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Summary
Drought resistance (DR) is a complex trait that is regulated by a variety of genes. Without

comprehensive profiling of DR-related traits, the knowledge of the genetic architecture for DR in

cotton remains limited. Thus, there is a need to bridge the gap between genomics and

phenomics. In this study, an automatic phenotyping platform (APP) was systematically applied to

examine 119 image-based digital traits (i-traits) during drought stress at the seedling stage,

across a natural population of 200 representative upland cotton accessions. Some novel i-traits,

as well as some traditional i-traits, were used to evaluate the DR in cotton. The phenomics data

allowed us to identify 390 genetic loci by genome-wide association study (GWAS) using 56

morphological and 63 texture i-traits. DR-related genes, including GhRD2, GhNAC4, GhHAT22

and GhDREB2, were identified as candidate genes by some digital traits. Further analysis of

candidate genes showed that Gh_A04G0377 and Gh_A04G0378 functioned as negative

regulators for cotton drought response. Based on the combined digital phenotyping, GWAS

analysis and transcriptome data, we conclude that the phenomics dataset provides an excellent

resource to characterize key genetic loci with an unprecedented resolution which can inform

future genome-based breeding for improved DR in cotton.

Introduction

Cotton (Gossypium hirsutum Linn.) is a relatively drought-

resistant economic crop, and the fibre is a valuable source

material for textiles (Chen et al., 2007). Nevertheless, owing to

the effects of climate change and extreme lack of fresh water (Li

et al., 2009a,b), drought has been one of the most critical abiotic

stresses influencing the growth of crops (Zhu, 2002; Zhu, 2016).

This leads to reduced yield in the field, even in cotton (Deeba

et al., 2012). Thus, there is an urgent need to improve drought

resistance of cotton, not only through the use of irrigation but

also through genetic improvement programmes.

Drought resistance (DR), a complex quantitative trait, is

controlled by multiple interacting genes to induce morphological

and physiological responses (Blum, 2011; Fukao and Xiong, 2013;

Guo et al., 2018; Zhou et al., 2007). Plants respond differently at

different growth stages under unpredictable hostile environments

(Kooyers, 2015). In order to describe the complex mechanism of

drought, an index defined as ‘stress elasticity’ has been used in

barley, which shows a good correlation with drought tolerance

(Chen et al., 2014). In a previous study, natural variation in the

gene ZmVPP1 has been found to contribute to drought tolerance

in maize seedlings, using survival rate as an indicator of drought

tolerance (Wang et al., 2016). Another study in rice led to the

identification of OsPP15 using a high-throughput automated

phenotyping platform (Guo et al., 2018). These studies support

the idea that plants might have their own phenotypic characters

when subjected to water deficit, which would be useful to dissect

drought resistance in cotton.

Phenomics represents a new interdisciplinary field that has

attracted more attention in recent years, but still lags far behind

genomics research (Houle et al., 2010). Conventional phenotyp-

ing is labour-intensive, time-consuming, costly and low-through-

put, and acquiring accurate phenotypes is one of the major

bottlenecks in modern crop breeding (Furbank and Tester, 2011).

However, high-throughput phenomics may avoid these draw-

backs through the use of new technologies such as automatic

phenotyping systems (Arvidsson et al., 2011; Granier et al., 2006;

Nagel et al., 2012; Walter et al., 2007), noninvasive imaging (Al-

Tamimi et al., 2016; Araus and Cairns, 2014; Golzarian et al.,

2011; Yang et al., 2014), and even artificial intelligence (Madec

et al., 2017; Potgieter et al., 2017; Ubbens et al., 2018).

Multidimensional image data based on high-performance input-

ting have improved precision and saved time, and can provide

scientists with more comprehensive information on plants.

Massive plant phenomics datasets can be reanalysed by other

users for integrating their omic data to verify and develop novel

mechanisms and models (Cooper et al., 2018; Fiorani and Schurr,

2013; Neveu et al., 2019; Tardieu et al., 2017). Integrated

analysis of phenomics and genomics has contributed to the

discovery of candidate genes in crops in recent years (Dingkuhn

et al., 2017; Prado et al., 2018; Spindel et al., 2018). Although
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phenomics has been applied to many crop and fruit species

(Aquino et al., 2018; Sandmann et al., 2018; Singh et al., 2018;

Yang et al., 2015), its use in relation to drought stress has been

less reported.

In previous work, an automatic phenotyping platform (APP)

was utilized to achieve high-throughput screening of rice and

maize for genetic studies and drought response (Guo et al., 2018;

Yang et al., 2014; Zhang et al., 2017). In the present study, the

APP was expanded for high-throughput phenotyping of a natural

cotton population consisting of 200 representative upland cotton

accessions during the seedling stage of development once a week

across six time points, either under standard watering or drought

conditions. One hundred and nineteen different traits, with some

traditional agronomic traits and more novel digital phenotypic

traits, were obtained at each time point. Novel digital traits, as

well as traditional DR-related traits, were identified as indicators

for cotton DR. Combined with next-generation sequencing for

genotyping, a total of 390 associated quantitative tarit loci (QTLs),

including some hotspots, were identified based on phenome and

genome data. These QTLs included some previously reported

genes: GhRD2, GhNAC4, GhHAT22 and GhDREB2 (Hou et al.,

2018; Li et al., 2017), as well as novel genes.

Results

High-throughput automatic phenotyping platform for
cotton

Phenotyping experiments were carried out in Wuhan using the

APP (Yang et al., 2014) with a natural population of 200 upland

cotton accessions collected from 20 different regions (Fig. 1a;

Table S1), grown either under standard watering or drought

conditions (Fig. 1b). Each plant was inspected from the twenty

side-view images at six time points with drought conditions at

seedling stage (Fig. 1c), producing a total of 1 440 000 images,

yielding ca. 1.5TB of data. After image processing, 119 image-

based digital traits (i-traits) were collected at each time point.

These could be divided into two categories – 56 morphological i-

traits and 63 texture i-traits (Fig. 1d-e). These i-traits could be

further used in GWAS (Fig. 1f-g).

The 56 morphological i-traits could be divided into four

modules: plant geometry [plant height (PH), plant width (PW),

height-width ratio (HWR), side total projected area – bounding

rectangle area ratio (SBR), perimeter-area ratio (PAR), fractal

dimension without and with image cropping (FD1, FD2)], plant

compactness [plant density (PD)i (i = 1, 2, 3, 4, 5, or 6) and PD

derived features (PD_1, PD_2, PD_3, PD_R, PD_K and PD_S),

relative frequencies (RF)j (0 < j < 21) (j = n) and RF derived

features (RF_1, RF_2, RF_3, RF_4, RF_5, RF_R1, RF_R2, RF_R3,

RF_11, RF_21, RF_31, RF_R4, RF_K and RF_S)], plant colour

[green area (GA), green projected area ratio (GPAR)] and plant

biomass [side total projected area (SA)].

The 63 texture i-traits were computed from green (G), hue (H),

and intensity (I) components of the RGB images. For each

component, 21 texture i-traits were calculated, including 6

histogram traits [mean value (ME), standard deviation (SD),

smoothness (ST), third moment (TM), uniformity (UF) and entropy

(ET)] and 15 traits calculated from grey gradient co-occur-

rence matrix (GGCM1-GGCM15).

In order to evaluate the consistency of image-based measure-

ment and manual measurement, plant height and fresh weight

(biomass) were measured manually immediately after imaging.

Strong positive correlations (R2 > 0.93, P-value < 0.001 in plant

height, and R2 > 0.93, P-value < 0.001 in fresh weight) were

observed between image-based measurement and manual mea-

surement (Fig. S1).

Phenotypes of cotton were affected by genotype and

environment, especially affected by the latter at the seedling

stage, when plants grew and changed rapidly every day, except

for compactness traits: RF and middle-level PD (Table S2).

However, the correlation between morphological i-traits

revealed a similar trend in years 2015 and 2017 (Fig. S2a;

Table S3), only some of texture i-traits were inconsistent in

different years (Fig. S2b). A high positive correlation (r = 0.81,

P-value < 0.001, in year 2015; r = 0.77, P-value < 0.001, in

year 2017) was found between PH and PW, both i-traits being

representative of plant geometry. Similarly, GA and GPAR

showed an obvious correlation. For plant compactness, an

obvious correlation was obtained between plant density PDi and

relative frequencies RFj. There were high positive correlations

between low-level PD (PD1 and PD2) and low-level RF (RF1, RF2,
RF3 and RF4), which were the important indices in showing the

degree of the compactness at seedling stage for cotton. High

correlations were also found for different types of i-traits, such

as GA and SA (Fig. S2).

Variation of i-traits under drought stress in cotton

To monitor the drought response of cotton during seedling stage

(T1–T6) using the APP, we collected images of the 200 cotton

accessions, withdrawing water from T2 (mild drought) to T3
(severe drought) time points, and then re-watering from T4 (early-

rewatering) to T6 (late-rewatering). Plants of some accessions

showed wilting, while plants of some accessions showed little

reduced growth at T2 and T3. These i-traits changed dramatically

under drought conditions compared with under normal water

condition, especially in geometric-related and compactness-

related traits.

Coefficient of variation (CV) of drought-resistant coefficient

(DRC) for different i-traits among 200 accessions was used to

determine the discrete degree of observational data. The CV

ranged from 0.01 to 1.78 across all morphological traits, showing

large differences between different i-traits. By comparing the

three sets of data with control, drought and DRC at six early

growth stages, the CV became larger in the group of DRC,

especially at severe drought stage (T3) for high-level compactness

indicators (RF20 and PD6) (Fig. S3).

PH and PW served as traditional indicators of drought

response, which presented a significant difference between

normal and drought groups. Taking two genotypes ZY7 (grouped

as a drought-sensitive accession) and ZY116 (grouped as a

drought-resistant accession) as examples, PH and PW reduced

significantly under severe drought condition for ZY7 compared

with ZY116, and an obvious symptom of wilting could be seen at

T3 under drought condition (Fig. 2a-c). After mild drought stress

at T2, the increment of plant biomass was restricted and this trend

continued with time and was maintained two weeks after re-

watering (Fig. 2d). The GPAR showed little variation during

seedling stage, but a large fluctuation was seen in compactness

traits, such as RF20 and PD6. In total, ninety morphological and

texture i-traits showed a significant difference between treatment

and control panels after drought stress (Paired t-test, P-

value < 0.001; Fig. S4) and most i-traits were in normal distribu-

tion.

Based on data from selected morphological i-traits (PD1-6, PAR,

PW, PH, FD1, FD2, SBR, SA, HWR, GA and GPAR) under both
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standard watering and drought conditions, the population of 200

upland cotton accessions could be divided into three sub-groups,

whereby sub-groups I to III represented the cotton accessions that

were affected severely or slightly by drought stress (Fig. S5). This

result indicated that the vegetative growth of cotton plants was

clearly restricted by water deficit, and variable responses to

drought stress were observed among the population.

Novel i-traits could be used as indicators for DR

In addition to traditional agronomic traits, novel i-traits might be

used to reflect the drought response. Compactness, which could

be described by PD and RF, was an index that reflects the

compactness of branches and leaves of plant. The plant density

PD1-6 stood for the ratio of six shading degrees, where PD1 and

PD6 value represented the ratio of lowest and highest shading

degree, respectively, and six features derived from PD [PD_1,

PD_2, PD_3, PD_R, PD_K and PD_S] were used to give a

comprehensive interpretation for drought response. Comparing

two representative individuals, the distribution of PD1-6 was

basically the same of ZY116 under both drought and control

conditions, but the distribution regularities of ZY7 were

completely different whereby the percentages of PD6 and PD5

were obviously higher under drought stress than control (Fig. 3a-

b). Under severe water deficit, the treatment group showed an

obviously higher PD6 than control (P-value < 0.05) at T3 (Fig. 3c),

so that drought-sensitive and drought-resistant individuals could

be identified easily using this index.

RF1-20 represented twenty degrees of distribution for plants

through twenty different angles, in which RF1 and RF20 repre-

sented the proportion of the lowest and highest compactness

degree, respectively, and 14 traits derived from RF [RF_1, RF_2,

RF_3, RF_4, RF_5, RF_R1, RF_R2, RF_R3, RF_11, RF_21, RF_31,

RF_R4, RF_K and RF_S] were also used to evaluate the degree of

drought response. RF_R4 was found to be effective in discrim-

inating drought-resistant individuals and drought-sensitive indi-

viduals. For drought-sensitive individuals, they showed a higher

RF_R4 value (RF_R4 > 0.2) than drought-resistant individuals

(RF_R4 < 0.1) (Fig. 4a). To study the distribution of RF1-20 of

two representative plants of ZY7 and ZY116, a similar distribution

was found for both individuals under normal water condition, but

a large difference was observed in the distribution of ZY7 and

ZY116 under drought conditions (Fig. 4b-c). These results

Fig. 1 High-throughput automatic phenotyping platform for cotton. (a) Geographic origin of 200 collected upland cotton. (b) Drought experiments were

carried out in the automatic phenotyping platform, plants in control were irrigated regularly by sprinkler facility. (c) Images were collected at six time points

either under mild drought, severe drought and rewater treatment during seedling stage. (d) Image processing. Binary image and G, H, I components of

plant image were extracted from RGB images. (e) Two types of i-traits were obtained: morphological traits and texture trait. (f-g) Combined with genome

sequencing, these i-traits could be used in GWAS.
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suggested that RF might be another useful i-trait to indicate

drought response in cotton.

Some texture i-traits also could be used as indicators for

drought response in cotton. Taking G as an example, G was the

green component that to some extent reflects the chlorophyll

content of plants. There were 21 traits in G texture. The DRC

value of some texture i-traits, such as ET_G, declined under

drought conditions (Fig. 4d). Based on the above study, we take

three representative accessions for further analysis. The results

showed that the DRC value decreased under severe drought

treatment to a lowest DRC value of ET_G at 0.07 in the drought-

sensitive accession ZY7, which suffered a more serious impact

than two drought-resistant accessions ZY116 (DRC = 0.2) and

ZY168 (DRC = 0.47). Moreover, the DRC value of ET_G increased

to a relatively high-level after re-watering in the highly drought-

resistant accession ZY168 (Fig. 4e).

These results show that dynamic growth is revealed by either

traditional indicators or novel i-traits under drought treatments,

providing a useful basis by which to find DR-related genes using

GWAS.

Candidate DR-related genes based on GWAS and RNA-
Seq

To analyse the molecular basis of DR-related i-traits, the cotton

accessions were sequenced. A total of ca. 3.8 Tb of sequence

data were integrated, with an average depth of ca. 7.49

(Table S1). These data were mapped against the TM-1 genome

to identify genomic variants, and a total of 12 724 791 SNPs
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were detected (Table S4). After filtering scaffold and MAF (minor

allele frequency < 0.05) SNPs, 2 060 458 SNPs were used in

factored spectrally transformed linear mixed models (FaST-LMM),

and the strict significance P-value was set at 2.43 9 10�8 by

Bonferroni correction. Population structure was calculated as the

covariance to control the false positives (Fig. S6a). We explored

the phylogenetic relationships among the 200 cotton accessions,

using whole-genome SNP analysis, and those cotton accessions

were divided into four groups, as supported by population

structure analysis (Fig. S6b).

GWAS was performed across those cotton accessions for the

value of RCRW (recovery capability after re-watering) of SA and

DRC of 119 i-traits at different time points during seedling stage.

A total of 622 unique SNPs were detected and with the smallest

number of unique significant SNPs detected on Chromosome

(Chr) A05 (Table S5). Some loci identified by GWAS associated

with some morphological and texture i-traits, as shown in

Fig. S7a. Among them, the signal of one SNP peak in a region

on Chr A04 showed gradual strengthening by GWAS analysis

using SA at T2 and T3, and finally exceeded the suggested

threshold value at T4 (Fig. S7b). Moreover, this SNP peak was

found to be co-located by GWAS analysis using three i-traits (PH,

PW and SA; Fig. 5a).

To find candidate genes around peak SNPs on different

chromosomes, we needed to narrow down QTL regions. In our

study, LD decay distance was ca. 500 kb using all SNPs (Fig. S8).

A total of 390 candidate loci were detected by GWAS with those

i-traits (Table S5), and 71 loci could be identified in both two

years. Among them, 252 QTLs were associated with morpholog-

ical i-traits, with a similar distributed amount to A and D
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subgenome (132 versus 120; Fig. S9 and Table S5), although the

size of the A subgenome (1477 Mb) is nearly twice that of the D

subgenome (831 Mb) (Zhang et al., 2015).

RNA-Seq was performed using a highly drought-sensitive

cotton accession ZY7 and a relatively drought-resistant cotton

accession ZY168 to differentially analyse the candidate genes at

those associated loci. A total of 16 827 DEGs were found to be

differentially expressed under drought treatments (P-ad-

just < 0.01, log2FoldChange > 1). Among them, 8074 DEGs

were identified in both genotypes, with 2212 genes differentially

expressed (P-value < 0.05) between the two. In addition, 5090

DGEs were identified only in ZY7, while 3663 DEGs were

identified only in ZY168 (Table S6).

Fifteen QTLs within 167 DEGs through four i-traits of PD, RF, G

and SA were selected for further analysis (Table S7). For these

QTLs, QTL3 could be identified by GWAS with both RF and G.

Four genes (Gh_D11G2874, Gh_D11G2876, Gh_D11G2884 and

Gh_D11G2885) were overlapping in QTL1 and QTL14 by GWAS

with different i-traits. Some previously verified DR-related genes

were co-localized within these regions. For example, GhNAC4

and GhRD2 were associated with the derived features of PD; and

GhDREB2 and GhHAT22 were detected as the features of RF

(Fig. 5b-c). However, more DEGs with homologous annotation of

some reported stress-related genes in other plants were present

at these loci, such as Gh_D11G2863 (ethylene responsive

element binding factor 3), Gh_D13G2394 (tonoplast intrinsic
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protein 1;3), Gh_D13G2393 (MYB domain protein 48),

Gh_A12G1594 (WRKY DNA-binding protein 72), Gh_D11G2887

(transducin family protein/ WD-40 repeat family protein),

Gh_D11G2899 (receptor-like protein 50) and Gh_D10G1405

(Calcium-binding EF-hand family protein; Table S7). Moreover,

there were some DEGs without available annotation even for the

homologous genes in Arabidopsis within the associated loci, such

as Gh_D13G2320, Gh_D13G2344, Gh_D10G0952,

Gh_A04G0377, Gh_A04G0378, Gh_A12G1597, Gh_A12G0141

and Gh_A12G0142.

Identification of two novel DR-related negative
regulative genes

As mentioned above, an associated locus on Chr A04 was

identified by several i-traits, such as SA (Fig. 6a). Two closely

linked sub-regions were presented in this region (Fig. 6b). Other

than some annotated DEGs, two previously unreported tandem

repeat genes, Gh_A04G0377 and Gh_A04G0378, named as

drought negative regulators (GhDNRs), were present in one sub-

region (Table S7). These two genes each had two exons (Fig. 6c).

The genotypes were either CC or TT alleles in the promoter

regions of these two genes, and a significant difference in SA was

found in two sets of plants – those that had the ‘TT’ allele show a

higher biomass than the ‘CC’ variant under drought stress

(Fig. 6d). The relative expression level of Gh_A04G0377 showed

a higher up-regulation in the drought-sensitive accession ZY7

than in the drought-resistant accession ZY168 under drought

stress (Fig. 6e). These results suggested that this candidate gene

could be transcriptionally induced by drought and repressed

under normal water condition in the cotton.

Further functional validation of GhDNRs in cotton was carried

out by virus-induced gene silencing (VIGS) technology. The drought

stress was applied to the cotton plants at the seedling stage, with

the two tandem repeat genes of Gh_A04G0377 and

Gh_A04G0378 both silenced in the seedlings (Fig. 6f-h). The

image-based biomass (SA) of TRV:GhDNRs plants was higher than

the control TRV:00 plants under drought stress (ASWC, ca. 1%;

Fig. 6i), and themanually measured PHwas higher in TRV:GhDNRs

plants than the control TRV:00 plants (Fig. 6j). The defoliation rate

was decreased to 13.3% in the silenced plants compared with the

93.3% in control (Fig. 6k). Delayed leaf defoliation of TRV:GhDNRs

plants was also observed in drought-sensitive plants (Fig. S10).

TRV:GhDNRs plants accumulated more soluble sugar than control

plants, which might contribute to drought tolerance (Fig. 6l). On

the other hand, we found that silenced GhDNRs in the drought-

resistant accession ZY168 showed only small differences in plant

height and less difference in leaf defoliation in TRV:GhDNRs plants

compared with control plants (Fig. S10).

Fig. 5 Genome-wide association studies. (a) Manhattan plots in Chr A04 for three traits of PH, SA and PW. The SNP that arrow points to as the same SNP

described in the context. (b-c) Manhattan plots and QQ-plots for four representative novel i-traits. The QTLs including reported genes were marked by

dotted boxes. Horizontal red full line indicates the genome-wide significant threshold (�log10P = 7.6).
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Discussion

The accurate identification and description of crop phenotypes

are a prerequisite for a deep understanding of the relationship

between phenotype and genotype as an important aim in

modern biology. There is also an urgent need to cultivate new

breakthrough crop varieties and ensure national food production

and food safety. Compared with the rapid development of

genomic technology, the current methods for phenotyping are

labour-intensive, costly, time-consuming and low-throughput, so

Fig. 6 Identification of the DR genes on Chr A04. (a) Manhattan plot of the trait of SA. The red line indicates the threshold of �log10P = 7.6, the red

arrow points to the lead SNP of A04_12697203. (b) LD heat map of surrounding the peak on Chr A04. Two interlocking regions within 472.3Kb are divided

in the green dotted triangle. (c) Gene model of Gh_A04G0377 and Gh_A04G0378. (d) Boxplots for SA, based on the genotypes of SNP A04_10697203,

which the red arrow points to in a. (e) Relative expression of Gh_A04G0377 in the leaf of ZY7 and ZY168 under control and drought stress. Values with

different letters (a–c) indicate significant differences (Duncan’s multiple comparisons, P-value < 0.05) between each sample. (f-g) qRT-PCR analysis

confirmed that Gh_A04G0377 and Gh_A04G0378 were silenced in the TRV:GhDNRs plants. (h) VIGS of GhDNRs (TRV:GhDNRs) in drought-sensitive

accession ZY7, and ZY7 with TRV:00 was used as control. (i-j) Indicators of SA, manually measured PH, defoliation rate measured in control and silenced

plants. (k) Soluble sugar content detected in leaves under drought stress. Error bars were calculated by S.D. based on three biological replicates, statistical

significance was determined by a two-sided t-test: * P-value < 0.05, ** P-value < 0.01.
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becoming a major bottleneck in crop improvement programmes

(Chen et al., 2014; Furbank and Tester, 2011). Here, we utilized

efficient crop phenotyping techniques and acquired multidimen-

sional i-traits for above-ground parts based on images generated

by a high-throughput APP (Fig. 1), which has proved to be an

efficient system in plant phenotyping (Guo et al., 2018; Yang

et al., 2014; Zhang et al., 2017).

Drought resistance is a complex quantitative trait. Plants have

evolved drought adaptation in part via changes in morphological

phenotype (Hu and Xiong, 2014). With the increasing amount of

phenotypic data, phenomics has become a mode of investigation

and several important phenotype databases are integrated for

public analysis (www.plantphenomics.com; http://www.plant

phenomics.org.au/PODDProject). The problem remains of how

to filter out these redundant i-traits and pick out the data that

meet our needs is another problem (Chen et al., 2014; Schadt

et al., 2010). In our study, two kinds of i-traits were identified to

study the drought response of cotton. Using the index of DRC,

we studied the correlation among all morphological and texture i-

traits to explain the change regularity of traits under drought

conditions, which helped us to screen out some important

candidate traits, such as PH, SA, PD and RF.

Plant height and some other traditional traits are vital indices

for cotton DR (Fig. 2). In the current study, we paid more

attention to novel image-based indicators (PD, RF and G) to

explain the DR of cotton in different dimensions. Drought-

sensitive individuals presented a higher percentage of PD6 under

drought stress (Fig. 3). RF1 to RF20, and their derived feature from

RF could also be used to evaluate DR and allow visualization of

the drought-resistant individuals and drought-sensitive individuals

(Fig. 4a-c). One trait in texture i-traits was also selected to display

the DR response (Fig. 4d-e).

We performed GWAS on a population of 200 upland cotton

accessions with the phenotypes collected from the above APP for

DR during seedling stage. We not only co-located some previously

reported DR-related genes in cotton (Fig. 5), but also found some

proposed meaningful stress-related genes, such as

Gh_D13G2393, and Gh_A12G1594 (Table S7). Moreover, due

to the high positive correlation between PH, SA and PW, a QTL

was co-located on Chr A04. Within this region, two previously

unreported tandem repeat genes, Gh_A04G0377 and

Gh_A04G0378, were found to relate to drought stress.

To the best of our knowledge, this is the first study to conduct

GWAS based on high-throughput APP derived multiple i-traits in

a cotton drought study. During seedling growth, dynamic DR was

revealed in cotton, which might be influenced by different genes.

Among a large population, drought-sensitive and drought-resis-

tant individuals presented different growth models. Yield and

quality of fibre were not investigated in this study, which are the

two important traits for the value of cotton. Accurate phenotypic

identification data for field-grown plants was hard to obtain

because of exposure to a range of biotic and abiotic stresses.

Nevertheless, we associated high-density resequencing informa-

tion with abundant phenotypic data and identified novel genes

related to DR, as well as previously reported relevant genes

(Table S7). Some candidate genes were verified as being differ-

entially expressed under drought stress, and novel genes,

GhDNRs were shown to negatively regulate drought tolerance

at physiological and transcriptional levels through VIGS experi-

ments, or gene expression tests that showed the drought-

sensitive cotton accession exhibited more significant up-regula-

tion of relative expression of the genes (Fig. 6). The GhDNRs

genes might control the biomass and defoliation under drought

stress, but the deeper mechanisms of drought tolerance remained

to be clarified.

Materials and methods

Plant materials and experimental design

A natural population of 200 representative upland cotton

accessions was planted in APP facilities (Yang et al., 2014) at

the National Key Laboratory of Crop Genetic Improvement in

Huazhong Agricultural University, Wuhan, Hubei Province,

P.R.China (30°28027″N, 114°2101″E, 30 m elevation) with two

year replicates and three replicates each year, either under

standard watering or drought conditions during seedling stage.

Among them, 186 cotton accessions were collected from the

major Chinese cotton cultivation regions: the northwestern inland

region (NIR), the northern specific early maturation region

(NSEMR), the Yellow River region (YRR) and the Yangtze River

region (YtRR), another 14 varieties were introduced from America

and Soviet Union (AS), as described previously (Huang et al.,

2017; Wang et al., 2017). Information on the cotton accessions is

provided in Table S1. Seeds were sown in late April (Table S8).

Plants were grown under controlled greenhouse conditions and

were watered by an automatic irrigation system at germination

stage, and then manually watered with about 900 mL/pot once a

week three days before images capturing. Fertilization was

carried out at sowing, and a compound boron fertilizer was

added before T5 (60 kg of water + 100 g of boric fertil-

izer + 370 g of carbamide, fully dissolved and 150 mL applied

per pot).

Cotton plants were subject to automatic phenotyping at the

three-leaf stage (ie 30 days after sowing in year 2015, and

32 days after sowing in year 2017). All the cotton individuals

were screened at a one-week interval to generate six time points

(as T1 to T6) during the seedling stage. Drought stress was

conducted by withdrawing water from the plants (as D) at T2
(mild drought) to T3 (severe drought) time points, while control

plants were well watered. Absolute soil water content (ASWC)

was used to evaluate the degree of drought in cotton [the ASWC

of mild drought (T2) was ca. 5%, and 1% for severe drought (T3),

while ca. 15% for the parallel control]. The experiments were

conducted on three biological replicates. Each plant grown in a

pot with 4.5 kg soil was used as a biological replicate. In total,

1200 plants were used and imaged in this study. The line interval

size was 400 mm, and individual plant interval size was 250 mm

with one line remaining empty between two planted lines. A

small population of ten representative varieties was planted for

manual measurement and digital modelling. The sowing dates,

watering dates and detection dates for two years were provided

in Table S8.

Phenotyping and image-based digital traits (i-traits)
extraction

The details of the phenotyping facility were described previously

(Yang et al., 2014). The automatic phenotyping of cotton was

conducted as shown in Fig. 1. RGB images of the cotton plants

were acquired using a modified high-throughput rice phenotyp-

ing facility (HRPF). Twenty side-view images (2452 9 2056 pixels)

were taken from different angles at one time point for each plant.

Image processing and features extraction were accomplished

using LabVIEW as described previously, with minor modifications

(Yang et al., 2014). Manual measurements were conducted at
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each time-point for digital modelling. After image processing,

119 image-based digital traits (i-traits) were computed, including

56 morphological i-traits and 63 texture i-traits.

The textures calculated from green (G), hue (H), and intensity (I)

component were denoted as G texture, H texture and I texture.

For instance, mean value in G texture was denoted as ME_G. The

detailed definition and equation of all the i-traits were shown in

the File S1.

Analysis of DR-related i-traits

CV using value of control (suffix with _C), drought (suffix with _D)

among 200 accessions for different i-traits was used to determine

the discrete degree of observational data. We focused on mild

drought condition (T2), severe drought condition (T3) and early-

rewatering treatment (T4). The changes observed in some i-traits on

these three time points were expected to reflect the drought

response of cotton. These dynamic changes were investigated in

two ways: (i) i-trait changes following mild to severe drought

conditions (such as traditional indicator, PH and some novel i-traits

as defined below); (ii) i-trait changes representing phenotypic

recovery following serious water deficiency (such as SA). DRC (ratio

between i-traitdrought and i-traitcontrol) and RCRW [(i-trait_T4 - i-

trait_T3)/i-trait_T3] were used to evaluate the phenotypic response.

Analysis of variance (ANOVA) across two years was performed

using QTL IciMapping software (Meng et al., 2015).

The DRC of all traits at T2, T3 and T4 was used to analyse the

performance of the accessions under mild drought, severe

drought and rewatering conditions. RCRW was defined to show

the recovery capability by re-watering after drought treatments.

The values of DRC (suffix with _R) were also used to analyse the

correlations among the morphological i-traits and texture i-traits,

respectively. The distribution of all i-traits was tested by Shapiro-

Wilk test.

Genome-wide association studies for DR-related i-traits

Of the 200 cotton accessions, 170 were sequenced in a previous

study (Wang et al., 2017) and another 30 accessions were

sequenced in 2017 (Table S1). The allotetraploid cotton genome

(Gossypium hirsutum L. acc. TM-1) was used as reference

genome (Zhang et al., 2015). Clean paired-end reads (PE150)

were mapped to the TM-1 genome using BWA software (Li and

Durbin, 2009) with the default parameters. Picard-tools in

Genome Analysis ToolKit (GATK) (McKenna et al., 2010) software

were used to sort BAM format files, remove duplicated data and

realign InDel reads. SNPs and InDels calling were calculated

separately by two different softwares: GATK and SAMtools (Li

et al., 2009a,b), and linkage disequilibrium (LD) for all pairs of

SNPs was calculated using PopLDdecay with the default param-

eters (Zhang et al., 2019).

GWAS was performed with FaST-LMM (version 2.02) (Lippert

et al., 2011). The RCRW of SA and DRC of all i-traits was used for

GWAS. All filtered SNPs used in association analysis were

compressed into binary formats using PLINK software (version

1.90b6.8) (Purcell et al., 2007). The variant annotations were

annotated using the software SnpEff (version 4.3) (Cingolani

et al., 2012). All SNPs were categorized as being in intergenic

regions, upstream and downstream regions, in exons or introns

by default parameters. The significant association threshold

values were set at �log10 (0.05/n) (n, total filtered SNP number).

The significant association regions were manually verified from

the aligned resequencing reads against the TM-1 genome with

SAMtools.

Differential expression analysis and validation of
candidate genes

Leaves of the accession of ZY7 (drought-sensitive) and ZY168

(drought-resistant) from treated and parallel control plants were

sampled with two biological replicates for RNA-Seq analysis at

severe drought stage (T3) just as for phenotyping. Total RNA was

extracted using the TG-DP441 RNA Kit, according to the

manufacturer’s instructions. A total of 2 lg RNA were used for

library construction, and RNA sequencing was performed on an

Illumina NovaseqTM 6000 system. Clean reads (PE150) were

mapped to the TM-1 genome with Hisat2 (version 2.1.0) (Kim

et al., 2015). The expression level of each gene was determined

by StringTie (v1.3.3b) (Pertea et al., 2015), and the differentially

expressed genes (DEGs) (P-adjust < 0.01, log2FoldChange > 1)

were calculated by DEseq2 R package. t-Test was implemented to

check the significance between the changes of transcript abun-

dance between the two cotton accessions under drought

conditions. qRT-PCR was conducted to verify the expression

pattern of candidate genes.

VIGS was used to validate the candidate genes as described

previously (Gao et al., 2011). The coding region for Gh_A040377

was cloned into the TRV2 (tobacco rattle virus) vector. The

constructed vectors were transformed into A.tumefaciens

GV3101 by electroporation and agroinfiltrated into the cotyle-

dons of drought-sensitive accession ZY7 and drought-resistant

accession ZY168 through syringe inoculation when its two

cotyledons had fully spread (13 days after sowing). qRT-PCR

was conducted with the ABI 7500 system (Applied Biosystems,

Foster City, CA) to verify the expression of the candidate genes,

with the internal control GhUBQ7. The 2�DDCT method was used

to present relative changes in gene expression levels (Schmittgen

and Livak, 2008). Primers are listed in Table S9. Drought stress

was applied to the plants by withdrawing water after seed

germination in water-saturated soil. After plants geminated with

no watering for 30 days (ASWC, ca. 1%), the phenotypes were

collected. Leaves were sampled to verify the silence effect when

the second leaf had fully emerged. Nondestructive biomass (SA)

was extracted just as for phenotyping. The plant height and

defoliation of leaves were measured manually. Soluble sugar was

determined by Anthrone-Sulfuric acid colorimetry (Yemm and

Willis, 1954). Significant test was performed by t-test (P-

value < 0.05).
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