarian cancer and the an-
ticancer ability of ivermectin and amplifying its clinical
applications.

We recommend to strengthen the study of energy metabo-
lism pathways in ovarian cancer with different omics strate-
gies. Multiomics is the effective approach to study energy
metabolism abnormality and reveal the molecular profiling
changes in energy metabolism pathways—glycolysis, Kreb’s
cycle, oxidative phosphorylation, and lactate shuttle, and their
regulators including IncRNAs such as SNHG3, microRNAs
such as miRNA-186-5p, RNA-binding proteins such as
EIF4A3, and drugs such as ivermectin. Energy metabolism
pathway network-based molecule pattern biomarkers and
therapeutic targets have more important scientific merits in
EOC in the context of PPPM practice. We also suggest that
it is essential to deeply study the functions and activities of
those changed molecules in energy metabolism pathways of
ovarian cancers for maximum and precise application of these
changed molecules in clinical practice.

We propose the following for further PPPM development
and practical application based on those changed energy me-
tabolism pathways in ovarian cancer:

(i) Warburg effect and reverse Warburg effect. This study
found the coexistence of the Warburg and reverse
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Warburg effects in ovarian cancer tissues with the evi-
dence of four enhanced energy metabolism pathways
(upregulations of UQCRH in OXPHOS, IDH2, CS, and
OGDHL in Kreb’s cycle; PKM2 in glycolysis pathways;
and MCT1 and MCT4 in lactate shuttle), which clearly
indicated the complexity of energy metabolism in ovarian
cancer. Thus, one must have a systematic and compre-
hensive viewpoint to consider the energy metabolism ab-
normality of ovarian cancer. Also, one must realize that in
ovarian cancer tissue, some cells mainly rely on the
Warburg effect—the enhanced glycolysis, and some cells
mainly rely on the reverse Warburg effect—the enhanced
OXPHOS and Kreb’s cycle. The ratio of cells in the states
of Warburg effect and of reverse Warburg effect, namely
the pattern of the altered molecules in four energy metab-
olism pathways, can be used as biomarkers for patient
stratification, predictive/prognostic assessment, and ther-
apeutic targets of ovarian cancer [68].

(i) Energy metabolism-based therapeutic targets and drugs.
Based on the coexistence of the Warburg and reverse
Warburg effects in ovarian cancer tissues and those cor-
responding changed key molecules in energy pathways,
some effective targeted drugs can be designed for ovar-
ian cancer management for targeted prevention and ther-
apy. For example, flavonoids had the anti-Warburg ef-
fect through targeting PKM2 in glycolysis pathway,
HK2, GLUTI, and HIF-1 to modulate key pathways
involved in the Warburg phenotype to cut Gordian knot
of cancer cell metabolism [69]. This study found that
ivermectin effectively inhibited cell proliferation and cell
cycle progression and promoted cell apoptosis in ovarian
cancer cells, through molecular networks to target PFKP
and PKM2 in glycolysis; IDH2 and IDH3B in Kreb’s
cycle; ND2, ND5, CYTB, and UQCRH in OXPHOS;
and MCT1 and MCT4 in lactate shuttle to inhibit ovarian
cancer growth. Therefore, flavonoids and ivermectin
might be two types of potential drugs to directly and/or
indirectly target energy metabolism pathways for ovari-
an cancer prevention and therapy. Also, measurement of
these key molecule changes of energy metabolism path-
ways can be used as prognostic assessment for preven-
tive response and therapeutic response and patient strat-
ification [70].

(iii) Crucial roles of multiomics. Multiomics offers the great
potential for the identification of the altered molecule
profiling in energy metabolism pathways of ovarian
cancers [71, 72]. For example, iTRAQ quantitative pro-
teomics of whole tissues effectively identified the mo-
lecular change profiling of glycolysis pathway in ovar-
ian cancer (Table 3). The iTRAQ quantitative mitochon-
drial proteomics effectively identified the molecular
change profiling of Kreb’s cycle and OXPHOS path-
ways in ovarian cancers (Tables 4 and 5). Quantitative
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transcriptomics effectively identified the regulatory
mechanism of the changed energy metabolism path-
ways in ovarian cancer [17]. SILC quantitative proteo-
mics effectively identified the molecular changed pro-
filing of four energy metabolism pathways after drug-
treated ovarian cancer cells (Table 6). Therefore,
multiomics is a powerful tool to identify changes in
the molecular pattern of energy metabolism pathways
in the context of PPPM practice in ovarian cancer [71,
73].

(iv) Application of individualized patient profiling. Energy
metabolism pathway-based molecular pattern changes
in combination with individualized patient profiling
[70] will precisely stratify patients for personalized treat-
ment and predictive/prognostic assessment of ovarian
cancer patients.
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ribosomal protein L53; MRPL54, mitochondrial ribosomal protein L54;
MRPLS55, mitochondrial ribosomal protein L55; MRPS10, mitochondrial
ribosomal protein S10; MRPS12, mitochondrial ribosomal protein S12;
MRPS15, mitochondrial ribosomal protein S15; MRPS17, mitochondrial
ribosomal protein S17; MRPS21, mitochondrial ribosomal protein S21;
MRPS23, mitochondrial ribosomal protein S23; MRPS33, mitochondrial
ribosomal protein S33; MRPS6, mitochondrial ribosomal protein S6;
MRPS9, mitochondrial ribosomal protein S9; mtDEPs, mitochondrial
differentially expressed proteins; mTOR, mechanistic target of rapamycin
kinase; NADH, mitochondrially encoded NADH dehydrogenase 1; ND2,
mitochondrially encoded NADH dehydrogenase 2; NDS5,
mitochondrially encoded NADH dehydrogenase 5; NFKBIA, NFKB in-
hibitor alpha; OGDHL, oxoglutarate dehydrogenase L; OXPHOS, oxi-
dative phosphorylation; p21, cyclin-dependent kinase inhibitor 1A; p27,
cyclin-dependent kinase inhibitor 1B; P2RX4, purinergic receptor P2X 4;
P2RX7, purinergic receptor P2X 7; PAK1, p21 (RAC1)-activated kinase
1; PARP, polyADP-ribose polymerase inhibitor; PCK2, phosphoenolpyr-
uvate carboxykinase [GTP], mitochondrial; PDC, pyruvate dehydroge-
nase complex; PDHB, pyruvate dehydrogenase E1 subunit beta; PFKP,
phosphofructokinase, platelet; p/, isoelectric point; PKM, pyruvate kinase
muscle; PKM2, pyruvate kinase M2; PPPM, predictive, preventive, and
personalized medicine; PTMs, posttranslational modifications; QCR6,
mitochondrial cytochrome b-cl complex subunit 6; qRT-PCR, quantita-
tive real-time PCR; R, arginine; Rbp, SURP and G-patch domain con-
taining 1; RNA, ribonucleic acid; ROS, reactive oxygen species; SCX,
strong cation exchange chromatography; SD, standard deviation; SDT,
N-hydroxysuccinimide; SILAC, stable isotope labeling with amino acids
in cell culture; SNHG3, small nucleolar RNA host gene 3; STAT3, signal
transducer and activator of transcription 3; SUCLG2, succinate—CoA
ligase GDP-forming subunit beta; TNF, tumor necrosis factor;

TOMM20, translocase of outer mitochondrial membrane 20; UQCRH,
ubiquinol-cytochrome ¢ reductase hinge protein; VDACI, voltage-de-
pendent anion channel 1
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